ADCs, as Novel Revolutionary Weapons for Providing a Step Forward in Targeted Therapy of Malignancies

Author(s): Nooshafarin Amani*, Farid Abedin Dorkoosh, Hamid Mobedi.

Journal Name: Current Drug Delivery

Volume 17 , Issue 1 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Antibody drug conjugates (ADCs), as potent pharmaceutical trojan horses for cancer treatment, provide superior efficacy and specific targeting along with low risk of adverse reactions compared to traditional chemotherapeutics. In fact, the development of these agents combines the selective targeting capability of monoclonal antibody (mAb) with high cytotoxicity of chemotherapeutics for controlling the neoplastic mass growth. Different ADCs (more than 60 ADCs) in preclinical and clinical trials were introduced in this novel pharmaceutical field. Various design-based factors must be taken into account for improving the functionality of ADC technology, including selection of appropriate target antigen and high binding affinity of fragment (miniaturized ADCs) or full mAbs (preferentially use of humanized or fully human antibodies compared to murine and chimeric ones), use of bispecific antibodies for dual targeting effect, linker engineering and conjugation method efficacy to obtain more controlled drug to antibody ratio (DAR). Challenging issues affecting therapeutic efficacy and safety of ADCs, including bystander effect, on- and off-target toxicities, multi drug resistance (MDR) are also addressed. 4 FDA-approved ADCs in the market, including ADCETRIS ®, MYLOTARG®, BESPONSA ®, KADCYLA®. The goal of the current review is to evaluate the key parameters affecting ADCs development.

Keywords: Immuno conjugate, selective targeting strategy, site-specific conjugation, antibody, drug delivery, hematological and solid tumor.

[1]
Zhou, Q.; Stefano, J.E.; Manning, C.; Kyazike, J.; Chen, B.; Gianolio, D.A.; Park, A.; Busch, M.; Bird, J.; Zheng, X.; Simonds-Mannes, H.; Kim, J.; Gregory, R.C.; Miller, R.J.; Brondyk, W.H.; Dhal, P.K.; Pan, C.Q. Site-specific antibody-drug conjugation through glycoengineering. Bioconjug. Chem., 2014, 25(3), 510-520.
[http://dx.doi.org/10.1021/bc400505q] [PMID: 24533768]
[2]
Goodman, L.S.; Wintrobe, M.M.; Dameshek, W.; Goodman, M.J.; Gilman, A.; McLennan, M.T. Nitrogen mustard therapy; use of methyl-bis (beta-chloroethyl) amine hydrochloride and tris (beta-chloroethyl) amine hydrochloride for Hodgkin’s disease, lymphosarcoma, leukemia and certain allied and miscellaneous disorders. J. Am. Med. Assoc., 1946, 132(3), 126-132.
[http://dx.doi.org/10.1001/jama.1946.02870380008004] [PMID: 20997191]
[3]
Farkona, S.; Diamandis, E.P.; Blasutig, I.M. Cancer immunotherapy: The beginning of the end of cancer? BMC Med., 2016, 14(1), 73.
[http://dx.doi.org/10.1186/s12916-016-0623-5] [PMID: 27151159]
[4]
Acevedo, J.A.M.; Soyano, A.E.; Dholaria, B.; Knutson, K.L.; Lou, Y. Cancer immunotherapy beyond immune checkpoint inhibitors. J. Hematol. Oncol., 2018, 11, 8.
[http://dx.doi.org/10.1186/s13045-017-0552-6] [PMID: 29329556]
[5]
Carter, P.J.; Senter, P.D. Antibody-drug conjugates for cancer therapy. Cancer J., 2008, 14(3), 154-169.
[http://dx.doi.org/10.1097/PPO.0b013e318172d704] [PMID: 18536555]
[6]
Perez, H.L.; Cardarelli, P.M.; Deshpande, S.; Gangwar, S.; Schroeder, G.M.; Vite, G.D.; Borzilleri, R.M. Antibody-drug conjugates: Current status and future directions. Drug Discov. Today, 2014, 19(7), 869-881.
[http://dx.doi.org/10.1016/j.drudis.2013.11.004] [PMID: 24239727]
[7]
Lambert, J.M.; Morris, C.Q. Antibody–drug conjugates (ADCs) for personalized treatment of solid tumors: A review. Adv. Ther., 2017, 34(5), 1015-1035.
[http://dx.doi.org/10.1007/s12325-017-0519-6] [PMID: 28361465]
[8]
Congreve, S.; Elias, R.F.; Tidestav, G.; Zafrianian, V. Antibody Drug Conjugates (ADC) Current status and mapping of ADCs in clinical programs; Uppsala universitet, Uppsala, Sweden. 2008, pp. 1-44.
[9]
Goli, N.; Bolla, P.K.; Talla, V. Antibody-Drug Conjugates (ADCs); Potent biopharmaceuticals to target solid and hematological cancers- An overview. 2018.
[10]
Flygare, J.A.; Pillow, T.H.; Aristoff, P. Antibody-drug conjugates for the treatment of cancer. Chem. Biol. Drug Des., 2013, 81(1), 113-121.
[http://dx.doi.org/10.1111/cbdd.12085] [PMID: 23253133]
[11]
Chari, R.V.J.; Miller, M.L.; Widdison, W.C. Antibody-drug conjugates: An emerging concept in cancer therapy. Angew. Chem. Int. Ed. Engl., 2014, 53(15), 3796-3827.
[http://dx.doi.org/10.1002/anie.201307628] [PMID: 24677743]
[12]
Chudasama, V.; Maruani, A.; Caddick, S. Recent advances in the construction of antibody-drug conjugates. Nat. Chem., 2016, 8(2), 114-119.
[http://dx.doi.org/10.1038/nchem.2415] [PMID: 26791893]
[13]
Casi, G.; Neri, D. Antibody-drug conjugates and small molecule-drug conjugates: Opportunities and challenges for the development of selective anticancer cytotoxic agents. J. Med. Chem., 2015, 58(22), 8751-8761.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00457] [PMID: 26079148]
[14]
McCombs, J.R.; Owen, S.C. Antibody drug conjugates: Design and selection of linker, payload and conjugation chemistry. AAPS J., 2015, 17(2), 339-351.
[http://dx.doi.org/10.1208/s12248-014-9710-8] [PMID: 25604608]
[15]
Leal, M.; Sapra, P.; Hurvitz, S.A.; Senter, P.; Wahl, A.; Schutten, M.; Shah, D.K.; Haddish-Berhane, N.; Kabbarah, O. Antibody-drug conjugates: An emerging modality for the treatment of cancer. Ann. N. Y. Acad. Sci., 2014, 1321(1), 41-54.
[http://dx.doi.org/10.1111/nyas.12499] [PMID: 25123209]
[16]
Vater, C.A.; Goldmacher, V.S. Antibody-cytotoxic compound conjugates for oncology. Macromolecular Anticancer Therapeutics; Springer, 2010, pp. 331-369.
[http://dx.doi.org/10.1007/978-1-4419-0507-9_9]
[17]
Nasiri, H.; Valedkarimi, Z.; Aghebati-Maleki, L.; Majidi, J. Antibody-drug conjugates: Promising and efficient tools for targeted cancer therapy. J. Cell. Physiol., 2018, 233(9), 6441-6457.
[http://dx.doi.org/10.1002/jcp.26435] [PMID: 29319167]
[18]
Kim, E.G.; Kim, K.M. Strategies and advancement in antibody-drug conjugate optimization for targeted cancer therapeutics. Biomol. Ther. (Seoul), 2015, 23(6), 493-509.
[http://dx.doi.org/10.4062/biomolther.2015.116] [PMID: 26535074]
[19]
Schumacher, D.; Hackenberger, C.P.; Leonhardt, H.; Helma, J. Current status: Site-specific antibody drug conjugates. J. Clin. Immunol., 2016, 36(Suppl. 1), 100-107.
[http://dx.doi.org/10.1007/s10875-016-0265-6] [PMID: 27003914]
[20]
Teicher, B.A.; Chari, R.V. Antibody conjugate therapeutics: Challenges and potential. Clin. Cancer Res., 2011, 17(20), 6389-6397.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-1417] [PMID: 22003066]
[21]
Lin, J.H.; Guo, Y.; Wang, W. Challenges of antibody drug conjugates in cancer therapy. Current Understanding of Mechanisms and Future Strategies, In: Molecular Drug Disposition. Hu, M. Ed. 2018, 4, 10-26.
[http://dx.doi.org/10.1007/s40495-018-0122-9]
[22]
Ehrlich, P. The relationship existing between chemical constitution, distribution, and pharmacological action. In: The collected papers of Paul Ehrlich, Himmelweit, F. Ed; Pergamon Press, London and Newyork, 1956; pp. 1626-1628.
[23]
Mathe, G.; Tran Ba, L.O.; Bernard, J. Effet sur la leucémie 1210 de la souris d’un combinaison par diazotation d’A-méthoptèrine et de gamma-globulines de hamsters porteurs de cette leucèmie par hétérogreffe. C. R. Hebd. Seances Acad. Sci., 1958, 246(10), 1626-1628.
[PMID: 13537412]
[24]
Petersen, B.H.; DeHerdt, S.V.; Schneck, D.W.; Bumol, T.F. The human immune response to KS1/4-desacetylvinblastine (LY256787) and KS1/4-desacetylvinblastine hydrazide (LY203728) in single and multiple dose clinical studies. Cancer Res., 1991, 51(9), 2286-2290.
[PMID: 2015593]
[25]
Trail, P.A.; Willner, D.; Lasch, S.J.; Henderson, A.J.; Hofstead, S.; Casazza, A.M.; Firestone, R.A.; Hellström, I.; Hellström, K.E. Cure of xenografted human carcinomas by BR96-doxorubicin immunoconjugates. Science, 1993, 261(5118), 212-215.
[http://dx.doi.org/10.1126/science.8327892] [PMID: 8327892]
[26]
Schrappe, M.; Bumol, T.F.; Apelgren, L.D.; Briggs, S.L.; Koppel, G.A.; Markowitz, D.D.; Mueller, B.M.; Reisfeld, R.A. Long-term growth suppression of human glioma xenografts by chemoimmunoconjugates of 4-desacetylvinblastine-3-carboxyhydrazide and monoclonal antibody 9.2.27. Cancer Res., 1992, 52(14), 3838-3844.
[PMID: 1617657]
[27]
Burris, H.A., III; Tibbitts, J.; Holden, S.N.; Sliwkowski, M.X.; Phillips, G.D.L. Trastuzumab emtansine (T-DM1): A novel agent for targeting HER2+ breast cancer. Clin. Breast Cancer, 2011, 11(5), 275-282.
[http://dx.doi.org/10.1016/j.clbc.2011.03.018] [PMID: 21729661]
[28]
Coiffier, B.; Thieblemont, C.; de Guibert, S.; Dupuis, J.; Ribrag, V.; Bouabdallah, R.; Morschhauser, F.; Navarro, R.; Le Gouill, S.; Haioun, C.; Houot, R.; Casasnovas, O.; Holte, H.; Lamy, T.; Broussais, F.; Payrard, S.; Hatteville, L.; Tilly, H. A phase II, single-arm, multicentre study of coltuximab ravtansine (SAR3419) and rituximab in patients with relapsed or refractory diffuse large B-cell lymphoma. Br. J. Haematol., 2016, 173(5), 722-730.
[http://dx.doi.org/10.1111/bjh.13992] [PMID: 27010483]
[29]
Valedkarimi, Z.; Nasiri, H.; Aghebati-Maleki, L.; Majidi, J. Antibody-cytokine fusion proteins for improving efficacy and safety of cancer therapy. Biomed. Pharmacother., 2017, 95, 731-742.
[http://dx.doi.org/10.1016/j.biopha.2017.07.160] [PMID: 28888210]
[30]
Shen, B.Q.; Xu, K.; Liu, L.; Raab, H.; Bhakta, S.; Kenrick, M.; Parsons-Reponte, K.L.; Tien, J.; Yu, S.F.; Mai, E.; Li, D.; Tibbitts, J.; Baudys, J.; Saad, O.M.; Scales, S.J.; McDonald, P.J.; Hass, P.E.; Eigenbrot, C.; Nguyen, T.; Solis, W.A.; Fuji, R.N.; Flagella, K.M.; Patel, D.; Spencer, S.D.; Khawli, L.A.; Ebens, A.; Wong, W.L.; Vandlen, R.; Kaur, S.; Sliwkowski, M.X.; Scheller, R.H.; Polakis, P.; Junutula, J.R. Conjugation site modulates the in vivo stability and therapeutic activity of antibody-drug conjugates. Nat. Biotechnol., 2012, 30(2), 184-189.
[http://dx.doi.org/10.1038/nbt.2108] [PMID: 22267010]
[31]
Beck, A.; Goetsch, L.; Dumontet, C.; Corvaïa, N. Strategies and challenges for the next generation of antibody-drug conjugates. Nat. Rev. Drug Discov., 2017, 16(5), 315-337.
[http://dx.doi.org/10.1038/nrd.2016.268] [PMID: 28303026]
[32]
Lyon, R.P.; Bovee, T.D.; Doronina, S.O.; Burke, P.J.; Hunter, J.H.; Neff-LaFord, H.D.; Jonas, M.; Anderson, M.E.; Setter, J.R.; Senter, P.D. Reducing hydrophobicity of homogeneous antibody-drug conjugates improves pharmacokinetics and therapeutic index. Nat. Biotechnol., 2015, 33(7), 733-735.
[http://dx.doi.org/10.1038/nbt.3212] [PMID: 26076429]
[33]
Laguzza, B.C.; Nichols, C.L.; Briggs, S.L.; Cullinan, G.J.; Johnson, D.A.; Starling, J.J.; Baker, A.L.; Bumol, T.F.; Corvalan, J.R. New antitumor monoclonal antibody-vinca conjugates LY203725 and related compounds: design, preparation, and representative in vivo activity. J. Med. Chem., 1989, 32(3), 548-555.
[http://dx.doi.org/10.1021/jm00123a007] [PMID: 2783975]
[34]
Sedlacek, H.H.; Seemann, G.; Hoffmann, D.; Czech, J.; Lorenz, P.; Kolar, C.; Bosslet, K. Antibodies as carriers of cytotoxicity; Karger Basel: New York, 1992.
[http://dx.doi.org/10.1159/isbn.978-3-318-03426-4]
[35]
Chari, R.V. Targeted cancer therapy: Conferring specificity to cytotoxic drugs. Acc. Chem. Res., 2008, 41(1), 98-107.
[http://dx.doi.org/10.1021/ar700108g] [PMID: 17705444]
[36]
Diamantis, N.; Banerji, U. Antibody-drug conjugates--an emerging class of cancer treatment. Br. J. Cancer, 2016, 114(4), 362-367.
[http://dx.doi.org/10.1038/bjc.2015.435] [PMID: 26742008]
[37]
Bouchard, H.; Viskov, C.; Garcia-Echeverria, C. Antibody-drug conjugates-a new wave of cancer drugs. Bioorg. Med. Chem. Lett., 2014, 24(23), 5357-5363.
[http://dx.doi.org/10.1016/j.bmcl.2014.10.021] [PMID: 25455482]
[38]
Oroudjev, E.; Lopus, M.; Wilson, L.; Audette, C.; Provenzano, C.; Erickson, H.; Kovtun, Y.; Chari, R.; Jordan, M.A. Maytansinoid-antibody conjugates induce mitotic arrest by suppressing microtubule dynamic instability. Mol. Cancer Ther., 2010, 9(10), 2700-2713.
[http://dx.doi.org/10.1158/1535-7163.MCT-10-0645] [PMID: 20937595]
[39]
Jeffrey, S.C.; Burke, P.J.; Lyon, R.P.; Meyer, D.W.; Sussman, D.; Anderson, M.; Hunter, J.H.; Leiske, C.I.; Miyamoto, J.B.; Nicholas, N.D.; Okeley, N.M.; Sanderson, R.J.; Stone, I.J.; Zeng, W.; Gregson, S.J.; Masterson, L.; Tiberghien, A.C.; Howard, P.W.; Thurston, D.E.; Law, C.L.; Senter, P.D. A potent anti-CD70 antibody-drug conjugate combining a dimeric pyrrolobenzodiazepine drug with site-specific conjugation technology. Bioconjug. Chem., 2013, 24(7), 1256-1263.
[http://dx.doi.org/10.1021/bc400217g] [PMID: 23808985]
[40]
Prokop, A.; Wrasidlo, W.; Lode, H.; Herold, R.; Lang, F.; Henze, G.; Dörken, B.; Wieder, T.; Daniel, P.T. Induction of apoptosis by enediyne antibiotic calicheamicin thetaII proceeds through a caspase-mediated mitochondrial amplification loop in an entirely Bax-dependent manner. Oncogene, 2003, 22(57), 9107-9120.
[http://dx.doi.org/10.1038/sj.onc.1207196] [PMID: 14647446]
[41]
Doronina, S.O.; Mendelsohn, B.A.; Bovee, T.D.; Cerveny, C.G.; Alley, S.C.; Meyer, D.L.; Oflazoglu, E.; Toki, B.E.; Sanderson, R.J.; Zabinski, R.F.; Wahl, A.F.; Senter, P.D. Enhanced activity of monomethylauristatin F through monoclonal antibody delivery: Effects of linker technology on efficacy and toxicity. Bioconjug. Chem., 2006, 17(1), 114-124.
[http://dx.doi.org/10.1021/bc0502917] [PMID: 16417259]
[42]
Remillard, S.; Rebhun, L.I.; Howie, G.A.; Kupchan, S.M. Antimitotic activity of the potent tumor inhibitor maytansine. Science, 1975, 189(4207), 1002-1005.
[http://dx.doi.org/10.1126/science.1241159] [PMID: 1241159]
[43]
Klute, K.; Nackos, E.; Tasaki, S.; Nguyen, D.P.; Bander, N.H.; Tagawa, S.T. Microtubule inhibitor-based antibody-drug conjugates for cancer therapy. OncoTargets Ther., 2014, 7, 2227-2236.
[PMID: 25506226]
[44]
Chari, R.V. Expanding the reach of antibody-drug conjugates. ACS Med. Chem. Lett., 2016, 7(11), 974-976.
[http://dx.doi.org/10.1021/acsmedchemlett.6b00312] [PMID: 27882193]
[45]
Bai, R.L.; Pettit, G.R.; Hamel, E. Binding of dolastatin 10 to tubulin at a distinct site for peptide antimitotic agents near the exchangeable nucleotide and vinca alkaloid sites. J. Biol. Chem., 1990, 265(28), 17141-17149.
[PMID: 2211617]
[46]
Maderna, A.; Doroski, M.; Subramanyam, C.; Porte, A.; Leverett, C.A.; Vetelino, B.C.; Chen, Z.; Risley, H.; Parris, K.; Pandit, J.; Varghese, A.H.; Shanker, S.; Song, C.; Sukuru, S.C.; Farley, K.A.; Wagenaar, M.M.; Shapiro, M.J.; Musto, S.; Lam, M.H.; Loganzo, F.; O’Donnell, C.J. Discovery of cytotoxic dolastatin 10 analogues with N-terminal modifications. J. Med. Chem., 2014, 57(24), 10527-10543.
[http://dx.doi.org/10.1021/jm501649k] [PMID: 25431858]
[47]
Francisco, J.A.; Cerveny, C.G.; Meyer, D.L.; Mixan, B.J.; Klussman, K.; Chace, D.F.; Rejniak, S.X.; Gordon, K.A.; DeBlanc, R.; Toki, B.E.; Law, C.L.; Doronina, S.O.; Siegall, C.B.; Senter, P.D.; Wahl, A.F. cAC10-vcMMAE, an anti-CD30-monomethyl auristatin E conjugate with potent and selective antitumor activity. Blood, 2003, 102(4), 1458-1465.
[http://dx.doi.org/10.1182/blood-2003-01-0039] [PMID: 12714494]
[48]
Lopus, M.; Oroudjev, E.; Wilson, L.; Wilhelm, S.; Widdison, W.; Chari, R.; Jordan, M.A. Maytansine and cellular metabolites of antibody-maytansinoid conjugates strongly suppress microtubule dynamics by binding to microtubules. Mol. Cancer Ther., 2010, 9(10), 2689-2699.
[http://dx.doi.org/10.1158/1535-7163.MCT-10-0644] [PMID: 20937594]
[49]
Campos, M.P.; Konecny, G.E. The target invites a foe: Antibody-drug conjugates in gynecologic oncology. Curr. Opin. Obstet. Gynecol., 2018, 30(1), 44-50.
[http://dx.doi.org/10.1097/GCO.0000000000000432] [PMID: 29227302]
[50]
Kang, X.; Zhou, L.; Jian, Y-M.; Lan, S.A.; Xu, F. Effectiveness of Antibody-Drug Conjugate (ADC): Results of In vitro and In vivo Studies. Med. Sci. Monit., 2018, 24, 1408-1416.
[http://dx.doi.org/10.12659/MSM.908971] [PMID: 29515096]
[51]
Sau, S.; Alsaab, H.O.; Kashaw, S.K.; Tatiparti, K.; Iyer, A.K. Advances in antibody-drug conjugates: A new era of targeted cancer therapy. Drug Discov. Today, 2017, 22(10), 1547-1556.
[http://dx.doi.org/10.1016/j.drudis.2017.05.011] [PMID: 28627385]
[52]
Boger, D.L.; Johnson, D.S. CC-1065 and the duocarmycins: Unraveling the keys to a new class of naturally derived DNA alkylating agents. Proc. Natl. Acad. Sci. USA, 1995, 92(9), 3642-3649.
[http://dx.doi.org/10.1073/pnas.92.9.3642] [PMID: 7731958]
[53]
Hartley, J.A. The development of pyrrolobenzodiazepines as antitumour agents. Expert Opin. Investig. Drugs, 2011, 20(6), 733-744.
[http://dx.doi.org/10.1517/13543784.2011.573477] [PMID: 21457108]
[54]
Sievers, E.L.; Larson, R.A.; Stadtmauer, E.A.; Estey, E.; Löwenberg, B.; Dombret, H.; Karanes, C.; Theobald, M.; Bennett, J.M.; Sherman, M.L.; Berger, M.S.; Eten, C.B.; Loken, M.R.; van Dongen, J.J.; Bernstein, I.D.; Appelbaum, F.R. Mylotarg study group. efficacy and safety of gemtuzumab ozogamicin in patients with CD33-positive acute myeloid leukemia in first relapse. J. Clin. Oncol., 2001, 19(13), 3244-3254.
[http://dx.doi.org/10.1200/JCO.2001.19.13.3244] [PMID: 11432892]
[55]
Sievers, E.L.; Senter, P.D. Antibody-drug conjugates in cancer therapy. Annu. Rev. Med., 2013, 64, 15-29.
[http://dx.doi.org/10.1146/annurev-med-050311-201823] [PMID: 23043493]
[56]
Davies, J.; Wang, H.; Taylor, T.; Warabi, K.; Huang, X.H.; Andersen, R.J. Uncialamycin, a new enediyne antibiotic. Org. Lett., 2005, 7(23), 5233-5236.
[http://dx.doi.org/10.1021/ol052081f] [PMID: 16268546]
[57]
Maeda, H.; Edo, K.; Ishida, N. Neocarzinostatin: The past, present, and future of an anticancer drug; Springer: New York, 1997.
[http://dx.doi.org/10.1007/978-4-431-66914-2]
[58]
Polakis, P. Antibody drug conjugates for cancer therapy. Pharmacol. Rev., 2016, 68(1), 3-19.
[http://dx.doi.org/10.1124/pr.114.009373] [PMID: 26589413]
[59]
Rowe, J.M.; Löwenberg, B. Gemtuzumab ozogamicin in acute myeloid leukemia: A remarkable saga about an active drug. Blood, 2013, 121(24), 4838-4841.
[http://dx.doi.org/10.1182/blood-2013-03-490482] [PMID: 23591788]
[60]
Damelin, M.; Bankovich, A.; Park, A.; Aguilar, J.; Anderson, W.; Santaguida, M.; Aujay, M.; Fong, S.; Khandke, K.; Pulito, V.; Ernstoff, E.; Escarpe, P.; Bernstein, J.; Pysz, M.; Zhong, W.; Upeslacis, E.; Lucas, J.; Lucas, J.; Nichols, T.; Loving, K.; Foord, O.; Hampl, J.; Stull, R.; Barletta, F.; Falahatpisheh, H.; Sapra, P.; Gerber, H.P.; Dylla, S.J. Anti-EFNA4 calicheamicin conjugates effectively target triplenegative breast and ovarian tumor-initiating cells to result in sustained tumor regressions. Clin. Cancer Res., 2015, 21(18), 4165-4173.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-0695] [PMID: 26015513]
[61]
Hamann, P.R.; Hinman, L.M.; Hollander, I.; Beyer, C.F.; Lindh, D.; Holcomb, R.; Hallett, W.; Tsou, H.R.; Upeslacis, J.; Shochat, D.; Mountain, A.; Flowers, D.A.; Bernstein, I. Gemtuzumab ozogamicin, a potent and selective anti-CD33 antibody-calicheamicin conjugate for treatment of acute myeloid leukemia. Bioconjug. Chem., 2002, 13(1), 47-58.
[http://dx.doi.org/10.1021/bc010021y] [PMID: 11792178]
[62]
Chowdaria, N.S.; Pana, C.; Raoa, C.; Langleyb, D.R.; Sivaprakasamc, P.; Sufia, B.; Derwina, D.; Wanga, Y.; Kwoka, E.; Passmorea, D.; Rangana, V.S.; Deshpandea, S.; Cardarellia, P.; Vitec, G.; Gangwara, S. Uncialamycin as a novel payload for Antibody Drug Conjugate (ADC) based targeted cancer therapy. Bioorg. Med. Chem. Lett., 2018.
[PMID: 30579797]
[63]
MacMillan, K.S.; Boger, D.L. Fundamental relationships between structure, reactivity, and biological activity for the duocarmycins and CC-1065. J. Med. Chem., 2009, 52(19), 5771-5780.
[http://dx.doi.org/10.1021/jm9006214] [PMID: 19639994]
[64]
Mantaj, J.; Jackson, P.J.; Rahman, K.M.; Thurston, D.E. From Anthramycin to Pyrrolobenzodiazepine (PBD)-containing Antibody-Drug Conjugates (ADCs). Angew. Chem. Int. Ed. Engl., 2017, 56(2), 462-488.
[http://dx.doi.org/10.1002/anie.201510610] [PMID: 27862776]
[65]
Miller, M.L.; Fishkin, N.E.; Li, W.; Whiteman, K.R.; Kovtun, Y.; Reid, E.E.; Archer, K.E.; Maloney, E.K.; Audette, C.A.; Mayo, M.F.; Wilhelm, A.; Modafferi, H.A.; Singh, R.; Pinkas, J.; Goldmacher, V.; Lambert, J.M.; Chari, R.V. A new class of antibody-drug conjugates with potent DNA alkylating activity. Mol. Cancer Ther., 2016, 15(8), 1870-1878.
[http://dx.doi.org/10.1158/1535-7163.MCT-16-0184] [PMID: 27216304]
[66]
Pillow, T.H.; Schutten, M.; Yu, S.F.; Ohri, R.; Sadowsky, J.; Poon, K.A.; Solis, W.; Zhong, F.; Del Rosario, G.; Go, M.A.T.; Lau, J.; Yee, S.; He, J.; Liu, L.; Ng, C.; Xu, K.; Leipold, D.D.; Kamath, A.V.; Zhang, D.; Masterson, L.; Gregson, S.J.; Howard, P.W.; Fang, F.; Chen, J.; Gunzner-Toste, J.; Kozak, K.K.; Spencer, S.; Polakis, P.; Polson, A.G.; Flygare, J.A.; Junutula, J.R. Modulating therapeutic activity and toxicity of pyrrolobenzodiazepine antibody-drug conjugates with self-immolative disulfide linkers. Mol. Cancer Ther., 2017, 16(5), 871-878.
[http://dx.doi.org/10.1158/1535-7163.MCT-16-0641] [PMID: 28223423]
[67]
Harper, J.; Lloyd, C.; Dimasi, N.; Toader, D.; Marwood, R.; Lewis, L.; Bannister, D.; Jovanovic, J.; Fleming, R.; D’Hooge, F.; Mao, S.; Marrero, A.M.; Korade, M., III; Strout, P.; Xu, L.; Chen, C.; Wetzel, L.; Breen, S.; van Vlerken-Ysla, L.; Jalla, S.; Rebelatto, M.; Zhong, H.; Hurt, E.M.; Hinrichs, M.J.; Huang, K.; Howard, P.W.; Tice, D.A.; Hollingsworth, R.E.; Herbst, R.; Kamal, A. Preclinical evaluation of MEDI0641, a pyrrolobenzodiazepine-conjugated antibody-drug conjugate targeting 5T4. Mol. Cancer Ther., 2017, 16(8), 1576-1587.
[http://dx.doi.org/10.1158/1535-7163.MCT-16-0825] [PMID: 28522587]
[68]
Rudin, C.M.; Pietanza, M.C.; Bauer, T.M.; Ready, N.; Morgensztern, D.; Glisson, B.S.; Byers, L.A.; Johnson, M.L.; Burris, H.A., III; Robert, F.; Han, T.H.; Bheddah, S.; Theiss, N.; Watson, S.; Mathur, D.; Vennapusa, B.; Zayed, H.; Lally, S.; Strickland, D.K.; Govindan, R.; Dylla, S.J.; Peng, S.L.; Spigel, D.R. SCRX16-001 investigators. Rovalpituzumab tesirine, a DLL3-targeted antibody-drug conjugate, in recurrent small-cell lung cancer: a first-in-human, first-in-class, open-label, phase 1 study. Lancet Oncol., 2017, 18(1), 42-51.
[http://dx.doi.org/10.1016/S1470-2045(16)30565-4] [PMID: 27932068]
[69]
Hartley, J.A.; Spanswick, V.J.; Brooks, N.; Clingen, P.H.; McHugh, P.J.; Hochhauser, D.; Pedley, R.B.; Kelland, L.R.; Alley, M.C.; Schultz, R.; Hollingshead, M.G.; Schweikart, K.M.; Tomaszewski, J.E.; Sausville, E.A.; Gregson, S.J.; Howard, P.W.; Thurston, D.E. SJG-136 (NSC 694501), a novel rationally designed DNA minor groove interstrand cross-linking agent with potent and broad spectrum antitumor activity: part 1: Cellular pharmacology, in vitro and initial in vivo antitumor activity. Cancer Res., 2004, 64(18), 6693-6699.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-2941] [PMID: 15374986]
[70]
Alley, M.C.; Hollingshead, M.G.; Pacula-Cox, C.M.; Waud, W.R.; Hartley, J.A.; Howard, P.W.; Gregson, S.J.; Thurston, D.E.; Sausville, E.A. SJG-136 (NSC 694501), a novel rationally designed DNA minor groove interstrand cross-linking agent with potent and broad spectrum antitumor activity: Part 2: efficacy evaluations. Cancer Res., 2004, 64(18), 6700-6706.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-2942] [PMID: 15374987]
[71]
Miller, M.L.; Shizuka, M.; Wilhelm, A.; Salomon, P.; Reid, E.E.; Lanieri, L.; Sikka, S.; Maloney, E.K.; Harvey, L.; Qiu, Q.; Archer, K.E.; Bai, C.; Vitharana, D.; Harris, L.; Singh, R.; Ponte, J.F.; Yoder, N.C.; Kovtun, Y.; Lai, K.C.; Ab, O.; Pinkas, J.; Keating, T.A.; Chari, R.V.J. DNA-interacting payload designed to eliminate cross-linking improves the therapeutic index of antibody-drug conjugates (ADCs); American Association for Cancer Research, 2018.
[http://dx.doi.org/10.1158/1535-7163.MCT-17-0940]
[72]
Stefan, N.; Gébleux, R.; Waldmeier, L.; Hell, T.; Escher, M.; Wolter, F.I.; Grawunder, U.; Beerli, R.R. Highly potent, anthracycline-based antibody-drug conjugates generated by enzymatic, site-specific conjugation. Mol. Cancer Ther., 2017, 16(5), 879-892.
[http://dx.doi.org/10.1158/1535-7163.MCT-16-0688] [PMID: 28258164]
[73]
Moldenhauer, G.; Salnikov, A.V.; Lüttgau, S.; Herr, I.; Anderl, J.; Faulstich, H. Therapeutic potential of amanitin-conjugated anti-epithelial cell adhesion molecule monoclonal antibody against pancreatic carcinoma. J. Natl. Cancer Inst., 2012, 104(8), 622-634.
[http://dx.doi.org/10.1093/jnci/djs140] [PMID: 22457476]
[74]
Goldenberg, D.M.; Cardillo, T.M.; Govindan, S.V.; Rossi, E.A.; Sharkey, R.M. Trop-2 is a novel target for solid cancer therapy with sacituzumab govitecan (IMMU-132), an antibody-drug conjugate (ADC). Oncotarget, 2015, 6(26), 22496-22512.
[http://dx.doi.org/10.18632/oncotarget.4318] [PMID: 26101915]
[75]
Martino, E.; Della Volpe, S.; Terribile, E.; Benetti, E.; Sakaj, M.; Centamore, A.; Sala, A.; Collina, S. The long story of camptothecin: From traditional medicine to drugs. Bioorg. Med. Chem. Lett., 2017, 27(4), 701-707.
[http://dx.doi.org/10.1016/j.bmcl.2016.12.085] [PMID: 28073672]
[76]
Bardia, A.; Mayer, I.A.; Diamond, J.R.; Moroose, R.L.; Isakoff, S.J.; Starodub, A.N.; Shah, N.C.; O’Shaughnessy, J.; Kalinsky, K.; Guarino, M.; Abramson, V.; Juric, D.; Tolaney, S.M.; Berlin, J.; Messersmith, W.A.; Ocean, A.J.; Wegener, W.A.; Maliakal, P.; Sharkey, R.M.; Govindan, S.V.; Goldenberg, D.M.; Vahdat, L.T. Efficacy and safety of anti-Trop-2 antibody drug conjugate sacituzumab govitecan (IMMU-132) in heavily pretreated patients with metastatic triple-negative breast cancer. J. Clin. Oncol., 2017, 35(19), 2141-2148.
[http://dx.doi.org/10.1200/JCO.2016.70.8297] [PMID: 28291390]
[77]
Ogitani, Y.; Hagihara, K.; Oitate, M.; Naito, H.; Agatsuma, T. Bystander killing effect of DS-8201a, a novel anti-human epidermal growth factor receptor 2 antibody-drug conjugate, in tumors with human epidermal growth factor receptor 2 heterogeneity. Cancer Sci., 2016, 107(7), 1039-1046.
[http://dx.doi.org/10.1111/cas.12966] [PMID: 27166974]
[78]
Wang, W.; Wang, E.Q.; Balthasar, J.P. Monoclonal antibody pharmacokinetics and pharmacodynamics. Clin. Pharmacol. Ther., 2008, 84(5), 548-558.
[http://dx.doi.org/10.1038/clpt.2008.170] [PMID: 18784655]
[79]
Scott, A.M.; Wolchok, J.D.; Old, L.J. Antibody therapy of cancer. Nat. Rev. Cancer, 2012, 12(4), 278-287.
[http://dx.doi.org/10.1038/nrc3236] [PMID: 22437872]
[80]
Dumontet, C.; Jordan, M.A. Microtubule-binding agents: A dynamic field of cancer therapeutics. Nat. Rev. Drug Discov., 2010, 9(10), 790-803.
[http://dx.doi.org/10.1038/nrd3253] [PMID: 20885410]
[81]
Drachman, JG.; Senter, PD. Antibody-drug conjugates: The chemistry behind empowering antibodies to fight cancer ASH Education Program Book, 2013, 2013(1), 306-310.
[http://dx.doi.org/10.1182/asheducation-2013.1.306]
[82]
Sellmann, C.; Doerner, A.; Knuehl, C.; Rasche, N.; Sood, V.; Krah, S.; Rhiel, L.; Messemer, A.; Wesolowski, J.; Schuette, M.; Becker, S.; Toleikis, L.; Kolmar, H.; Hock, B. Balancing selectivity and efficacy of bispecific Epidermal Growth Factor Receptor (EGFR)-c-MET antibodies and antibody-drug conjugates. J. Biol. Chem., 2016, 291(48), 25106-25119.
[http://dx.doi.org/10.1074/jbc.M116.753491] [PMID: 27694443]
[83]
Maruani, A. Bispecifics and antibody-drug conjugates: A positive synergy. Drug Discov. Today. Technol., 2018, 30, 55-61.
[http://dx.doi.org/10.1016/j.ddtec.2018.09.003] [PMID: 30553521]
[84]
Kim, S.; Kim, H.; Jo, D.H.; Kim, J.H.; Kim, S.R.; Kang, D.; Hwang, D.; Chung, J. Bispecific anti-mPDGFRβ x cotinine scFv-C κ -scFv fusion protein and cotinineduocarmycin can form antibody-drug conjugate-like complexes that exert cytotoxicity against mPDGFRβ expressing cells. Methods, 2019, 154, 125-135.
[http://dx.doi.org/10.1016/j.ymeth.2018.10.002] [PMID: 30292795]
[85]
Adem, Y.T.; Schwarz, K.A.; Duenas, E.; Patapoff, T.W.; Galush, W.J.; Esue, O. Auristatin antibody drug conjugate physical instability and the role of drug payload. Bioconjug. Chem., 2014, 25(4), 656-664.
[http://dx.doi.org/10.1021/bc400439x] [PMID: 24559399]
[86]
Hamblett, K.J.; Senter, P.D.; Chace, D.F.; Sun, M.M.; Lenox, J.; Cerveny, C.G.; Kissler, K.M.; Bernhardt, S.X.; Kopcha, A.K.; Zabinski, R.F.; Meyer, D.L.; Francisco, J.A. Effects of drug loading on the antitumor activity of a monoclonal antibody drug conjugate. Clin. Cancer Res., 2004, 10(20), 7063-7070.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-0789] [PMID: 15501986]
[87]
Junttila, T.T.; Li, G.; Parsons, K.; Phillips, G.L.; Sliwkowski, M.X. Trastuzumab-DM1 (T-DM1) retains all the mechanisms of action of trastuzumab and efficiently inhibits growth of lapatinib insensitive breast cancer. Breast Cancer Res. Treat., 2011, 128(2), 347-356.
[http://dx.doi.org/10.1007/s10549-010-1090-x] [PMID: 20730488]
[88]
Wahl, A.F.; Klussman, K.; Thompson, J.D.; Chen, J.H.; Francisco, L.V.; Risdon, G.; Chace, D.F.; Siegall, C.B.; Francisco, J.A. The anti-CD30 monoclonal antibody SGN-30 promotes growth arrest and DNA fragmentation in vitro and affects antitumor activity in models of Hodgkin’s disease. Cancer Res., 2002, 62(13), 3736-3742.
[PMID: 12097283]
[89]
Bross, P.F.; Beitz, J.; Chen, G.; Chen, X.H.; Duffy, E.; Kieffer, L.; Roy, S.; Sridhara, R.; Rahman, A.; Williams, G.; Pazdur, R. Approval summary: Gemtuzumab ozogamicin in relapsed acute myeloid leukemia. Clin. Cancer Res., 2001, 7(6), 1490-1496.
[PMID: 11410481]
[90]
Acchione, M.; Kwon, H.; Jochheim, C.M.; Atkins, W.M. Impact of linker and conjugation chemistry on antigen binding, Fc receptor binding and thermal stability of model antibody-drug conjugates. MAbs, 2012, 4(3), 362-372.
[http://dx.doi.org/10.4161/mabs.19449] [PMID: 22531451]
[91]
Senter, P.D. Potent antibody drug conjugates for cancer therapy. Curr. Opin. Chem. Biol., 2009, 13(3), 235-244.
[http://dx.doi.org/10.1016/j.cbpa.2009.03.023] [PMID: 19414278]
[92]
Nolting, B. Linker technologies for antibody-drug conjugates. Methods Mol. Biol., 2013, 1045, 71-100.
[http://dx.doi.org/10.1007/978-1-62703-541-5_5]
[93]
Zhao, R.Y.; Wilhelm, S.D.; Audette, C.; Jones, G.; Leece, B.A.; Lazar, A.C.; Goldmacher, V.S.; Singh, R.; Kovtun, Y.; Widdison, W.C.; Lambert, J.M.; Chari, R.V. Synthesis and evaluation of hydrophilic linkers for antibody-maytansinoid conjugates. J. Med. Chem., 2011, 54(10), 3606-3623.
[http://dx.doi.org/10.1021/jm2002958] [PMID: 21517041]
[94]
Kern, J.C.; Cancilla, M.; Dooney, D.; Kwasnjuk, K.; Zhang, R.; Beaumont, M.; Figueroa, I.; Hsieh, S.; Liang, L.; Tomazela, D.; Zhang, J.; Brandish, P.E.; Palmieri, A.; Stivers, P.; Cheng, M.; Feng, G.; Geda, P.; Shah, S.; Beck, A.; Bresson, D.; Firdos, J.; Gately, D.; Knudsen, N.; Manibusan, A.; Schultz, P.G.; Sun, Y.; Garbaccio, R.M. Discovery of pyrophosphate diesters as tunable, soluble, and bioorthogonal linkers for site-specific antibody-drug conjugates. J. Am. Chem. Soc., 2016, 138(4), 1430-1445.
[http://dx.doi.org/10.1021/jacs.5b12547] [PMID: 26745435]
[95]
Erickson, H.K.; Lewis Phillips, G.D.; Leipold, D.D.; Provenzano, C.A.; Mai, E.; Johnson, H.A.; Gunter, B.; Audette, C.A.; Gupta, M.; Pinkas, J.; Tibbitts, J. The effect of different linkers on target cell catabolism and pharmacokinetics/pharmacodynamics of trastuzumab maytansinoid conjugates. Mol. Cancer Ther., 2012, 11(5), 1133-1142.
[http://dx.doi.org/10.1158/1535-7163.MCT-11-0727] [PMID: 22408268]
[96]
Hughes, B. Antibody-drug conjugates for cancer: poised to deliver? Nat. Rev. Drug Discov., 2010, 9(9), 665-667.
[http://dx.doi.org/10.1038/nrd3270] [PMID: 20811367]
[97]
Jaracz, S.; Chen, J.; Kuznetsova, L.V.; Ojima, I. Recent advances in tumor-targeting anticancer drug conjugates. Bioorg. Med. Chem., 2005, 13(17), 5043-5054.
[http://dx.doi.org/10.1016/j.bmc.2005.04.084] [PMID: 15955702]
[98]
Erickson, H.K.; Widdison, W.C.; Mayo, M.F.; Whiteman, K.; Audette, C.; Wilhelm, S.D.; Singh, R. Tumor delivery and in vivo processing of disulfide-linked and thioether-linked antibody-maytansinoid conjugates. Bioconjug. Chem., 2010, 21(1), 84-92.
[http://dx.doi.org/10.1021/bc900315y] [PMID: 19891424]
[99]
Senter, P.D.; Sievers, E.L. The discovery and development of brentuximab vedotin for use in relapsed Hodgkin lymphoma and systemic anaplastic large cell lymphoma. Nat. Biotechnol., 2012, 30(7), 631-637.
[http://dx.doi.org/10.1038/nbt.2289] [PMID: 22781692]
[100]
Gondi, C.S.; Rao, J.S. Cathepsin B as a cancer target. Expert Opin. Ther. Targets, 2013, 17(3), 281-291.
[http://dx.doi.org/10.1517/14728222.2013.740461] [PMID: 23293836]
[101]
Sapra, P.; Hooper, A.T.; O’Donnell, C.J.; Gerber, H-P. Investigational antibody drug conjugates for solid tumors. Expert Opin. Investig. Drugs, 2011, 20(8), 1131-1149.
[http://dx.doi.org/10.1517/13543784.2011.582866] [PMID: 21599617]
[102]
Wu, G.; Fang, Y-Z.; Yang, S.; Lupton, J.R.; Turner, N.D. Glutathione metabolism and its implications for health. J. Nutr., 2004, 134(3), 489-492.
[http://dx.doi.org/10.1093/jn/134.3.489] [PMID: 14988435]
[103]
Vu, T.; Claret, F.X. Trastuzumab: updated mechanisms of action and resistance in breast cancer. Front. Oncol., 2012, 2, 62.
[http://dx.doi.org/10.3389/fonc.2012.00062] [PMID: 22720269]
[104]
Anami, Y.; Yamazaki, C.M.; Xiong, W.; Gui, X.; Zhang, N.; An, Z.; Tsuchikama, K. Glutamic acid-valine-citrulline linkers ensure stability and efficacy of antibody-drug conjugates in mice. Nat. Commun., 2018, 9(1), 2512.
[http://dx.doi.org/10.1038/s41467-018-04982-3] [PMID: 29955061]
[105]
Spangler, B.; Kline, T.; Hanson, J.; Li, X.; Zhou, S.; Wells, J.A.; Sato, A.K.; Renslo, A.R. Toward a ferrous iron-cleavable linker for antibody-drug conjugates. Mol. Pharm., 2018, 15(5), 2054-2059.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00242] [PMID: 29569925]
[106]
Lu, J.; Jiang, F.; Lu, A.; Zhang, G. Linkers having a crucial role in Antibody-Drug Conjugates. Int. J. Mol. Sci., 2016, 17(4), 561.
[http://dx.doi.org/10.3390/ijms17040561] [PMID: 27089329]
[107]
Tolcher, A.W.; Ochoa, L.; Hammond, L.A.; Patnaik, A.; Edwards, T.; Takimoto, C.; Smith, L.; de Bono, J.; Schwartz, G.; Mays, T.; Jonak, Z.L.; Johnson, R.; DeWitte, M.; Martino, H.; Audette, C.; Maes, K.; Chari, R.V.; Lambert, J.M.; Rowinsky, E.K. Cantuzumab mertansine, a maytansinoid immunoconjugate directed to the CanAg antigen: A phase I, pharmacokinetic, and biologic correlative study. J. Clin. Oncol., 2003, 21(2), 211-222.
[http://dx.doi.org/10.1200/JCO.2003.05.137] [PMID: 12525512]
[108]
Lambert, J.M.; Chari, R.V. Ado-trastuzumab Emtansine (T-DM1): an Antibody-Drug Conjugate (ADC) for HER2-positive breast cancer; ACS Publications, 2014.
[109]
LoRusso, P.M.; Weiss, D.; Guardino, E.; Girish, S.; Sliwkowski, M.X. Trastuzumab emtansine: A unique antibody-drug conjugate in development for human epidermal growth factor receptor 2-positive cancer. Clin. Cancer Res., 2011, 17(20), 6437-6447.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-0762] [PMID: 22003071]
[110]
Lewis Phillips, G.D.; Li, G.; Dugger, D.L.; Crocker, L.M.; Parsons, K.L.; Mai, E.; Blättler, W.A.; Lambert, J.M.; Chari, R.V.; Lutz, R.J.; Wong, W.L.; Jacobson, F.S.; Koeppen, H.; Schwall, R.H.; Kenkare-Mitra, S.R.; Spencer, S.D.; Sliwkowski, M.X. Targeting HER2-positive breast cancer with trastuzumab-DM1, an antibody-cytotoxic drug conjugate. Cancer Res., 2008, 68(22), 9280-9290.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-1776] [PMID: 19010901]
[111]
Ducry, L.; Stump, B. Antibody-drug conjugates: Linking cytotoxic payloads to monoclonal antibodies. Bioconjug. Chem., 2010, 21(1), 5-13.
[http://dx.doi.org/10.1021/bc9002019] [PMID: 19769391]
[112]
Lazar, A.C.; Wang, L.; Blättler, W.A.; Amphlett, G.; Lambert, J.M.; Zhang, W.; Zhang, W. Analysis of the composition of immunoconjugates using size-exclusion chromatography coupled to mass spectrometry. Rapid Commun. Mass Spectrom., 2005, 19(13), 1806-1814.
[http://dx.doi.org/10.1002/rcm.1987] [PMID: 15945030]
[113]
Tang, F.; Yang, Y.; Tang, Y.; Tang, S.; Yang, L.; Sun, B.; Jiang, B.; Dong, J.; Liu, H.; Huang, M.; Geng, M.Y.; Huang, W. One-pot N-glycosylation remodeling of IgG with non-natural sialylglycopeptides enables glycosite-specific and dual-payload antibody-drug conjugates. Org. Biomol. Chem., 2016, 14(40), 9501-9518.
[http://dx.doi.org/10.1039/C6OB01751G] [PMID: 27714198]
[114]
Li, X.; Patterson, J.T.; Sarkar, M.; Pedzisa, L.; Kodadek, T.; Roush, W.R.; Rader, C. Site-specific dual antibody conjugation via engineered cysteine and selenocysteine residues. Bioconjug. Chem., 2015, 26(11), 2243-2248.
[http://dx.doi.org/10.1021/acs.bioconjchem.5b00244] [PMID: 26161903]
[115]
Tang, Y.; Tang, F.; Yang, Y.; Zhao, L.; Zhou, H.; Dong, J.; Huang, W. Real-time analysis on drug-antibody ratio of antibody-drug conjugates for synthesis, process optimization, and quality control. Sci. Rep., 2017, 7(1), 7763.
[http://dx.doi.org/10.1038/s41598-017-08151-2] [PMID: 28798339]
[116]
Junutula, J.R.; Raab, H.; Clark, S.; Bhakta, S.; Leipold, D.D.; Weir, S.; Chen, Y.; Simpson, M.; Tsai, S.P.; Dennis, M.S.; Lu, Y.; Meng, Y.G.; Ng, C.; Yang, J.; Lee, C.C.; Duenas, E.; Gorrell, J.; Katta, V.; Kim, A.; McDorman, K.; Flagella, K.; Venook, R.; Ross, S.; Spencer, S.D.; Lee Wong, W.; Lowman, H.B.; Vandlen, R.; Sliwkowski, M.X.; Scheller, R.H.; Polakis, P.; Mallet, W. Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic index. Nat. Biotechnol., 2008, 26(8), 925-932.
[http://dx.doi.org/10.1038/nbt.1480] [PMID: 18641636]
[117]
Maruani, A.; Smith, M.E.B.; Miranda, E.; Chester, K.A.; Chudasama, V.; Caddick, S. A plug-and-play approach to antibody-based therapeutics via a chemoselective dual click strategy. Nat. Commun., 2015, 6, 6645.
[http://dx.doi.org/10.1038/ncomms7645] [PMID: 25824906]
[118]
Behrens, C.R.; Ha, E.H.; Chinn, L.L.; Bowers, S.; Probst, G.; Fitch-Bruhns, M.; Monteon, J.; Valdiosera, A.; Bermudez, A.; Liao-Chan, S.; Wong, T.; Melnick, J.; Theunissen, J.W.; Flory, M.R.; Houser, D.; Venstrom, K.; Levashova, Z.; Sauer, P.; Migone, T.S.; van der Horst, E.H.; Halcomb, R.L.; Jackson, D.Y. Antibody-drug conjugates (ADCs) derived from interchain cysteine cross-linking demonstrate improved homogeneity and other pharmacological properties over conventional heterogeneous ADCs. Mol. Pharm., 2015, 12(11), 3986-3998.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00432] [PMID: 26393951]
[119]
Vinogradova, E.V.; Zhang, C.; Spokoyny, A.M.; Pentelute, B.L.; Buchwald, S.L. Organometallic palladium reagents for cysteine bioconjugation. Nature, 2015, 526(7575), 687-691.
[http://dx.doi.org/10.1038/nature15739] [PMID: 26511579]
[120]
Fontaine, S.D.; Reid, R.; Robinson, L.; Ashley, G.W.; Santi, D.V. Long-term stabilization of maleimide-thiol conjugates. Bioconjug. Chem., 2015, 26(1), 145-152.
[http://dx.doi.org/10.1021/bc5005262] [PMID: 25494821]
[121]
Christie, R.J.; Fleming, R.; Bezabeh, B.; Woods, R.; Mao, S.; Harper, J.; Joseph, A.; Wang, Q.; Xu, Z.Q.; Wu, H.; Gao, C.; Dimasi, N. Stabilization of cysteine-linked antibody drug conjugates with N-aryl maleimides. J. Control. Release, 2015, 220(Pt B), 660-670.
[http://dx.doi.org/10.1016/j.jconrel.2015.09.032] [PMID: 26387744]
[122]
Forte, N.; Livanos, M.; Miranda, E.; Morais, M.; Yang, X.; Rajkumar, V.S.; Chester, K.A.; Chudasama, V.; Baker, J.R. Tuning the hydrolytic stability of next generation maleimide cross-linkers enables access to albumin-antibody fragment conjugates and tri-scFvs. Bioconjug. Chem., 2018, 29(2), 486-492.
[http://dx.doi.org/10.1021/acs.bioconjchem.7b00795] [PMID: 29384367]
[123]
Yazaki, P.J.; Kassa, T.; Cheung, C-W.; Crow, D.M.; Sherman, M.A.; Bading, J.R.; Anderson, A-L.J.; Colcher, D.; Raubitschek, A. Biodistribution and tumor imaging of an anti-CEA single-chain antibody-albumin fusion protein. Nucl. Med. Biol., 2008, 35(2), 151-158.
[http://dx.doi.org/10.1016/j.nucmedbio.2007.10.010] [PMID: 18312824]
[124]
Lyu, Z.; Kang, L.; Buuh, Z.Y.; Jiang, D.; McGuth, J.C.; Du, J.; Wissler, H.L.; Cai, W.; Wang, R.E. A Switchable Site-Specific Antibody Conjugate. ASC Chem. Biol, 2018, 13(4), 958-964.
[http://dx.doi.org/10.1021/acschembio.8b00107] [PMID: 29461804]
[125]
VanBrunt, M.P.; Shanebeck, K.; Caldwell, Z.; Johnson, J.; Thompson, P.; Martin, T.; Dong, H.; Li, G.; Xu, H.; D’Hooge, F.; Masterson, L.; Bariola, P.; Tiberghien, A.; Ezeadi, E.; Williams, D.G.; Hartley, J.A.; Howard, P.W.; Grabstein, K.H.; Bowen, M.A.; Marelli, M. Genetically encoded azide containing amino acid in mammalian cells enables site-specific antibody-drug conjugates using click cycloaddition chemistry. Bioconjug. Chem., 2015, 26(11), 2249-2260.
[http://dx.doi.org/10.1021/acs.bioconjchem.5b00359] [PMID: 26332743]
[126]
Axup, J.Y.; Bajjuri, K.M.; Ritland, M.; Hutchins, B.M.; Kim, C.H.; Kazane, S.A.; Halder, R.; Forsyth, J.S.; Santidrian, A.F.; Stafin, K.; Lu, Y.; Tran, H.; Seller, A.J.; Biroc, S.L.; Szydlik, A.; Pinkstaff, J.K.; Tian, F.; Sinha, S.C.; Felding-Habermann, B.; Smider, V.V.; Schultz, P.G. Synthesis of site- specific antibody-drug conjugates using unnatural amino acids. Proc. Natl. Acad. Sci. USA, 2012, 109(40), 16101-16106.
[http://dx.doi.org/10.1073/pnas.1211023109] [PMID: 22988081]
[127]
Zimmerman, E.S.; Heibeck, T.H.; Gill, A.; Li, X.; Murray, C.J.; Madlansacay, M.R.; Tran, C.; Uter, N.T.; Yin, G.; Rivers, P.J.; Yam, A.Y.; Wang, W.D.; Steiner, A.R.; Bajad, S.U.; Penta, K.; Yang, W.; Hallam, T.J.; Thanos, C.D.; Sato, A.K. Production of site-specific antibody-drug conjugates using optimized non-natural amino acids in a cell-free expression system. Bioconjug. Chem., 2014, 25(2), 351-361.
[http://dx.doi.org/10.1021/bc400490z] [PMID: 24437342]
[128]
Kumar, A.; Kinneer, K.; Masterson, L.; Ezeadi, E.; Howard, P.; Wu, H.; Gao, C.; Dimasi, N. Synthesis of a heterotrifunctional linker for the site-specific preparation of antibody-drug conjugates with two distinct warheads. Bioorg. Med. Chem. Lett., 2018, 28(23-24), 3617-3621.
[http://dx.doi.org/10.1016/j.bmcl.2018.10.043] [PMID: 30389292]
[129]
Tsuchikama, K.; An, Z. Antibody-drug conjugates: recent advances in conjugation and linker chemistries. Protein Cell, 2018, 9(1), 33-46.
[http://dx.doi.org/10.1007/s13238-016-0323-0] [PMID: 27743348]
[130]
Popp, M.W.L.; Antos, J.M.; Ploegh, H.L. Site-specific protein labeling via sortase-mediated transpeptidation. Curr. Protoc. Protein Sci., 2009, Chapter 15, 3.
[http://dx.doi.org/10.1002/0471140864.ps1503s56]] [PMID: 19365788]
[131]
Witte, M.D.; Cragnolini, J.J.; Dougan, S.K.; Yoder, N.C.; Popp, M.W.; Ploegh, H.L. Preparation of unnatural N-to-N and C-to-C protein fusions. Proc. Natl. Acad. Sci. USA, 2012, 109(30), 11993-11998.
[http://dx.doi.org/10.1073/pnas.1205427109] [PMID: 22778432]
[132]
Beerli, R.R.; Hell, T.; Merkel, A.S.; Grawunder, U. sortase enzyme-mediated generation of site-specifically conjugated antibody drug conjugates with high in vitro and in vivo potency. PLoS One, 2015, 10(7)e0131177
[http://dx.doi.org/10.1371/journal.pone.0131177] [PMID: 26132162]
[133]
Pan, L.; Zhao, W.; Lai, J.; Ding, D.; Zhang, Q.; Yang, X.; Huang, M.; Jin, S.; Xu, Y.; Zeng, S.; Chou, J.J.; Chen, S. Sortase a-generated highly potent anti-CD20-MMAE conjugates for efficient elimination of b-lineage lymphomas. Small, 2017, 13(6)1602267
[http://dx.doi.org/10.1002/smll.201602267] [PMID: 27873460]
[134]
Jeger, S.; Zimmermann, K.; Blanc, A.; Grünberg, J.; Honer, M.; Hunziker, P.; Struthers, H.; Schibli, R. Site-specific and stoichiometric modification of antibodies by bacterial transglutaminase. Angew. Chem. Int. Ed. Engl., 2010, 49(51), 9995-9997.
[http://dx.doi.org/10.1002/anie.201004243] [PMID: 21110357]
[135]
Dennler, P.; Chiotellis, A.; Fischer, E.; Brégeon, D.; Belmant, C.; Gauthier, L.; Lhospice, F.; Romagne, F.; Schibli, R. Transglutaminase-based chemo-enzymatic conjugation approach yields homogeneous antibody-drug conjugates. Bioconjug. Chem., 2014, 25(3), 569-578.
[http://dx.doi.org/10.1021/bc400574z] [PMID: 24483299]
[136]
Strop, P.; Liu, S-H.; Dorywalska, M.; Delaria, K.; Dushin, R.G.; Tran, T-T.; Ho, W-H.; Farias, S.; Casas, M.G.; Abdiche, Y.; Zhou, D.; Chandrasekaran, R.; Samain, C.; Loo, C.; Rossi, A.; Rickert, M.; Krimm, S.; Wong, T.; Chin, S.M.; Yu, J.; Dilley, J.; Chaparro-Riggers, J.; Filzen, G.F.; O’Donnell, C.J.; Wang, F.; Myers, J.S.; Pons, J.; Shelton, D.L.; Rajpal, A. Location matters: site of conjugation modulates stability and pharmacokinetics of antibody drug conjugates. Chem. Biol., 2013, 20(2), 161-167.
[http://dx.doi.org/10.1016/j.chembiol.2013.01.010] [PMID: 23438745]
[137]
Siegmund, V.; Piater, B.; Zakeri, B.; Eichhorn, T.; Fischer, F.; Deutsch, C.; Becker, S.; Toleikis, L.; Hock, B.; Betz, U.A.K.; Kolmar, H. Spontaneous isopeptide bond formation as a powerful tool for engineering site-specific antibody-drug conjugates. Sci. Rep., 2016, 6(39291), 39291.
[http://dx.doi.org/10.1038/srep39291] [PMID: 27982100]
[138]
Lhospice, F.; Brégeon, D.; Belmant, C.; Dennler, P.; Chiotellis, A.; Fischer, E.; Gauthier, L.; Boëdec, A.; Rispaud, H.; Savard-Chambard, S.; Represa, A.; Schneider, N.; Paturel, C.; Sapet, M.; Delcambre, C.; Ingoure, S.; Viaud, N.; Bonnafous, C.; Schibli, R.; Romagné, F. Site-specific conjugation of Monomethyl Auristatin E to Anti-CD30 antibodies improves their pharmacokinetics and therapeutic index in rodent models. Mol. Pharm., 2015, 12(6), 1863-1871.
[http://dx.doi.org/10.1021/mp500666j] [PMID: 25625323]
[139]
Puthenveetil, S.; Musto, S.; Loganzo, F.; Tumey, L.N.; O’Donnell, C.J.; Graziani, E. Development of solid-phase site-specific conjugation and its application toward generation of dual labeled antibody and fab drug conjugates. Bioconjug. Chem., 2016, 27(4), 1030-1039.
[http://dx.doi.org/10.1021/acs.bioconjchem.6b00054] [PMID: 26942771]
[140]
Grünewald, J.; Klock, H.E.; Cellitti, S.E.; Bursulaya, B.; McMullan, D.; Jones, D.H.; Chiu, H.P.; Wang, X.; Patterson, P.; Zhou, H.; Vance, J.; Nigoghossian, E.; Tong, H.; Daniel, D.; Mallet, W.; Ou, W.; Uno, T.; Brock, A.; Lesley, S.A.; Geierstanger, B.H. Efficient preparation of site-specific antibody-drug conjugates using phosphopantetheinyl transferases. Bioconjug. Chem., 2015, 26(12), 2554-2562.
[http://dx.doi.org/10.1021/acs.bioconjchem.5b00558] [PMID: 26588668]
[141]
Parslow, A.C.; Parakh, S.; Lee, F.T.; Gan, H.K.; Scott, A.M. Antibody-drug conjugates for cancer therapy. Biomedicines, 2016, 4(3), 1-17.
[http://dx.doi.org/10.3390/biomedicines4030014] [PMID: 28536381]
[142]
Ott, P.A.; Pavlick, A.C.; Johnson, D.B. A phase II study of glembatumumab vedotin (GV), an antibody-drug conjugate (ADC) targeting gpNMB, in advanced melanoma. J. Clin. Oncol., 2017, 35, 109.
[http://dx.doi.org/10.1200/JCO.2017.35.15_suppl.109]
[143]
Kung Sutherland, M.S.; Walter, R.B.; Jeffrey, S.C.; Burke, P.J.; Yu, C.; Kostner, H.; Stone, I.; Ryan, M.C.; Sussman, D.; Lyon, R.P.; Zeng, W.; Harrington, K.H.; Klussman, K.; Westendorf, L.; Meyer, D.; Bernstein, I.D.; Senter, P.D.; Benjamin, D.R.; Drachman, J.G.; McEarchern, J.A. SGN-CD33A: A novel CD33-targeting antibody-drug conjugate using a pyrrolobenzodiazepine dimer is active in models of drug-resistant AML. Blood, 2013, 122(8), 1455-1463.
[http://dx.doi.org/10.1182/blood-2013-03-491506] [PMID: 23770776]
[144]
Jacobsen, E.D.; Sharman, J.P.; Oki, Y.; Advani, R.H.; Winter, J.N.; Bello, C.M.; Spitzer, G.; Palanca-Wessels, M.C.; Kennedy, D.A.; Levine, P.; Yang, J.; Bartlett, N.L. Brentuximab vedotin demonstrates objective responses in a phase 2 study of relapsed/refractory DLBCL with variable CD30 expression. Blood, 2015, 125(9), 1394-1402.
[http://dx.doi.org/10.1182/blood-2014-09-598763] [PMID: 25573987]
[145]
Harari, D.; Yarden, Y. Molecular mechanisms underlying ErbB2/HER2 action in breast cancer. Oncogene, 2000, 19(53), 6102-6114.
[http://dx.doi.org/10.1038/sj.onc.1203973] [PMID: 11156523]
[146]
Sanderson, R.J.; Hering, M.A.; James, S.F.; Sun, M.M.; Doronina, S.O.; Siadak, A.W.; Senter, P.D.; Wahl, A.F. In vivo drug-linker stability of an anti-CD30 dipeptide-linked auristatin immunoconjugate. Clin. Cancer Res., 2005, 11(2 Pt 1), 843-852.
[PMID: 15701875]
[147]
Baselga, J. Treatment of HER2-overexpressing breast cancer. Ann. Oncol., 2010, 21(Suppl. 7), vii36-vii40.
[http://dx.doi.org/10.1093/annonc/mdq421] [PMID: 20943641]
[148]
Austin, C.D.; De Mazière, A.M.; Pisacane, P.I.; van Dijk, S.M.; Eigenbrot, C.; Sliwkowski, M.X.; Klumperman, J.; Scheller, R.H. Endocytosis and sorting of ErbB2 and the site of action of cancer therapeutics trastuzumab and geldanamycin. Mol. Biol. Cell, 2004, 15(12), 5268-5282.
[http://dx.doi.org/10.1091/mbc.e04-07-0591] [PMID: 15385631]
[149]
Law, C.L.; Cerveny, C.G.; Gordon, K.A.; Klussman, K.; Mixan, B.J.; Chace, D.F.; Meyer, D.L.; Doronina, S.O.; Siegall, C.B.; Francisco, J.A.; Senter, P.D.; Wahl, A.F. Efficient elimination of B-lineage lymphomas by anti-CD20-auristatin conjugates. Clin. Cancer Res., 2004, 10(23), 7842-7851.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-1028] [PMID: 15585616]
[150]
Mack, F.; Ritchie, M.; Sapra, P. The next generation of antibody drug conjugates.Seminars in oncology; Elsevier, 2014.
[http://dx.doi.org/10.1053/j.seminoncol.2014.08.001]
[151]
Teicher, B.A. Antibody-drug conjugate targets. Curr. Cancer Drug Targets, 2009, 9(8), 982-1004.
[http://dx.doi.org/10.2174/156800909790192365] [PMID: 20025606]
[152]
Elenbaas, B.; Weinberg, R.A. Heterotypic signaling between epithelial tumor cells and fibroblasts in carcinoma formation. Exp. Cell Res., 2001, 264(1), 169-184.
[http://dx.doi.org/10.1006/excr.2000.5133] [PMID: 11237532]
[153]
Erickson, H.K.; Park, P.U.; Widdison, W.C.; Kovtun, Y.V.; Garrett, L.M.; Hoffman, K.; Lutz, R.J.; Goldmacher, V.S.; Blättler, W.A. Antibody-maytansinoid conjugates are activated in targeted cancer cells by lysosomal degradation and linker-dependent intracellular processing. Cancer Res., 2006, 66(8), 4426-4433.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-4489] [PMID: 16618769]
[154]
Brennen, W.N.; Isaacs, J.T.; Denmeade, S.R. Rationale behind targeting fibroblast activation protein-expressing carcinoma-associated fibroblasts as a novel chemotherapeutic strategy. Mol. Cancer Ther., 2012, 11(2), 257-266.
[http://dx.doi.org/10.1158/1535-7163.MCT-11-0340] [PMID: 22323494]
[155]
Roberts, E.W.; Deonarine, A.; Jones, J.O.; Denton, A.E.; Feig, C.; Lyons, S.K.; Espeli, M.; Kraman, M.; McKenna, B.; Wells, R.J.; Zhao, Q.; Caballero, O.L.; Larder, R.; Coll, A.P.; O’Rahilly, S.; Brindle, K.M.; Teichmann, S.A.; Tuveson, D.A.; Fearon, D.T. Depletion of stromal cells expressing fibroblast activation protein-α from skeletal muscle and bone marrow results in cachexia and anemia. J. Exp. Med., 2013, 210(6), 1137-1151.
[http://dx.doi.org/10.1084/jem.20122344] [PMID: 23712428]
[156]
Tran, E.; Chinnasamy, D.; Yu, Z.; Morgan, R.A.; Lee, C.C.; Restifo, N.P.; Rosenberg, S.A. Immune targeting of fibroblast activation protein triggers recognition of multipotent bone marrow stromal cells and cachexia. J. Exp. Med., 2013, 210(6), 1125-1135.
[http://dx.doi.org/10.1084/jem.20130110] [PMID: 23712432]
[157]
Chaudhary, A.; Hilton, M.B.; Seaman, S.; Haines, D.C.; Stevenson, S.; Lemotte, P.K.; Tschantz, W.R.; Zhang, X.M.; Saha, S.; Fleming, T.; St Croix, B. TEM8/ANTXR1 blockade inhibits pathological angiogenesis and potentiates tumoricidal responses against multiple cancer types. Cancer Cell, 2012, 21(2), 212-226.
[http://dx.doi.org/10.1016/j.ccr.2012.01.004] [PMID: 22340594]
[158]
Szot, C.; Saha, S.; Zhang, X.M.; Zhu, Z.; Hilton, M.B.; Morris, K.; Seaman, S.; Dunleavey, J.M.; Hsu, K.S.; Yu, G.J.; Morris, H.; Swing, D.A.; Haines, D.C.; Wang, Y.; Hwang, J.; Feng, Y.; Welsch, D.; DeCrescenzo, G.; Chaudhary, A.; Zudaire, E.; Dimitrov, D.S.; St Croix, B. Tumor stroma-targeted antibody-drug conjugate triggers localized anticancer drug release. J. Clin. Invest., 2018, 128(7), 2927-2943.
[http://dx.doi.org/10.1172/JCI120481] [PMID: 29863500]
[159]
Dirks, N.L.; Meibohm, B. Population pharmacokinetics of therapeutic monoclonal antibodies. Clin. Pharmacokinet., 2010, 49(10), 633-659.
[http://dx.doi.org/10.2165/11535960-000000000-00000] [PMID: 20818831]
[160]
Ryman, J.T.; Meibohm, B. Pharmacokinetics of monoclonal antibodies. CPT Pharmacometrics Syst. Pharmacol., 2017, 6(9), 576-588.
[http://dx.doi.org/10.1002/psp4.12224] [PMID: 28653357]
[161]
Kamath, A.V.; Iyer, S. Preclinical pharmacokinetic considerations for the development of antibody drug conjugates. Pharm. Res., 2015, 32(11), 3470-3479.
[http://dx.doi.org/10.1007/s11095-014-1584-z] [PMID: 25446773]
[162]
Duryee, M.J.; Freeman, T.L.; Willis, M.S.; Hunter, C.D.; Hamilton, B.C., III; Suzuki, H.; Tuma, D.J.; Klassen, L.W.; Thiele, G.M. Scavenger receptors on sinusoidal liver endothelial cells are involved in the uptake of aldehyde-modified proteins. Mol. Pharmacol., 2005, 68(5), 1423-1430.
[http://dx.doi.org/10.1124/mol.105.016121] [PMID: 16105988]
[163]
Roopenian, D.C.; Akilesh, S. FcRn: the neonatal Fc receptor comes of age. Nat. Rev. Immunol., 2007, 7(9), 715-725.
[http://dx.doi.org/10.1038/nri2155] [PMID: 17703228]
[164]
Ritchie, M.; Tchistiakova, L.; Scott, N. Implications of receptor-mediated endocytosis and intracellular trafficking dynamics in the development of antibody drug conjugates. In: MAbs; Taylor & Francis, 2013.
[http://dx.doi.org/10.4161/mabs.22854]
[165]
Lencer, W.I.; Blumberg, R.S. A passionate kiss, then run: Exocytosis and recycling of IgG by FcRn. Trends Cell Biol., 2005, 15(1), 5-9.
[http://dx.doi.org/10.1016/j.tcb.2004.11.004] [PMID: 15653072]
[166]
Peters, C.; Brown, S. Antibody-drug conjugates as novel anti-cancer chemotherapeutics. Biosci. Rep., 2015, 35(4), 00225.
[http://dx.doi.org/10.1042/BSR20150089] [PMID: 26182432]
[167]
Kovtun, Y.V.; Goldmacher, V.S. Cell killing by antibody-drug conjugates. Cancer Lett., 2007, 255(2), 232-240.
[http://dx.doi.org/10.1016/j.canlet.2007.04.010] [PMID: 17553616]
[168]
Sigismund, S.; Confalonieri, S.; Ciliberto, A.; Polo, S.; Scita, G.; Di Fiore, P.P. Endocytosis and signaling: Cell logistics shape the eukaryotic cell plan. Physiol. Rev., 2012, 92(1), 273-366.
[http://dx.doi.org/10.1152/physrev.00005.2011] [PMID: 22298658]
[169]
Doherty, G.J.; McMahon, H.T. Mechanisms of endocytosis. Annu. Rev. Biochem., 2009, 78, 857-902.
[http://dx.doi.org/10.1146/annurev.biochem.78.081307.110540] [PMID: 19317650]
[170]
Scita, G.; Di Fiore, P.P. The endocytic matrix. Nature, 2010, 463(7280), 464-473.
[http://dx.doi.org/10.1038/nature08910] [PMID: 20110990]
[171]
Sutherland, M.S.K.; Sanderson, R.J.; Gordon, K.A.; Andreyka, J.; Cerveny, C.G.; Yu, C.; Lewis, T.S.; Meyer, D.L.; Zabinski, R.F.; Doronina, S.O.; Senter, P.D.; Law, C.L.; Wahl, A.F. Lysosomal trafficking and cysteine protease metabolism confer target-specific cytotoxicity by peptide-linked anti-CD30-auristatin conjugates. J. Biol. Chem., 2006, 281(15), 10540-10547.
[http://dx.doi.org/10.1074/jbc.M510026200] [PMID: 16484228]
[172]
Sliwkowski, M.X.; Mellman, I. Antibody therapeutics in cancer. Science, 2013, 341(6151), 1192-1198.
[http://dx.doi.org/10.1126/science.1241145] [PMID: 24031011]
[173]
Baxter, L.T.; Jain, R.K. Transport of fluid and macromolecules in tumors. I. Role of interstitial pressure and convection. Microvasc. Res., 1989, 37(1), 77-104.
[http://dx.doi.org/10.1016/0026-2862(89)90074-5] [PMID: 2646512]
[174]
Schmidt, M.M.; Wittrup, K.D. A modeling analysis of the effects of molecular size and binding affinity on tumor targeting. Mol. Cancer Ther., 2009, 8(10), 2861-2871.
[http://dx.doi.org/10.1158/1535-7163.MCT-09-0195] [PMID: 19825804]
[175]
Sammet, B.; Steinkühler, C.; Sewald, N. Antibody-drug conjugates in tumor therapy. Pharm. Pat. Anal., 2012, 1(1), 65-73.
[http://dx.doi.org/10.4155/ppa.12.4] [PMID: 24236714]
[176]
Kovtun, Y.V.; Audette, C.A.; Mayo, M.F.; Jones, G.E.; Doherty, H.; Maloney, E.K.; Erickson, H.K.; Sun, X.; Wilhelm, S.; Ab, O.; Lai, K.C.; Widdison, W.C.; Kellogg, B.; Johnson, H.; Pinkas, J.; Lutz, R.J.; Singh, R.; Goldmacher, V.S.; Chari, R.V. Antibody-maytansinoid conjugates designed to bypass multidrug resistance. Cancer Res., 2012, 70(6), 2528-2537.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-3546] [PMID: 20197459]
[177]
Khera, E.; Cilliers, C.; Bhatnagara, S.; Thurber, G.M. Computational transport analysis of antibodydrug conjugate bystander effects and payload tumoral distribution: Implications for therapy. Mol. Syst. Des. Eng., 2018, 1
[http://dx.doi.org/10.1039/c7me00093f]
[178]
Shefet-Carasso, L.; Benhar, I. Antibody-targeted drugs and drug resistance--challenges and solutions. Drug Resist. Updat., 2015, 18, 36-46.
[http://dx.doi.org/10.1016/j.drup.2014.11.001] [PMID: 25476546]
[179]
Takara, K.; Sakaeda, T.; Okumura, K. An update on overcoming MDR1-mediated multidrug resistance in cancer chemotherapy. Curr. Pharm. Des., 2006, 12(3), 273-286.
[http://dx.doi.org/10.2174/138161206775201965] [PMID: 16454744]
[180]
Matsui, H.; Takeshita, A.; Naito, K.; Shinjo, K.; Shigeno, K.; Maekawa, M.; Yamakawa, Y.; Tanimoto, M.; Kobayashi, M.; Ohnishi, K. Reduced effect of gemtuzumab ozogamicin (CMA-676) on P-glycoprotein and/or CD34-positive leukemia cells and its restoration by multidrug resistance modifiers. Leukemia, 2002, 16(5), 813-819.
[181]
Sharom, F.J. ABC multidrug transporters: Structure function and role in chemoresistance. Pharmacogenomics, 2008, 9(1), 105-127.
[http://dx.doi.org/10.2217/14622416.9.1.105] [PMID: 18154452]
[182]
Li, J.Y.; Perry, S.R.; Muniz-Medina, V.; Wang, X.; Wetzel, L.K.; Rebelatto, M.C.; Hinrichs, M.J.; Bezabeh, B.Z.; Fleming, R.L.; Dimasi, N.; Feng, H.; Toader, D.; Yuan, A.Q.; Xu, L.; Lin, J.; Gao, C.; Wu, H.; Dixit, R.; Osbourn, J.K.; Coats, S.R. A biparatopic HER2-targeting antibody-drug conjugate induces tumor regression in primary models refractory to or ineligible for HER2-targeted therapy. Cancer Cell, 2016, 29(1), 117-129.
[http://dx.doi.org/10.1016/j.ccell.2015.12.008] [PMID: 26766593]
[183]
Matsumoto, T.; Jimi, S.; Hara, S.; Takamatsu, Y.; Suzumiya, J.; Tamura, K. Importance of inducible multidrug resistance 1 expression in HL-60 cells resistant to gemtuzumab ozogamicin. Leuk. Lymphoma, 2012, 53(7), 1399-1405.
[http://dx.doi.org/10.3109/10428194.2012.656102] [PMID: 22242821]
[184]
Moore, J.; Seiter, K.; Kolitz, J.; Stock, W.; Giles, F.; Kalaycio, M.; Zenk, D.; Marcucci, G. A Phase II study of Bcl-2 antisense (oblimersen sodium) combined with gemtuzumab ozogamicin in older patients with acute myeloid leukemia in first relapse. Leuk. Res., 2006, 30(7), 777-783.
[http://dx.doi.org/10.1016/j.leukres.2005.10.025] [PMID: 16730060]
[185]
Walter, R.B.; Raden, B.W.; Cronk, M.R.; Bernstein, I.D.; Appelbaum, F.R.; Banker, D.E. The peripheral benzodiazepine receptor ligand PK11195 overcomes different resistance mechanisms to sensitize AML cells to gemtuzumab ozogamicin. Blood, 2004, 103(11), 4276-4284.
[http://dx.doi.org/10.1182/blood-2003-11-3825] [PMID: 14962898]
[186]
Chen, J.; Murphy, S. Drug-to-antibody ratio (DAR) calculation of antibody-drug conjugates (ADCs) using automated sample preparation and novel DAR calculator software. 2015. Available from: https://www.agilent.com/cs/library/applications/5991-6263EN
[187]
Nobili, S.; Landini, I.; Mazzei, T.; Mini, E. Overcoming tumor multidrug resistance using drugs able to evade P-glycoprotein or to exploit its expression. Med. Res. Rev., 2012, 32(6), 1220-1262.
[http://dx.doi.org/10.1002/med.20239] [PMID: 21374643]
[188]
Aghebati Maleki, L.; Majidi, J.; Baradaran, B.; Movassaghpour, A.; Abdolalizadeh, J. Generation and characterization of anti-CD34 monoclonal antibodies that react with hematopoietic stem cells. Cell J., 2014, 16(3), 361-366.
[PMID: 24611141]
[189]
Baraldi, P.G.; Bovero, A.; Fruttarolo, F.; Preti, D.; Tabrizi, M.A.; Pavani, M.G.; Romagnoli, R. DNA minor groove binders as potential antitumor and antimicrobial agents. Med. Res. Rev., 2004, 24(4), 475-528.
[http://dx.doi.org/10.1002/med.20000] [PMID: 15170593]
[190]
Jeffrey, S.C.; Torgov, M.Y.; Andreyka, J.B.; Boddington, L.; Cerveny, C.G.; Denny, W.A.; Gordon, K.A.; Gustin, D.; Haugen, J.; Kline, T.; Nguyen, M.T.; Senter, P.D. Design, synthesis, and in vitro evaluation of dipeptide-based antibody minor groove binder conjugates. J. Med. Chem., 2005, 48(5), 1344-1358.
[http://dx.doi.org/10.1021/jm040137q] [PMID: 15743178]
[191]
Jin, W.; Trzupek, J.D.; Rayl, T.J.; Broward, M.A.; Vielhauer, G.A.; Weir, S.J.; Hwang, I.; Boger, D.L. A unique class of duocarmycin and CC-1065 analogues subject to reductive activation. J. Am. Chem. Soc., 2007, 129(49), 15391-15397.
[http://dx.doi.org/10.1021/ja075398e] [PMID: 18020335]
[192]
Singh, Y.; Palombo, M.; Sinko, P.J. Recent trends in targeted anticancer prodrug and conjugate design. Curr. Med. Chem., 2008, 15(18), 1802-1826.
[http://dx.doi.org/10.2174/092986708785132997] [PMID: 18691040]
[193]
Suzawa, T.; Nagamura, S.; Saito, H.; Ohta, S.; Hanai, N.; Yamasaki, M. Synthesis of a novel duocarmycin derivative DU-257 and its application to immunoconjugate using poly(ethylene glycol)-dipeptidyl linker capable of tumor specific activation. Bioorg. Med. Chem., 2000, 8(8), 2175-2184.
[http://dx.doi.org/10.1016/S0968-0896(00)00157-7] [PMID: 11003162]
[194]
Alderson, R.F.; Kreitman, R.J.; Chen, T.; Yeung, P.; Herbst, R.; Fox, J.A.; Pastan, I. CAT-8015: A second-generation pseudomonas exotoxin A-based immunotherapy targeting CD22-expressing hematologic malignancies. Clin. Cancer Res., 2009, 15(3), 832-839.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-1456] [PMID: 19188153]
[195]
Hamann, P.R.; Hinman, L.M.; Beyer, C.F.; Greenberger, L.M.; Lin, C.; Lindh, D.; Menendez, A.T.; Wallace, R.; Durr, F.E.; Upeslacis, J. An anti-MUC1 antibody-calicheamicin conjugate for treatment of solid tumors. Choice of linker and overcoming drug resistance. Bioconjug. Chem., 2005, 16(2), 346-353.
[http://dx.doi.org/10.1021/bc049795f] [PMID: 15769088]
[196]
Kellogg, B.A.; Garrett, L.; Kovtun, Y.; Lai, K.C.; Leece, B.; Miller, M.; Payne, G.; Steeves, R.; Whiteman, K.R.; Widdison, W.; Xie, H.; Singh, R.; Chari, R.V.; Lambert, J.M.; Lutz, R.J. Disulfide-linked antibody-maytansinoid conjugates: optimization of in vivo activity by varying the steric hindrance at carbon atoms adjacent to the disulfide linkage. Bioconjug. Chem., 2011, 22(4), 717-727.
[http://dx.doi.org/10.1021/bc100480a] [PMID: 21425776]
[197]
Polson, A.G.; Ho, W.Y.; Ramakrishnan, V. Investigational antibody-drug conjugates for hematological malignancies. Expert Opin. Investig. Drugs, 2011, 20(1), 75-85.
[http://dx.doi.org/10.1517/13543784.2011.539557] [PMID: 21142808]
[198]
Thon, J.N.; Devine, M.T.; Jurak Begonja, A.; Tibbitts, J.; Italiano, J.E., Jr High-content live-cell imaging assay used to establish mechanism of trastuzumab emtansine (T-DM1)--mediated inhibition of platelet production. Blood, 2012, 120(10), 1975-1984.
[http://dx.doi.org/10.1182/blood-2012-04-420968] [PMID: 22665936]
[199]
Alley, S.C.; Zhang, X.; Okeley, N.M.; Anderson, M.; Law, C.L.; Senter, P.D.; Benjamin, D.R. The pharmacologic basis for antibody-auristatin conjugate activity. J. Pharmacol. Exp. Ther., 2009, 330(3), 932-938.
[http://dx.doi.org/10.1124/jpet.109.155549] [PMID: 19498104]
[200]
Adams, G.P.; Schier, R.; McCall, A.M.; Simmons, H.H.; Horak, E.M.; Alpaugh, R.K.; Marks, J.D.; Weiner, L.M. High affinity restricts the localization and tumor penetration of single-chain fv antibody molecules. Cancer Res., 2001, 61(12), 4750-4755.
[PMID: 11406547]
[201]
Jain, R.K. Normalization of tumor vasculature: An emerging concept in antiangiogenic therapy. Science, 2005, 307(5706), 58-62.
[http://dx.doi.org/10.1126/science.1104819] [PMID: 15637262]
[202]
Deonarain, M.P. Miniaturised ‘antibody’-drug conjugates for solid tumours? Drug Discov. Today. Technol., 2018, 30, 47-53.
[http://dx.doi.org/10.1016/j.ddtec.2018.09.006] [PMID: 30553520]
[203]
Shargh, V.H.; Hondermarck, H.; Liang, M. Antibody-targeted biodegradable nanoparticles for cancer therapy. Nanomedicine (Lond.), 2016, 11(1), 63-79.
[http://dx.doi.org/10.2217/nnm.15.186] [PMID: 26654068]
[204]
Cheng, Z.; Al Zaki, A.; Hui, J.Z.; Muzykantov, V.R.; Tsourkas, A. Multifunctional nanoparticles: Cost versus benefit of adding targeting and imaging capabilities. Science, 2012, 338(6109), 903-910.
[http://dx.doi.org/10.1126/science.1226338] [PMID: 23161990]
[205]
van der Meel, R.; Vehmeijer, L.J.C.; Kok, R.J.; Storm, G.; van Gaal, E.V.B. Ligand-targeted particulate nanomedicines undergoing clinical evaluation: Current status. Adv. Drug Deliv. Rev., 2013, 65(10), 1284-1298.
[http://dx.doi.org/10.1016/j.addr.2013.08.012] [PMID: 24018362]
[206]
Sivaram, A.J.; Wardiana, A.; Howard, C.B.; Mahler, S.M.; Thurecht, K.J. Recent advances in the generation of antibody-nanomaterial conjugates. Adv. Healthc. Mater., 2018, 7(1)
[http://dx.doi.org/10.1002/adhm.201700607] [PMID: 28961378]
[207]
Hoffman, A.S.; Stayton, P.S. Bioconjugates of smart polymers and proteins: Synthesis and applications. Macromol. Symp., 2004, 207, 139.
[http://dx.doi.org/10.1002/masy.200450314]
[208]
Arvizo, R.R.; De, M.; Rotello, V.M. Nanobiotechnology II: More Concepts and Applications; Mirkin, C.A.; Niemeyer, C.M; Mirkin, C.A.; Niemeyer, C.M., Eds.; Wiley VCH: Weinheim, 2007, p. 65.
[http://dx.doi.org/10.1002/9783527610389.ch4]
[209]
Kim, C.B.; Choi, Y.Y.; Song, W.K.; Song, K.B. Antibody-based magnetic nanoparticle immunoassay for quantification of Alzheimer’s disease pathogenic factor. J. Biomed. Opt., 2014, 19(5) 051205
[http://dx.doi.org/10.1117/1.JBO.19.5.051205] [PMID: 24297060]
[210]
Zhang, X.; Bloch, S.; Akers, W.; Achilefu, S. Near-infrared molecular probes for in vivo imaging. Curr. Protoc. Cytom, In: Chapter 12, Unit12 27. 2012.
[211]
Chen, R.; Khatri, P.; Mazur, P.K.; Polin, M.; Zheng, Y.; Vaka, D.; Hoang, C.D.; Shrager, J.; Xu, Y.; Vicent, S.; Butte, A.J.; Sweet-Cordero, E.A. A meta-analysis of lung cancer gene expression identifies PTK7 as a survival gene in lung adenocarcinoma. Cancer Res., 2014, 74(10), 2892-2902.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-2775] [PMID: 24654231]
[212]
Gan, H.; Chen, L.; Sui, X.; Wu, B.; Zhou, S.; Li, A.; Zhang, Y.; Liu, X.; Wang, D.; Cai, S.; Liu, X.; Liang, Y.; Tang, X. Enhanced delivery of sorafenib with anti-GPC3 antibodyconjugated TPGS-b-PCL/Pluronic P123 polymeric nanoparticles for targeted therapy of hepatocellular carcinoma. Mater. Sci. Eng. C Mater. Biol. Appl, 2018, 91, 395-403.
[http://dx.doi.org/10.1016/j.msec.2018.05.011] [PMID: 30033270]
[213]
Yang, W.; Hu, Q.; Xu, Y.; Liu, H.; Zhong, L. Antibody fragment-conjugated gemcitabine and paclitaxel-based liposome for effective therapeutic efficacy in pancreatic cancer. Mater. Sci. Eng. C, 2018, 89, 328-335.
[http://dx.doi.org/10.1016/j.msec.2018.04.011] [PMID: 29752104]
[214]
Arnold, A.E.; Malek-Adamian, E.; Le, P.U.; Meng, A.; Martínez-Montero, S.; Petrecca, K.; Damha, M.J.; Shoichet, M.S. Antibody-antisense oligonucleotide conjugate downregulates a key gene in glioblastoma stem cells. Mol. Ther. Nucleic Acids, 2018, 11, 518-527.
[http://dx.doi.org/10.1016/j.omtn.2018.04.004] [PMID: 29858087]
[215]
Linenberger, M.L.; Hong, T.; Flowers, D.; Sievers, E.L.; Gooley, T.A.; Bennett, J.M.; Berger, M.S.; Leopold, L.H.; Appelbaum, F.R.; Bernstein, I.D. Multidrug-resistance phenotype and clinical responses to gemtuzumab ozogamicin. Blood, 2001, 98(4), 988-994.
[http://dx.doi.org/10.1182/blood.V98.4.988] [PMID: 11493443]
[216]
Ricart, A.D. Antibody-drug conjugates of calicheamicin derivative: Gemtuzumab ozogamicin and inotuzumab ozogamicin. Clin. Cancer Res., 2011, 17(20), 6417-6427.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-0486] [PMID: 22003069]
[217]
Mullard, A. Maturing antibody-drug conjugate pipeline hits 30. Nat. Rev. Drug Discov., 2013, 12(5), 329-332.
[http://dx.doi.org/10.1038/nrd4009] [PMID: 23629491]
[218]
Katz, J.; Janik, J.E.; Younes, A. Brentuximab Vedotin (SGN-35). Clin. Cancer Res., 2011, 17(20), 6428-6436.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-0488] [PMID: 22003070]
[219]
Kantarjian, H.M.; DeAngelo, D.J.; Stelljes, M.; Martinelli, G.; Liedtke, M.; Stock, W.; Gökbuget, N.; O’Brien, S.; Wang, K.; Wang, T.; Paccagnella, M.L.; Sleight, B.; Vandendries, E.; Advani, A.S. Inotuzumab ozogamicin versus standard therapy for acute lymphoblastic leukemia. N. Engl. J. Med., 2016, 375(8), 740-753.
[http://dx.doi.org/10.1056/NEJMoa1509277] [PMID: 27292104]
[220]
Petersdorf, S.; Kopecky, K.J.; Slovak, M.; Willman, C.; Nevill, T.; Brandwein, J.; Larson, R.A.; Erba, H.P.; Stiff, P.J.; Stuart, R.K.; Walter, R.; Tallman, M.S.; Stenke, L.; Appelbaum, F.R. A phase 3 study of gemtuzumab ozogamicin during induction and postconsolidation therapy in younger patients with acute myeloid leukemia. Blood, 2013, 121(24), 4854-4860.
[http://dx.doi.org/10.1182/blood-2013-01-466706] [PMID: 23591789]
[221]
Tanimoto, T.; Tsubokura, M.; Mori, J.; Pietrek, M.; Ono, S.; Kami, M. Differences in drug approval processes of 3 regulatory agencies: A case study of gemtuzumab ozogamicin. Invest. New Drugs, 2013, 31(2), 473-478.
[http://dx.doi.org/10.1007/s10637-012-9877-8] [PMID: 22965890]
[222]
ten Cate, B.; Bremer, E.; de Bruyn, M.; Bijma, T.; Samplonius, D.; Schwemmlein, M.; Huls, G.; Fey, G.; Helfrich, W. A novel AML-selective TRAIL fusion protein that is superior to Gemtuzumab Ozogamicin in terms of in vitro selectivity, activity and stability. Leukemia, 2009, 23(8), 1389-1397.
[http://dx.doi.org/10.1038/leu.2009.34] [PMID: 19262596]
[223]
Lamb, Y.N. Inotuzumab Ozogamicin: First global approval. Drugs, 2017, 77(14), 1603-1610.
[http://dx.doi.org/10.1007/s40265-017-0802-5] [PMID: 28819740]
[224]
Koji Sasaki, H.M.K.; O’Brien, S.; Thomas, D.A.; Ravandi, F.; Garcia-Manero, G.; Kadia, T.; Jain, N.; Konopleva, M.; Estrov, Z.; Takahashi, K.; Khouri, M.R.; Jacob, J.; Garris, R.; Cortes, J.E.; Jabbour, E. Salvage chemotherapy with inotuzumab ozogamicin (INO) combined with mini-hyper-CVD for adult patients with relapsed/refractory (R/R) acute lymphoblastic leukemia (ALL). Blood, 2015, 126(23), 3721-3721.
[http://dx.doi.org/10.1182/blood.V126.23.3721.3721]
[225]
Nitin Jain, S.O.B.; Deborah, A.; Thomas, E.J.; Faderl, S.; Ravandi, F.; Borthakur, G. Inotuzumab ozogamicin in combination with low-intensity chemotherapy (mini-hyper-CVD) as frontline therapy for older patients (≥60 years) with acute lymphoblastic leukemia(ALL). Blood, 2013, 122(21), 1432.
[http://dx.doi.org/10.1182/blood.V122.21.1432.1432]
[226]
Younes, A.; Bartlett, N.L.; Leonard, J.P.; Kennedy, D.A.; Lynch, C.M.; Sievers, E.L.; Forero-Torres, A. Brentuximab vedotin (SGN-35) for relapsed CD30-positive lymphomas. N. Engl. J. Med., 2010, 363(19), 1812-1821.
[http://dx.doi.org/10.1056/NEJMoa1002965] [PMID: 21047225]
[227]
Verma, S.; Miles, D.; Gianni, L.; Krop, I.E.; Welslau, M.; Baselga, J.; Pegram, M.; Oh, D.Y.; Diéras, V.; Guardino, E.; Fang, L.; Lu, M.W.; Olsen, S.; Blackwell, K. EMILIA Study Group. Trastuzumab emtansine for HER2-positive advanced breast cancer. N. Engl. J. Med., 2012, 367(19), 1783-1791.
[http://dx.doi.org/10.1056/NEJMoa1209124] [PMID: 23020162]
[228]
Appelbaum, F.R.; Bernstein, I.D. Gemtuzumab ozogamicin for acute myeloid leukemia. Blood, 2017, 130(22), 2373-2376.
[http://dx.doi.org/10.1182/blood-2017-09-797712] [PMID: 29021230]
[229]
Trail, P.A.; Dubowchik, G.M.; Lowinger, T.B. Antibody drug conjugates for treatment of breast cancer: Novel targets and diverse approaches in ADC design. Pharmacol. Ther., 2018, 181, 126-142.
[http://dx.doi.org/10.1016/j.pharmthera.2017.07.013] [PMID: 28757155]
[230]
Poon, K.A.; Flagella, K.; Beyer, J.; Tibbitts, J.; Kaur, S.; Saad, O.; Yi, J.H.; Girish, S.; Dybdal, N.; Reynolds, T. Preclinical safety profile of trastuzumab emtansine (T-DM1): Mechanism of action of its cytotoxic component retained with improved tolerability. Toxicol. Appl. Pharmacol., 2013, 273(2), 298-313.
[http://dx.doi.org/10.1016/j.taap.2013.09.003] [PMID: 24035823]
[231]
Socinski, M.A.; Kaye, F.J.; Spigel, D.R.; Kudrik, F.J.; Ponce, S.; Ellis, P.M.; Majem, M.; Lorigan, P.; Gandhi, L.; Gutierrez, M.E.; Nepert, D.; Corral, J.; Ares, L.P. Phase 1/2 study of the CD56-targeting antibody-drug conjugate lorvotuzumab mertansine (IMGN901) in combination with carboplatin/etoposide in small-cell lung cancer patients with extensive-stage disease. Clin. Lung Cancer, 2017, 18(1), 68-76.e2.
[http://dx.doi.org/10.1016/j.cllc.2016.09.002] [PMID: 28341109]
[232]
Setiady, Y.Y.; Dong, L.; Skaletskaya, A.; Pinkas, J.; Lutz, R.J.; Lambert, J.M.; Chittenden, T. IMGN289, an EGFR-targeting antibody- drug conjugate, is effective against tumor cells that are resistant to EGFR tyrosine kinase inhibitors. Exp. Mol. Ther, 2014, 74(19 Suppl)
[http://dx.doi.org/10.1158/1538-7445.AM2014-4513]
[233]
Heist, R.S.; Guarino, M.J.; Masters, G.; Purcell, W.T.; Starodub, A.N.; Horn, L.; Scheff, R.J.; Bardia, A.; Messersmith, W.A.; Berlin, J.; Ocean, A.J.; Govindan, S.V.; Maliakal, P.; Mudenda, B.; Wegener, W.A.; Sharkey, R.M.; Goldenberg, D.M.; Camidge, D.R. Therapy of advanced non-small-cell lung cancer with an SN-38-anti-Trop-2 drug conjugate, Sacituzumab Govitecan. J. Clin. Oncol., 2017, 35(24), 2790-2797.
[http://dx.doi.org/10.1200/JCO.2016.72.1894] [PMID: 28548889]
[234]
Shvartsur, A.; Bonavida, B. Trop2 and its overexpression in cancers: Regulation and clinical/therapeutic implications. Genes Cancer, 2015, 6(3-4), 84-105.
[PMID: 26000093]
[235]
Zeng, P.; Chen, M.B.; Zhou, L.N.; Tang, M.; Liu, C.Y.; Lu, P.H. Impact of TROP2 expression on prognosis in solid tumors: A systematic review and meta-analysis. Sci. Rep., 2016, 6, 33658.
[http://dx.doi.org/10.1038/srep33658] [PMID: 27645103]
[236]
Starodub, A.N.; Ocean, A.J.; Shah, M.A.; Guarino, M.J.; Picozzi, V.J., Jr; Vahdat, L.T.; Thomas, S.S.; Govindan, S.V.; Maliakal, P.P.; Wegener, W.A.; Hamburger, S.A.; Sharkey, R.M.; Goldenberg, D.M. First-in-Human Trial of a Novel Anti-Trop-2 Antibody-SN-38 Conjugate, Sacituzumab Govitecan, for the Treatment of Diverse Metastatic Solid Tumors. Clin. Cancer Res., 2015, 21(17), 3870-3878.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-3321] [PMID: 25944802]
[237]
Sangha, R.; Davies, A.; Dang, N.H.; Ogura, M.; MacDonald, D.A.; Ananthakrishnan, R.; Paccagnella, M.L.; Vandendries, E.; Boni, J.; Goh, Y.T. Phase 1 study of inotuzumab ozogamicin combined with R-GDP for the treatment of patients with relapsed/refractory CD22+ B-cell non-Hodgkin lymphoma. J. Drug Assess., 2017, 6(1), 10-17.
[http://dx.doi.org/10.1080/21556660.2017.1315336] [PMID: 28959500]
[238]
Cavallo, J. Phase I trial of new antibody-drug conjugate shows promise against all forms of melanoma. https://www. ascopost.com/News/15102 [Accessed on Date: 4/8/2014]
[239]
Forero, A.; Burris, H., III; Mita, M. Abstract P3-14-05: Interim analysis of a phase 1 study of the antibody-drug conjugate SGN-LIV1A in patients with metastatic breast cancer. Cancer Res., 2016, 76(4)
[http://dx.doi.org/10.1158/1538-7445.SABCS15-P3-14-05]
[240]
Taylor, K.M.; Morgan, H.E.; Smart, K.; Zahari, N.M.; Pumford, S.; Ellis, I.O.; Robertson, J.F.; Nicholson, R.I. The emerging role of the LIV-1 subfamily of zinc transporters in breast cancer. Mol. Med., 2007, 13(7-8), 396-406.
[http://dx.doi.org/10.2119/2007-00040.Taylor] [PMID: 17673939]
[241]
Weekes, C.D.; Lamberts, L.E.; Borad, M.J.; Voortman, J.; McWilliams, R.R.; Diamond, J.R.; de Vries, E.G.; Verheul, H.M.; Lieu, C.H.; Kim, G.P.; Wang, Y.; Scales, S.J.; Samineni, D.; Brunstein, F.; Choi, Y.; Maslyar, D.J.; Colon-Otero, G. Phase I study of DMOT4039A, an antibody-drug conjugate targeting mesothelin, in patients with unresectable pancreatic or platinum-resistant ovarian cancer. Mol. Cancer Ther., 2016, 15(3), 439-447.
[http://dx.doi.org/10.1158/1535-7163.MCT-15-0693] [PMID: 26823490]
[242]
Petrylak, D.P.; Perez, R.P.; Zhang, J.; Smith, D.C.; Ruether, J.D.; Sridhar, S.S.; Sangha, R.S.; Lang, J.M.; Heath, E.I.; Merchan, J.R.; Gartner, E.M.; Chu, R.; Anand, B.; Doñate, F.; Jackson, L.; Adams, J.; Melhem-Bertrandt, A. A phase I study of enfortumab vedotin (ASG-22CE; ASG-22ME): Updated analysis of patients with metastatic urothelial cancer. J. Clin. Oncol., 2017, 35, 106.
[http://dx.doi.org/10.1200/JCO.2017.35.15_suppl.106]
[243]
Nakada, T.; Masuda, T.; Naito, H.; Yoshida, M.; Ashida, S.; Morita, K.; Miyazaki, H.; Kasuya, Y.; Ogitani, Y.; Yamaguchi, J.; Abe, Y.; Honda, T. Novel antibody drug conjugates containing exatecan derivative-based cytotoxic payloads. Bioorg. Med. Chem. Lett., 2016, 26(6), 1542-1545.
[http://dx.doi.org/10.1016/j.bmcl.2016.02.020] [PMID: 26898815]
[244]
Ataseven, B.; Angerer, R.; Kates, R.; Gunesch, A.; Knyazev, P.; Högel, B.; Becker, C.; Eiermann, W.; Harbeck, N. PTK7 expression in triple-negative breast cancer. Anticancer Res., 2013, 33(9), 3759-3763.
[PMID: 24023307]
[245]
Mossie, K.; Jallal, B.; Alves, F.; Sures, I.; Plowman, G.D.; Ullrich, A. Colon carcinoma kinase-4 defines a new subclass of the receptor tyrosine kinase family. Oncogene, 1995, 11(10), 2179-2184.
[PMID: 7478540]
[246]
Sachdev, J.C.; Maitland, M.; Sharma, M.; Moreno, V.; Boni, V.; Kummar, S.; Gibson, B.; Xuan, D.; Joh, T.; Powell, E.; Jackson-Fisher, A.; Damelin, M.; Xin, X.; Tolcher, A.; Calvo, E. A phase 1 study of PF-06647020, an antibody-drug conjugate (ADC) targeting protein tyrosine kinase 7(PTK7), in patients with advanced solid tumors including platinum resistant ovarian cancer (OVCA). Ann. Oncol., 2016, 27, LBA35.
[http://dx.doi.org/10.1093/annonc/mdw435.29]
[247]
Garrido-Laguna, I.; Krop, I.E.; Burris, H.; Hamilton, E.P.; Braiteh, F.S.; Weise, A.; Abu-Khalaf, M.M.; Zopf, C.; Lakshminarayanan, M.; Holland, J.S.; Baffa, R.; Hong, D.S.; Hassan, R. A phase I study of PF-06647263, a novel EFNA4-ADC, in patients with metastatic triple negative breast cancer. J. Clin. Oncol., 2017, 35, 2511.
[http://dx.doi.org/10.1200/JCO.2017.35.15_suppl.2511]
[248]
Giaginis, C.; Tsoukalas, N.; Bournakis, E.; Alexandrou, P.; Kavantzas, N.; Patsouris, E.; Theocharis, S. Ephrin (Eph) receptor A1, A4, A5 and A7 expression in human non-small cell lung carcinoma: associations with clinicopathological parameters, tumor proliferative capacity and patients’ survival. BMC Clin. Pathol., 2014, 14(1), 8.
[http://dx.doi.org/10.1186/1472-6890-14-8] [PMID: 24495444]
[249]
Rosen, D.B.; Harrington, K.H.; Cordeiro, J.A.; Leung, L.Y.; Putta, S.; Lacayo, N.; Laszlo, G.S.; Gudgeon, C.J.; Hogge, D.E.; Hawtin, R.E.; Cesano, A.; Walter, R.B. AKT signaling as a novel factor associated with in vitro resistance of human AML to gemtuzumab ozogamicin. PLoS One, 2013, 8(1)e53518
[http://dx.doi.org/10.1371/journal.pone.0053518] [PMID: 23320091]
[250]
Garcia-Corbacho, J.; Spira, A.; Boni, V.; Feliu, J.; Middleton, M.; Burris, H.; Weaver, A.Y.; Will, M.; Harding, J.; Meric-Bernstam, F.; Heinemann, V. 422TiP - PROCLAIM-CX-2009: A first-in-human trial to evaluate CX-2009 in adults with metastatic or locally advanced unresectable solid tumors. Ann. Oncol., 2017, 28(Suppl. 5), v122-v141.
[http://dx.doi.org/10.1093/annonc/mdx367]
[251]
Thompson, J.A.; Motzer, R.J.; Molina, A.M.; Choueiri, T.K.; Heath, E.I.; Redman, B.G.; Sangha, R.S.; Ernst, D.S.; Pili, R.; Kim, S.K.; Reyno, L.; Wiseman, A.; Trave, F.; Anand, B.; Morrison, K.; Doñate, F.; Kollmannsberger, C.K. Phase 1 trials of anti-enpp3 antibody drug conjugates in advanced refractory renal cell carcinomas. Clin. Cancer Res., 2018, 24(18), 4399-4406.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-0481] [PMID: 29848572]
[252]
Kovtun, Y.; Noordhuis, P.; Whiteman, K.R.; Watkins, K.W.; Jones, G.E.; Harvey, L.; Lai, K.C.; Portwood, S.; Adams, S.; Sloss, C.M.; Schuurhuis, G.J.; Ossenkoppele, G.; Wang, E.S.; Pinkas, J. IMGN779, a novel CD33-targeting antibody-drug conjugate with dna alkylating activity. Mol. Cancer Ther., 2018, 17(6), 1271-1279.
[http://dx.doi.org/10.1158/1535-7163.MCT-17-1077] [PMID: 29588393]
[253]
Pereira, D.S.; Guevara, C.I.; Jin, L.; Mbong, N.; Verlinsky, A.; Hsu, S.J.; Aviña, H.; Karki, S.; Abad, J.D.; Yang, P.; Moon, S.J.; Malik, F.; Choi, M.Y.; An, Z.; Morrison, K.; Challita-Eid, P.M.; Doñate, F.; Joseph, I.B.; Kipps, T.J.; Dick, J.E.; Stover, D.R. AGS67E, an anti-CD37 monomethyl auristatin E antibody-drug conjugate as a potential therapeutic for B/T-cell malignancies and AML: A new role for CD37 in AML. Mol. Cancer Ther., 2015, 14(7), 1650-1660.
[http://dx.doi.org/10.1158/1535-7163.MCT-15-0067] [PMID: 25934707]
[254]
Hamblett, K.J.; Kozlosky, C.J.; Siu, S.; Chang, W.S.; Liu, H.; Foltz, I.N.; Trueblood, E.S.; Meininger, D.; Arora, T.; Twomey, B.; Vonderfecht, S.L.; Chen, Q.; Hill, J.S.; Fanslow, W.C. AMG 595, an Anti-EGFRvIII antibody-drug conjugate, induces potent antitumor activity against EGFRvIII-expressing glioblastoma. Mol. Cancer Ther., 2015, 14(7), 1614-1624.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-1078] [PMID: 25931519]
[255]
Jumbe, N.L.; Fanslow, W.; Patel, S.; Amore, B.; Retter, M.; Chow, V. Translating preclinical PK/PD tumor volume modeling data to predict AMG172 PK and dose-escalation scheme in FIH. Experimental and Molecular Therapeutics. Cancer Res., 2013, 73(8)(Suppl.), 3359-3359.
[http://dx.doi.org/10.1158/1538-7445.AM2013-3359]
[256]
O’Donnell, E.K.; Raje, N.S. New monoclonal antibodies on the horizon in multiple myeloma. Ther. Adv. Hematol., 2017, 8(2), 41-53.
[http://dx.doi.org/10.1177/2040620716682490] [PMID: 28203341]
[257]
Eskelinen, E.L. Roles of LAMP-1 and LAMP-2 in lysosome biogenesis and autophagy. Mol. Aspects Med., 2006, 27(5-6), 495-502.
[http://dx.doi.org/10.1016/j.mam.2006.08.005] [PMID: 16973206]
[258]
Kelly, K.R.; Siegel, D.S.; Chanan-Khan, A.A.; Somlo, G.; Heffner, L.T.; Jagannath, S.; Zimmerman, T.; Munshi, N.C.; Madan, S.; Mohrbacher, A.; Lonial, S.; Barmaki-Rad, F.; Rühle, M.; Herrmann, E.; Wartenberg-Demand, A.; Haeder, T.; Anderson, K.C. Indatuximab Ravtansine (BT062) in combination with low-dose dexamethasone and lenalidomide or pomalidomide: Clinical activity in patients with relapsed/refractory multiple myeloma. Blood, 2016, 128, 4486.
[http://dx.doi.org/10.1182/blood.V128.22.4486.4486]
[259]
Trudel, S.; Lendvai, N.; Popat, R.; Voorhees, P.M.; Reeves, B.; Libby, E.N.; Richardson, P.G.; Anderson, L.D., Jr; Sutherland, H.J.; Yong, K.; Hoos, A.; Gorczyca, M.M.; Lahiri, S.; He, Z.; Austin, D.J.; Opalinska, J.B.; Cohen, A.D. Targeting B-cell maturation antigen with GSK2857916 antibody–drug conjugate in relapsed or refractory multiple myeloma (BMA117159): A dose escalation and expansion phase 1 trial. Lancet Oncol., 2018, 19(12), 1641-1653.
[http://dx.doi.org/10.1016/S1470-2045(18)30576-X] [PMID: 30442502]
[260]
Satpayev, D.; Torgov, M.; Yang, P.; Morrison, K.; Shostak, Y.; Raitano, A.; Liu, W.; Lortie, D.; An, Z.; Capo, L.; Leavitt, M.; Perez, M.; Verlinsky, A.; Shirasuna, K.; Avina, H.; Guevara, C.; Morrison, K.; Challita-Eid, P.; Jia, X-C.; Gudas, J.; Stover, D. Abstract 2832: Development of AGS-22M6E, a novel antibody drug conjugate (ADC) targeting Nectin-4 for the treatment of solid tumors. Exp. Mol. Ther, 2011, 71(8 Suppl)
[http://dx.doi.org/10.1158/1538-7445.AM2011-2832]
[261]
Moore, K.N.; O’Malley, D.M.; Vergote, I.; Martin, L.P.; Gonzalez-Martin, A.; Malek, K.; Birrer, M.J. Safety and activity findings from a phase 1b escalation study of mirvetuximab soravtansine, a folate receptor alpha (FRα)-targeting antibody-drug conjugate (ADC), in combination with carboplatin in patients with platinum-sensitive ovarian cancer. Gynecol. Oncol., 2018, 151(1), 46-52.
[http://dx.doi.org/10.1016/j.ygyno.2018.07.017] [PMID: 30093227]
[262]
Nejadmoghaddam, M-R.; Minai-Tehrani, A.; Ghahremanzadeh, R.; Mahmoudi, M.; Dinarvand, R.; Zarnani, A-H. Antibody-drug conjugates: Possibilities and challenges. Avicenna J. Med. Biotechnol., 2019, 11(1), 3-23.
[PMID: 30800238]
[263]
Carol, H.; Szymanska, B.; Evans, K.; Boehm, I.; Houghton, P.J.; Smith, M.A.; Lock, R.B. The anti-CD19 antibody-drug conjugate SAR3419 prevents hematolymphoid relapse postinduction therapy in preclinical models of pediatric acute lymphoblastic leukemia. Clin. Cancer Res., 2013, 19(7), 1795-1805.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-3613] [PMID: 23426279]
[264]
Ribrag, V.; Dupuis, J.; Tilly, H.; Morschhauser, F.; Laine, F.; Houot, R.; Haioun, C.; Copie, C.; Varga, A.; Lambert, J.; Hatteville, L.; Ziti-Ljajic, S.; Caron, A.; Payrard, S.; Coiffier, B. A dose-escalation study of SAR3419, an anti-CD19 antibody maytansinoid conjugate, administered by intravenous infusion once weekly in patients with relapsed/refractory B-cell non-Hodgkin lymphoma. Clin. Cancer Res., 2014, 20(1), 213-220.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-0580] [PMID: 24132920]
[265]
Gomez-Roca, C.A.; Boni, V.; Moreno, V.; Morris, J.C.; Delord, J.P.; Calvo, E.; Papadopoulos, K.P.; Rixe, O.; Cohen, P.; Tellier, A.; Ziti-Ljajic, S.; Tolcher, A.W. A phase I study of SAR566658, an anti CA6-antibody drug conjugate (ADC), in patients (Pts) with CA6-positive advanced solid tumors (STs) (NCT01156870). J. Clin. Oncol., 2016, 34, 2511.
[http://dx.doi.org/10.1200/JCO.2016.34.15_suppl.2511]
[266]
Boni, V.; Rixe, O.; Rasco, D.; Gomez-Roca, C.; Calvo, E.; Morris, J.C.; Delord, J-P. Abstract A73: A phase I first-in-human (FIH) study of SAR566658, an anti CA6-antibody drug conjugate (ADC), in patients (pts) with CA6-positive advanced solid tumors (STs). Proceedings of the AACR-NCI-EORTC international conference: Molecular targets and cancer therapeutics, 2013. Boston, MA
[267]
Humphreys, R.C.; Kirtely, J.; Hewit, A.; Biroc, S.; Knudsen, N.; Skidmore, L.; Wahl, A. 2015. Abstract 639: Site specific conjugation of ARX-788, an antibody drug conjugate (ADC) targeting HER2, generates a potent and stable targeted therapeutic for multiple cancers. Proceedings of the 106th annual meeting of the American Association for Cancer Research, Philadelphia, PA.
[http://dx.doi.org/10.1158/1538-7445.AM2015-639]
[268]
Kogawa, T.; Yonemori, K.; Naito, Y.; Noguchi, E.; Shimizu, C.; Tamura, K.; Hosono, A.; Matsubara, N.; Sugihara, M.; Ogawa, H.; Majima, S.; Yu, C.; Ueno, S.; Takano, T. Phase 1/2, multicenter, nonrandomized, open-label, multiple-dose first-in-human study of U3-1402(anti-HER3 antibody drug conjugate) in subjects with HER3-positive metastatic breast cancer. J. Clin. Oncol., 2017, 35, TPS1116.
[http://dx.doi.org/10.1200/JCO.2017.35.15_suppl.TPS1116]
[269]
Almhanna, K.; Wright, D.; Mercade, T.M.; Van Laethem, J.L.; Gracian, A.C.; Guillen-Ponce, C.; Faris, J.; Lopez, C.M.; Hubner, R.A.; Bendell, J.; Bols, A.; Feliu, J.; Starling, N.; Enzinger, P.; Mahalingham, D.; Messersmith, W.; Yang, H.; Fasanmade, A.; Danaee, H.; Kalebic, T. A phase II study of antibody-drug conjugate, TAK-264 (MLN0264) in previously treated patients with advanced or metastatic pancreatic adenocarcinoma expressing guanylyl cyclase C. Invest. New Drugs, 2017, 35(5), 634-641.
[http://dx.doi.org/10.1007/s10637-017-0473-9] [PMID: 28527133]
[270]
Roth, M.; Barris, D.M.; Piperdi, S.; Kuo, V.; Everts, S.; Geller, D.; Houghton, P.; Kolb, E.A.; Hawthorne, T.; Gill, J.; Gorlick, R. Targeting glycoprotein NMB with antibody-drug conjugate, glembatumumab vedotin, for the treatment of osteosarcoma. Pediatr. Blood Cancer, 2016, 63(1), 32-38.
[http://dx.doi.org/10.1002/pbc.25688] [PMID: 26305408]
[271]
Maric, G.; Annis, M.G.; Dong, Z.; Rose, A.A.; Ng, S.; Perkins, D.; MacDonald, P.A.; Ouellet, V.; Russo, C.; Siegel, P.M. GPNMB cooperates with neuropilin-1 to promote mammary tumor growth and engages integrin α5β1 for efficient breast cancer metastasis. Oncogene, 2015, 34(43), 5494-5504.
[http://dx.doi.org/10.1038/onc.2015.8] [PMID: 25772243]
[272]
Thomas, L.J.; Vitale, L.; O’Neill, T.; Dolnick, R.Y.; Wallace, P.K.; Minderman, H.; Gergel, L.E.; Forsberg, E.M.; Boyer, J.M.; Storey, J.R.; Pilsmaker, C.D.; Hammond, R.A.; Widger, J.; Sundarapandiyan, K.; Crocker, A.; Marsh, H.C., Jr; Keler, T. Development of a Novel Antibody-Drug Conjugate for the Potential Treatment of Ovarian, Lung, and Renal Cell Carcinoma Expressing TIM-1. Mol. Cancer Ther., 2016, 15(12), 2946-2954.
[http://dx.doi.org/10.1158/1535-7163.MCT-16-0393] [PMID: 27671527]
[273]
Chenard-Poirier, M.; Hong, D.S.; Coleman, R. A phase I/II safety study of tisotumab vedotin (HuMab-TF-ADC) in patients with solid tumors. Ann. Oncol., 2017, 28(5), v403-v427.
[http://dx.doi.org/10.1093/annonc/mdx376]
[274]
Lassen, U.N.; Ramalingam, S.S.; Lopez, J.S.; Harvey, R.D.; Ameratunga, M.; de Hoon, J.; Losic, N.; Lisby, S.; Forssmann, U.; Vergote, I. GCT1021-01, a first-in-human, open-label, dose-escalation trial with expansion cohorts to evaluate safety of Axl-specific antibody-drug conjugate (HuMax-Axl-ADC) in patients with solid tumors (NCT02988817). J. Clin. Oncol., 2017, 35TPS2605
[http://dx.doi.org/10.1200/JCO.2017.35.15_suppl.TPS2605]
[275]
Boshuizen, J.; Koopman, L.A.; Krijgsman, O.; Shahrabi, A.; van den Heuvel, E.G.; Ligtenberg, M.A.; Vredevoogd, D.W.; Kemper, K.; Kuilman, T.; Song, J.Y.; Pencheva, N.; Mortensen, J.T.; Foppen, M.G.; Rozeman, E.A.; Blank, C.U.; Janmaat, M.L.; Satijn, D.; Breij, E.C.W.; Peeper, D.S.; Parren, P.W.H.I. Cooperative targeting of melanoma heterogeneity with an AXL antibody-drug conjugate and BRAF/MEK inhibitors. Nat. Med., 2018, 24(2), 203-212.
[http://dx.doi.org/10.1038/nm.4472] [PMID: 29334371]
[276]
Adams, S.; Wilhelm, A.; Harvey, L.; Bai, C.; Yoder, N.; Kovtun, Y.; Chittenden, T.; Pinkas, J. IMGN632: A CD123-targeting antibody-drug conjugate (ADC) with a novel DNA-Alkylating payload, is highly active and prolongs survival in acute Myeloid Leukemia (AML). Xenograft Models. Blood, 2016, 128, 2832.
[http://dx.doi.org/10.1182/blood.V128.22.2832.2832]
[277]
Moore, K.N.; Martin, L.P.; O’Malley, D.M.; Matulonis, U.A.; Konner, J.A.; Perez, R.P.; Bauer, T.M.; Ruiz-Soto, R.; Birrer, M.J. Safety and activity of mirvetuximab soravtansine (IMGN853), a folate receptor alpha-targeting antibody-drug conjugate, in platinum-resistant ovarian, fallopian tube, or primary peritoneal cancer: a phase I expansion study. J. Clin. Oncol., 2017, 35(10), 1112-1118.
[http://dx.doi.org/10.1200/JCO.2016.69.9538] [PMID: 28029313]
[278]
Moore, K.N.; Borghaei, H.; O’Malley, D.M.; Jeong, W.; Seward, S.M.; Bauer, T.M.; Perez, R.P.; Matulonis, U.A.; Running, K.L.; Zhang, X.; Ponte, J.F.; Ruiz-Soto, R.; Birrer, M.J. Phase 1 dose-escalation study of mirvetuximab soravtansine (IMGN853), a folate receptor α-targeting antibody-drug conjugate, in patients with solid tumors. Cancer, 2017, 123(16), 3080-3087.
[http://dx.doi.org/10.1002/cncr.30736] [PMID: 28440955]
[279]
Moek, K.L.; de Groot, D.J.A.; de Vries, E.G.E.; Fehrmann, R.S.N. The antibody-drug conjugate target landscape across a broad range of tumour types. Ann. Oncol., 2017, 28(12), 3083-3091.
[http://dx.doi.org/10.1093/annonc/mdx541] [PMID: 29045509]
[280]
Pacheco, J.M.; Camidge, D.R. antibody drug conjugates in thoracic malignancies. Lung Cancer, 2018, 124, 260-269.
[http://dx.doi.org/10.1016/j.lungcan.2018.07.001] [PMID: 30268471]
[281]
Blumenschein, G.R.; Hassan, R.; Moore, K.N. Phase I study of anti-mesothelin antibody drug conjugate anetumab ravtansine (AR) J. Clin. Oncol, 2016, 34(15-suppl), 2509.
[282]
Li, D.M.; Feng, Y.M. Signaling mechanism of cell adhesion molecules in breast cancer metastasis: potential therapeutic targets. Breast Cancer Res. Treat., 2011, 128(1), 7-21.
[http://dx.doi.org/10.1007/s10549-011-1499-x] [PMID: 21499686]
[283]
Bialucha, C.U.; Collins, S.D.; Li, X.; Saxena, P.; Zhang, X.; Dürr, C.; Lafont, B.; Prieur, P.; Shim, Y.; Mosher, R.; Lee, D.; Ostrom, L.; Hu, T.; Bilic, S.; Rajlic, I.L.; Capka, V.; Jiang, W.; Wagner, J.P.; Elliott, G.; Veloso, A.; Piel, J.C.; Flaherty, M.M.; Mansfield, K.G.; Meseck, E.K.; Rubic-Schneider, T.; London, A.S.; Tschantz, W.R.; Kurz, M.; Nguyen, D.; Bourret, A.; Meyer, M.J.; Faris, J.E.; Janatpour, M.J.; Chan, V.W.; Yoder, N.C.; Catcott, K.C.; McShea, M.A.; Sun, X.; Gao, H.; Williams, J.; Hofmann, F.; Engelman, J.A.; Ettenberg, S.A.; Sellers, W.R.; Lees, E. Discovery and optimization of HKT288, a cadherin-6-targeting ADC for the treatment of ovarian and renal cancers. Cancer Discov., 2017, 7(9), 1030-1045.
[http://dx.doi.org/10.1158/2159-8290.CD-16-1414] [PMID: 28526733]
[284]
Dotan, E.; Cohen, S.J.; Starodub, A.N.; Lieu, C.H.; Messersmith, W.A.; Simpson, P.S.; Guarino, M.J.; Marshall, J.L.; Goldberg, R.M.; Hecht, J.R.; Wegener, W.A.; Sharkey, R.M.; Govindan, S.V.; Goldenberg, D.M.; Berlin, J.D. Phase I/II trial of labetuzumab govitecan (anti-CEACAM5/SN-38 antibody-drug conjugate) in patients with refractory or relapsing metastatic colorectal cancer. J. Clin. Oncol., 2017, 35(29), 3338-3346.
[http://dx.doi.org/10.1200/JCO.2017.73.9011] [PMID: 28817371]
[285]
Cardillo, T.M.; Govindan, S.V.; Zalath, M.B.; Rossi, D.L.; Wang, Y.; Chang, C.H.; Goldenberg, D.M. IMMU-140, a novel SN-38 antibody-drug conjugate targeting HLA-DR, mediates dual cytotoxic effects in hematologic cancers and malignant melanoma. Mol. Cancer Ther., 2018, 17(1), 150-160.
[http://dx.doi.org/10.1158/1535-7163.MCT-17-0354] [PMID: 29133623]
[286]
Yurkovetskiy, A.; Gumerov, D.; Ter-Ovanesyan, E.; Conlon, P.; Devit, M.; Bu, C.; Bergstrom, D. Non-clinical pharmacokinetics of XMT-1522, a HER2 targeting auristatin-based antibody drug conjugate. [Abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res., 2017, 77(13 Suppl), Abstract nr 48.
[287]
Abu-Yousif, A.O.; Bannerman, B.M.; Cvet, D.; Gallery, M.; Ganno, M.L.; Smith, M.D.; Lai, K.C.; Keating, T.A.; Bolleddula, J.; Stringer, B.; Qian, M.G.; Kamali, A.; Eng, K.; Koseoglu, S.; Xia, C.Q.; Veiby, O.P. TAK-164, a GCC-targeted antibody-drug conjugate (ADC) for the treatment of colorectal cancers and other GI malignancies. AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics, October 26-30. 2017. Philadelphia, PA
[http://dx.doi.org/10.1158/1535-7163.TARG-17-B120]
[288]
Zammarchi, F.; Chivers, S.; Williams, D.G.; Adams, L.; Mellinas-Gomez, M.; Tyrer, P.; Van Berkel, P.H. 62 - ADCT-502, a novel pyrrolobenzodiazepine (PBD)-based antibody-drug conjugate (ADC) targeting low HER2-expressing solid cancers. Eur. J. Cancer, 2016, 69(Suppl. 1), S28.
[http://dx.doi.org/10.1016/S0959-8049(16)32662-4]
[289]
Banerjee, S.; Oza, A.M.; Birrer, M.J.; Hamilton, E.P.; Hasan, J.; Leary, A.; Moore, K.N.; Matejczyk, B-M.; Pikiel, J.; Ray-Coquard, I.; Trask, P.; Lin, K.; Schuth, E.; Vaze, A.; Choi, Y.; Marsters, J.C.; Maslyar, D.J.; Lemahieu, V.; Wang, Y.; Humke, E.W.; Liu, J.F. Anti-NaPi2b antibody-drug conjugate lifastuzumab vedotin (DNIB0600A) compared to pegylated liposomal doxorubicin in patients with platinum-resistant ovarian cancer in a randomized, open-label, phase II study. 2018.https://academic.oup.com/annonc/advance-article-abstract/doi/10.1093
[290]
Burris, H.A.; Gordon, M.S.; Gerber, D.E. A Phase I study of DNIB0600A, an antibody-drug conjugate targeting NaPi2b, in patients with non-small cell lung cancer or platinum resistant ovarian cancer. J. Clin. Oncol., 2014, 32(5s)
[http://dx.doi.org/10.1200/jco.2014.32.15_suppl.2504]
[291]
Calvo, E.; Cleary, J.M.; Moreno, V.; Gifford, M.; Rapp, L.R.; Ansell, P.J.; Mittapalli, R.K.; Lee, H-J.; Hu, B.; Barch, D.; Ocampo, C.J.; Tolcher, A.W. Preliminary results from a phase 1 study of the antibody-drug conjugate ABBV-221 in patients with solid tumors likely to express EGFR. J. Clin. Oncol., 2017, 35, 2510.
[http://dx.doi.org/10.1200/JCO.2017.35.15_suppl.2510]
[292]
Angevin, E.; Spitaleri, G.; Rodon, J.; Dotti, K.; Isambert, N.; Salvagni, S.; Moreno, V.; Assadourian, S.; Gomez, C.; Harnois, M.; Hollebecque, A.; Azaro, A.; Hervieu, A.; Rihawi, K.; De Marinis, F. A first-in-human phase I study of SAR125844, a selective MET tyrosine kinase inhibitor, in patients with advanced solid tumours with MET amplification. Eur. J. Cancer, 2017, 87, 131-139.
[http://dx.doi.org/10.1016/j.ejca.2017.10.016] [PMID: 29145039]
[293]
Strickler, J.H.; Weekes, C.; Nemunaitis, J.; Ramanathan, R.K.; Heist, R.S.; Morgensztern, D.; Angevin, E.; Bauer, T.M.; Yue, H.; Motwani, M.; Parikh, A.; Reilly, E.B.; Afar, D.; Naumovski, L.; Kelly, K. First-in-human phase I, dose-escalation and -expansion study of telisotuzumab vedotin, an antibody-drug conjugate targeting c-Met, in Patients with advanced solid tumors. J. Clin. Oncol., 2018, 36(33), 3298-3306.
[http://dx.doi.org/10.1200/JCO.2018.78.7697] [PMID: 30285518]
[294]
Hammer, O. CD19 as an attractive target for antibody-based therapy. MAbs, 2012, 4(5), 571-577.
[http://dx.doi.org/10.4161/mabs.21338] [PMID: 22820352]
[295]
Thompson, P.; Fleming, R.; Bezabeh, B.; Huang, F.; Mao, S.; Chen, C.; Harper, J.; Zhong, H.; Gao, X.; Yu, X.Q.; Hinrichs, M.J.; Reed, M.; Kamal, A.; Strout, P.; Cho, S.; Woods, R.; Hollingsworth, R.E.; Dixit, R.; Wu, H.; Gao, C.; Dimasi, N. Rational design, biophysical and biological characterization of site-specific antibody-tubulysin conjugates with improved stability, efficacy and pharmacokinetics. J. Control. Release, 2016, 236, 100-116.
[http://dx.doi.org/10.1016/j.jconrel.2016.06.025] [PMID: 27327768]
[296]
Andersson, Y.; Haavardtun, S.I.; Davidson, B.; Dørum, A.; Fleten, K.G.; Fodstad, Ø.; Flatmark, K. MOC31PE immunotoxin targeting peritoneal metastasis from epithelial ovarian cancer. Oncotarget, 2017, 8(37), 61800-61809.
[297]
Elgersma, R.C.; Coumans, R.G.; Huijbregts, T.; Menge, W.M.; Joosten, J.A.; Spijker, H.J.; de Groot, F.M.; van der Lee, M.M.; Ubink, R.; van den Dobbelsteen, D.J.; Egging, D.F.; Dokter, W.H.; Verheijden, G.F.; Lemmens, J.M.; Timmers, C.M.; Beusker, P.H. Design, synthesis, and evaluation of linker-duocarmycin payloads: toward selection of HER2-targeting antibody-drug conjugate SYD985. Mol. Pharm., 2015, 12(6), 1813-1835.
[http://dx.doi.org/10.1021/mp500781a] [PMID: 25635711]
[298]
Govindan, S.V.; Cardillo, T.M.; Sharkey, R.M.; Tat, F.; Gold, D.V.; Goldenberg, D.M. Milatuzumab-SN-38 conjugates for the treatment of CD74+ cancers. Mol. Cancer Ther., 2013, 12(6), 968-978.
[http://dx.doi.org/10.1158/1535-7163.MCT-12-1170] [PMID: 23427296]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 17
ISSUE: 1
Year: 2020
Page: [23 - 51]
Pages: 29
DOI: 10.2174/1567201816666191121145109
Price: $65

Article Metrics

PDF: 34
HTML: 4