Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Review Article

Carbon Nanomaterials Based Saturable Absorbers for Ultrafast Passive Mode-Locking of Fiber Lasers

Author(s): Chih-Hsien Cheng and Gong-Ru Lin*

Volume 16, Issue 3, 2020

Page: [441 - 457] Pages: 17

DOI: 10.2174/1573413715666191114150100

Abstract

This paper emphasizes on overviewing the developing progress of the state-of-the-art carbon nanomaterial-based saturable absorbers for passively mode-locked fiber lasers, including carbon nanotube (CNT), graphene, graphite and other carbon nanomaterials. With reviewing the performances of these proposed candidates, the characteristic parameters required for initiating and stabilizing the passive mode-locked fiber lasers are summarized for comparison and discussion. At first, the basic characteristics such as saturation intensity and self-amplitude-modulation (SAM) coefficients of the CNT material with different-wall types are discussed in detail. In comparison, the single-wall CNT possesses optical nonlinearity better than double-wall CNT, whereas the doublewall CNT exhibits wavelength tenability and the multi-wall CNT fails to initiate mode-locking. Subsequently, different graphene saturable absorbers with slightly changing their optical properties made by various fabrication technologies are introduced to take over the role of typical CNT saturable absorber. The detailed analyses on graphene saturable absorber for developing various types of passively mode-locked fiber lasers are overviewed. At last, other new-aspect graphite and carbon nanomaterials related saturable absorbers have emerged because they reveal similar optical nonlinearity with graphene but exhibit cost-effectiveness and easy-production. When changing saturable absorber from graphene to other carbon nanomaterials, the modulation depth is decreased but the saturation intensity is concurrently enlarged because of the disordered structure with increased interlayer spacing and reduced graphene content. At the current stage, selecting carbon nanomaterials with high nonlinear absorbance and low saturated intensity for large SAM coefficient is the golden rule for passively mode-locked the fiber lasers in future academic and industrial applications.

Keywords: Passive mode-locking, carbon material based saturable absorber, ultrafast fiber laser, carbon nanotube, graphene, graphite, charcoal, carbon black.

« Previous
Graphical Abstract
[1]
Keller, U. Recent developments in compact ultrafast lasers. Nature, 2003, 424(6950), 831-838.
[http://dx.doi.org/10.1038/nature01938] [PMID: 12917697]
[2]
Lin, G-R.; Chiu, I-H. Femtosecond wavelength tunable semiconductor optical amplifier fiber laser mode-locked by backward dark-optical-comb injection at 10 GHz. Opt. Express, 2005, 13(22), 8772-8780.
[http://dx.doi.org/10.1364/OPEX.13.008772] [PMID: 19498911]
[3]
Lin, G-R.; Chiu, I-H.; Wu, M-C. 1.2-ps mode-locked semiconductor optical amplifier fiber laser pulses generated by 60-ps backward dark-optical comb injection and soliton compression. Opt. Express, 2005, 13(3), 1008-1014.
[http://dx.doi.org/10.1364/OPEX.13.001008] [PMID: 19494964]
[4]
Wang, K.; Horton, N.G.; Charan, K.; Xu, C. Advanced fiber soliton sources for nonlinear deep tissue imaging in biophotonics. IEEE J. Sel. Top. Quantum Electron., 2014, 20 6800311
[http://dx.doi.org/10.1109/JSTQE.2013.2276860]
[5]
Freudiger, C.W.; Min, W.; Holtom, G.R.; Xu, B.; Dantus, M.; Xie, X.S. Highly specific label-free molecular imaging with spectrally tailored excitation stimulated Raman scattering (STE-SRS) microscopy. Nat. Photonics, 2011, 5(2), 103-109.
[http://dx.doi.org/10.1038/nphoton.2010.294] [PMID: 23015809]
[6]
Sibbett, W.; Lagatsky, A.A.; Brown, C.T.A. The development and application of femtosecond laser systems. Opt. Express, 2012, 20(7), 6989-7001.
[http://dx.doi.org/10.1364/OE.20.006989] [PMID: 22453378]
[7]
Ferguson, B.; Zhang, X-C. Materials for terahertz science and technology. Nat. Mater., 2002, 1(1), 26-33.
[http://dx.doi.org/10.1038/nmat708] [PMID: 12618844]
[8]
Sheik-Bahae, M.; Said, A.A.; Van Stryland, E.W. High-sensitivity, single-beam n(2) measurements. Opt. Lett., 1989, 14(17), 955-957.
[http://dx.doi.org/10.1364/OL.14.000955] [PMID: 19753023]
[9]
Wang, G.; Fafard, S.; Leonard, D.; Bowers, J.E.; Merz, J.L.; Petroff, P.M. Time-resolved optical characterization of InGaAs/GaAs quantum dots. Appl. Phys. Lett., 1994, 64, 2815-2817.
[http://dx.doi.org/10.1063/1.111434]
[10]
Xing, G.; Guo, H.; Zhang, X.; Sum, T.C.; Huan, C.H.A. The Physics of ultrafast saturable absorption in graphene. Opt. Express, 2010, 18(5), 4564-4573.
[http://dx.doi.org/10.1364/OE.18.004564] [PMID: 20389469]
[11]
Gattass, R.R.; Mazur, E. Femtosecond laser micromachining in transparent materials. Nat. Photonics, 2008, 2, 219-225.
[http://dx.doi.org/10.1038/nphoton.2008.47]
[12]
Haus, H.A. Mode-locking of lasers. IEEE J. Sel. Top. Quantum Electron., 2000, 6, 1173-1185.
[http://dx.doi.org/10.1109/2944.902165]
[13]
Brabec, T.; Spielmann, C.; Curley, P.F.; Krausz, F. Kerr lens mode locking. Opt. Lett., 1992, 17(18), 1292-1294.
[http://dx.doi.org/10.1364/OL.17.001292] [PMID: 19798161]
[14]
Matsas, V.J.; Newson, T.P.; Richardson, D.J.; Payne, D.N. Selfstarting passively mode-locked fibre ring soliton laser exploiting nonlinear polarisation rotation. Electron. Lett., 1992, 28, 1391-1393.
[http://dx.doi.org/10.1049/el:19920885]
[15]
Kim, A.D.; Kutz, J.N.; Muraki, D.J. Pulse-train uniformity in optical fiber lasers passively mode-locked by nonlinear polarization rotation. IEEE J. Quantum Electron., 2000, 36, 465-471.
[http://dx.doi.org/10.1109/3.831023]
[16]
Doran, N.J.; Wood, D. Nonlinear-optical loop mirror. Opt. Lett., 1988, 13(1), 56-58.
[http://dx.doi.org/10.1364/OL.13.000056] [PMID: 19741979]
[17]
Fermann, M.E.; Haberl, F.; Hofer, M.; Hochreiter, H. Nonlinear amplifying loop mirror. Opt. Lett., 1990, 15(13), 752-754.
[http://dx.doi.org/10.1364/OL.15.000752] [PMID: 19768068]
[18]
Ilday, F.Ö.; Wise, F.W.; Sosnowski, T. High-energy femtosecond stretched-pulse fiber laser with a nonlinear optical loop mirror. Opt. Lett., 2002, 27(17), 1531-1533.
[http://dx.doi.org/10.1364/OL.27.001531] [PMID: 18026496]
[19]
Zhang, Z.; Torizuka, K.; Itatani, T.; Kobayashi, K.; Sugaya, T.; Nakagawa, T. Self-starting mode-locked femtosecond forsterite laser with a semiconductor saturable-absorber mirror. Opt. Lett., 1997, 22(13), 1006-1008.
[http://dx.doi.org/10.1364/OL.22.001006] [PMID: 18185734]
[20]
Yamashita, S.; Inoue, Y.; Hsu, K.; Kotake, T.; Yaguchi, H.; Tanaka, D.; Jablonski, M.; Set, S.Y. 5-GHz pulsed fiber Fabry-Perot laser mode-locked using carbon nanotubes. IEEE Photonics Technol. Lett., 2005, 17, 750-752.
[http://dx.doi.org/10.1109/LPT.2005.843932]
[21]
Davide Di Dio Cafiso, S.; Ugolotti, E.; Schmidt, A.; Petrov, V.; Griebner, U.; Agnesi, A.; Cho, W.B.; Jung, B.H.; Rotermund, F.; Bae, S.; Hong, B.H.; Reali, G.; Pirzio, F. Sub-100-fs Cr:YAG laser mode-locked by monolayer graphene saturable absorber. Opt. Lett., 2013, 38(10), 1745-1747.
[http://dx.doi.org/10.1364/OL.38.001745] [PMID: 23938931]
[22]
Lee, J.; Koo, J.; Jhon, Y.M.; Lee, J.H. A femtosecond pulse erbium fiber laser incorporating a saturable absorber based on bulk-structured Bi2Te3 topological insulator. Opt. Express, 2014, 22(5), 6165-6173.
[http://dx.doi.org/10.1364/OE.22.006165] [PMID: 24663950]
[23]
Keller, U.; Weingarten, K.J.; Kärtner, F.X.; Kopf, D.; Braun, B.; Jung, I.D.; Fluck, R.; Hönninger, C.; Matuschek, N.; der Au, J.A. Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers. IEEE J. Sel. Top. Quantum Electron., 1996, 2, 435-453.
[http://dx.doi.org/10.1109/2944.571743]
[24]
Jung, I.D.; Kärtner, F.X.; Matuschek, N.; Sutter, D.H.; Morier-Genoud, F.; Shi, Z.; Scheuer, V.; Tilsch, M.; Tschudi, T.; Keller, U. Semiconductor saturable absorber mirrors supporting sub-10-fs pulses. Appl. Phys. B, 1997, 65, 137-150.
[http://dx.doi.org/10.1007/s003400050259]
[25]
Garnov, S.V.; Solokhin, S.A.; Obraztsova, E.D.; Lobach, A.S.; Obraztsov, P.A.; Chernov, A.I.; Bukin, V.V.; Sirotkin, A.A.; Zagumennyi, Y.D.; Zavartsev, Y.D.; Kutovoi, S.A.; Shcherbakov, I.A. Passive mode-locking with carbon nanotube saturable absorber in Nd:Gdvo4 and Nd:Y0.9gd0.1vo4 lasers operating at 1.34 μm. Laser Phys. Lett., 2007, 4, 739-731.
[http://dx.doi.org/10.1002/lapl.200710040]
[26]
Schmidt, A.; Rivier, S.; Steinmeyer, G.; Yim, J.H.; Cho, W.B.; Lee, S.; Rotermund, F.; Pujol, M.C.; Mateos, X.; Aguiló, M.; Díaz, F.; Petrov, V.; Griebner, U. Passive mode locking of Yb:KLuW using a single-walled carbon nanotube saturable absorber. Opt. Lett., 2008, 33(7), 729-731.
[http://dx.doi.org/10.1364/OL.33.000729] [PMID: 18382532]
[27]
Cheng, K-N.; Lin, Y-H.; Yamashita, S.; Lin, G-R. Harmonic order-dependent pulsewidth shortening of a passively mode-locked fiber laser with a carbon nanotube saturable absorber. IEEE Photonics J., 2012, 4, 1542-1552.
[http://dx.doi.org/10.1109/JPHOT.2012.2210398]
[28]
Cheng, K-N.; Lin, Y-H.; Lin, G-R. Single- and double-walled carbon nanotube based saturable absorbers for passive mode-locking of an erbium-doped fiber laser. Laser Phys., 2013, 23045105
[http://dx.doi.org/10.1088/1054-660X/23/4/045105]
[29]
Bao, Q-L.; Zhang, H.; Wang, Y.; Ni, Z-H.; Yan, Y-L.; Shen, Z-X.; Loh, K-P.; Tang, D-Y. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv. Funct. Mater., 2009, 19, 3077-3083.
[http://dx.doi.org/10.1002/adfm.200901007]
[30]
Tan, W.D.; Su, C.Y.; Knize, R.J.; Xie, G.Q.; Li, L.J.; Tang, D.Y. Mode locking of ceramic Nd:Yttrium aluminum garnet with graphene as a saturable absorber. Appl. Phys. Lett., 2010, 96031106
[http://dx.doi.org/10.1063/1.3292018]
[31]
Baek, I.H.; Lee, H.W.; Bae, S.; Hong, B.H.; Ahn, Y.H.; Yeom, D-I.; Rotermund, F. Efficient mode-locking of sub-70-fs Ti:sapphire laser by graphene saturable absorber. Appl. Phys. Express, 2012, 5032701
[http://dx.doi.org/10.1143/APEX.5.032701]
[32]
Huang, P.L.; Lin, S-C.; Yeh, C-Y.; Kuo, H-H.; Huang, S-H.; Lin, G-R.; Li, L-J.; Su, C-Y.; Cheng, W-H. Stable mode-locked fiber laser based on CVD fabricated graphene saturable absorber. Opt. Express, 2012, 20(3), 2460-2465.
[http://dx.doi.org/10.1364/OE.20.002460] [PMID: 22330484]
[33]
Sobon, G.; Sotor, J.; Abramski, K.M. Passive harmonic mode-locking in Er-doped fiber laser based on graphene saturable absorber with repetition rates scalable to 2.22 GHz. Appl. Phys. Lett., 2012, 100 161109
[http://dx.doi.org/10.1063/1.4704913]
[34]
Lin, Y-H.; Yang, C-Y.; Liou, J-H.; Yu, C-P.; Lin, G-R. Using graphene nano-particle embedded in photonic crystal fiber for evanescent wave mode-locking of fiber laser. Opt. Express, 2013, 21(14), 16763-16776.
[http://dx.doi.org/10.1364/OE.21.016763] [PMID: 23938528]
[35]
Lin, G-R.; Lin, Y-C. Directly exfoliated and imprinted graphite nano-particle saturable absorber for passive mode-locking erbium-doped fiber laser. Laser Phys. Lett., 2011, 8, 880-886.
[http://dx.doi.org/10.1002/lapl.201110078]
[36]
Lin, Y-H.; Lin, G-R. Free-standing nano-scale graphite saturable absorber for passively mode-locked erbium doped fiber ring laser. Laser Phys. Lett., 2012, 9, 398-404.
[http://dx.doi.org/10.7452/lapl.201210010]
[37]
Lin, Y-H.; Lin, G-R. Passively Mode-locked erbium doped fiber ring laser with charcoal nano-particle based saturable absorber. Proceedings of 2012 Conference on Lasers and Electro-Optics, San Jose, California, United StatesMay 6-11, 2012
[http://dx.doi.org/10.1364/CLEO_SI.2012.CTu1I.1]
[38]
Lin, Y-H.; Chi, Y-C.; Lin, G-R. Nanoscale charcoal powder induced saturable absorption and mode-locking of a low-gain Erbium-doped fiber-ring laser. Laser Phys. Lett., 2013, 10 055105
[http://dx.doi.org/10.1088/1612-2011/10/5/055105]
[39]
Lin, Y-H.; Lo, J-Y.; Tseng, W-H.; Wu, C-I.; Lin, G-R. Self-amplitude and self-phase modulation of the charcoal mode-locked erbium-doped fiber lasers. Opt. Express, 2013, 21(21), 25184-25196.
[http://dx.doi.org/10.1364/OE.21.025184] [PMID: 24150360]
[40]
Xu, J.; Liu, J.; Wu, S.; Yang, Q-H.; Wang, P. Graphene oxide mode-locked femtosecond erbium-doped fiber lasers. Opt. Express, 2012, 20(14), 15474-15480.
[http://dx.doi.org/10.1364/OE.20.015474] [PMID: 22772242]
[41]
Sobon, G.; Sotor, J.; Jagiello, J.; Kozinski, R.; Zdrojek, M.; Holdynski, M.; Paletko, P.; Boguslawski, J.; Lipinska, L.; Abramski, K.M. Graphene oxide vs. reduced graphene oxide as saturable absorbers for Er-doped passively mode-locked fiber laser. Opt. Express, 2012, 20(17), 19463-19473.
[http://dx.doi.org/10.1364/OE.20.019463] [PMID: 23038589]
[42]
Lin, Y-H.; Yang, C-Y.; Lin, S-F.; Lin, G-R. Triturating versatile carbon materials as saturable absorptive nano powders for ultrafast pulsating of Erbium-doped fiber lasers. Opt. Mater. Express, 2015, 5, 236-253.
[http://dx.doi.org/10.1364/OME.5.000236]
[43]
Zhao, C.; Zhang, H.; Qi, X.; Chen, Y.; Wang, Z.; Wen, S.; Tang, D. Ultra-short pulse generation by a topological insulator based saturable absorber. Appl. Phys. Lett., 2012, 101211106
[http://dx.doi.org/10.1063/1.4767919]
[44]
Luo, Z-C.; Liu, M.; Liu, H.; Zheng, X-W.; Luo, A-P.; Zhao, C-J.; Zhang, H.; Wen, S-C.; Xu, W-C. 2 GHz passively harmonic mode-locked fiber laser by a microfiber-based topological insulator saturable absorber. Opt. Lett., 2013, 38(24), 5212-5215.
[http://dx.doi.org/10.1364/OL.38.005212] [PMID: 24322220]
[45]
Lin, Y-H.; Yang, C-Y.; Lin, S-F.; Tseng, W-H.; Bao, Q.; Wu, C-I.; Lin, G-R. Soliton compression of the Erbium-doped fiber laser weakly started mode-locking by nanoscale p-type Bi2Te3 topological insulator particles. Laser Phys. Lett., 2014, 11 055107
[http://dx.doi.org/10.1088/1612-2011/11/5/055107]
[46]
Liu, H.; Zheng, X-W.; Liu, M.; Zhao, N.; Luo, A-P.; Luo, Z-C.; Xu, W-C.; Zhang, H.; Zhao, C-J.; Wen, S-C. Femtosecond pulse generation from a topological insulator mode-locked fiber laser. Opt. Express, 2014, 22(6), 6868-6873.
[http://dx.doi.org/10.1364/OE.22.006868] [PMID: 24664035]
[47]
Lin, Y-H.; Lin, S-F.; Chi, Y-C.; Wu, C-L.; Cheng, C-H.; Tseng, W-H.; He, J-H.; Wu, C-I.; Lee, C-K.; Lin, G-R. Using n- and p-type Bi2Te3 topological insulator nanoparticles to enable controlled femtosecond mode-locking of fiber lasers. ACS Photonics, 2015, 2, 481-490.
[http://dx.doi.org/10.1021/acsphotonics.5b00031]
[48]
Wang, K.; Wang, J.; Fan, J.; Lotya, M.; O’Neill, A.; Fox, D.; Feng, Y.; Zhang, X.; Jiang, B.; Zhao, Q.; Zhang, H.; Coleman, J.N.; Zhang, L.; Blau, W.J. Ultrafast saturable absorption of two-dimensional MoS2 nanosheets. ACS Nano, 2013, 7(10), 9260-9267.
[http://dx.doi.org/10.1021/nn403886t] [PMID: 24090402]
[49]
Zhang, H.; Lu, S.B.; Zheng, J.; Du, J.; Wen, S.C.; Tang, D.Y.; Loh, K.P. Molybdenum disulfide (MoS₂) as a broadband saturable absorber for ultra-fast photonics. Opt. Express, 2014, 22(6), 7249-7260.
[http://dx.doi.org/10.1364/OE.22.007249] [PMID: 24664073]
[50]
Liu, H.; Luo, A-P.; Wang, F-Z.; Tang, R.; Liu, M.; Luo, Z-C.; Xu, W-C.; Zhao, C-J.; Zhang, H. Femtosecond pulse erbium-doped fiber laser by a few-layer MoS(2) saturable absorber. Opt. Lett., 2014, 39(15), 4591-4594.
[http://dx.doi.org/10.1364/OL.39.004591] [PMID: 25078236]
[51]
Xia, H.; Li, H.; Lan, C.; Li, C.; Zhang, X.; Zhang, S.; Liu, Y. Ultrafast erbium-doped fiber laser mode-locked by a CVD-grown molybdenum disulfide (MoS2) saturable absorber. Opt. Express, 2014, 22(14), 17341-17348.
[http://dx.doi.org/10.1364/OE.22.017341] [PMID: 25090547]
[52]
Du, J.; Wang, Q.; Jiang, G.; Xu, C.; Zhao, C.; Xiang, Y.; Chen, Y.; Wen, S.; Zhang, H. Ytterbium-doped fiber laser passively mode locked by few-layer Molybdenum Disulfide (MoS2) saturable absorber functioned with evanescent field interaction. Sci. Rep., 2014, 4, 6346.
[http://dx.doi.org/10.1038/srep06346] [PMID: 25213108]
[53]
Zhao, C.; Zou, Y.; Chen, Y.; Wang, Z.; Lu, S.; Zhang, H.; Wen, S.; Tang, D. Wavelength-tunable picosecond soliton fiber laser with Topological Insulator: Bi2Se3 as a mode locker. Opt. Express, 2012, 20(25), 27888-27895.
[http://dx.doi.org/10.1364/OE.20.027888] [PMID: 23262733]
[54]
Yu, H.; Zhang, H.; Wang, Y.; Zhao, C.; Wang, B.; Wen, S.; Zhang, H.; Wang, J. Topological insulator as an optical modulator for pulsed solid-state lasers. Laser Photonics Rev., 2013, 7, L77-L83.
[http://dx.doi.org/10.1002/lpor.201300084]
[55]
Mao, D.; Wang, Y.; Ma, C.; Han, L.; Jiang, B.; Gan, X.; Hua, S.; Zhang, W.; Mei, T.; Zhao, J. WS2 mode-locked ultrafast fiber laser. Sci. Rep., 2015, 5, 7965.
[http://dx.doi.org/10.1038/srep07965] [PMID: 25608729]
[56]
Sotor, J.; Sobon, G.; Macherzynski, W.; Paletko, P.; Grodecki, K.; Abramski, K.M. Mode-locking in Er-doped fiber laser based on mechanically exfoliated Sb2Te3 saturable absorber. Opt. Mater. Express, 2014, 4, 1-6.
[http://dx.doi.org/10.1364/OME.4.000001]
[57]
Sotor, J.; Sobon, G.; Macherzynski, W.; Abramski, K.M. Harmonically mode-locked Er-doped fiber laser based on a Sb2Te3 topological insulator saturable absorber. Laser Phys. Lett., 2014, 11055102
[http://dx.doi.org/10.1088/1612-2011/11/5/055102]
[58]
Chen, Y.; Jiang, G.; Chen, S.; Guo, Z.; Yu, X.; Zhao, C.; Zhang, H.; Bao, Q.; Wen, S.; Tang, D.; Fan, D. Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and Mode-locking laser operation. Opt. Express, 2015, 23(10), 12823-12833.
[http://dx.doi.org/10.1364/OE.23.012823] [PMID: 26074536]
[59]
Luo, Z-C.; Liu, M.; Guo, Z-N.; Jiang, X-F.; Luo, A-P.; Zhao, C-J.; Yu, X-F.; Xu, W-C.; Zhang, H. Microfiber-based few-layer black phosphorus saturable absorber for ultra-fast fiber laser. Opt. Express, 2015, 23(15), 20030-20039.
[http://dx.doi.org/10.1364/OE.23.020030] [PMID: 26367661]
[60]
Qin, Z.; Xie, G.; Zhang, H.; Zhao, C.; Yuan, P.; Wen, S.; Qian, L. Black phosphorus as saturable absorber for the Q-switched Er:ZBLAN fiber laser at 2.8 μm. Opt. Express, 2015, 23(19), 24713-24718.
[http://dx.doi.org/10.1364/OE.23.024713] [PMID: 26406672]
[61]
Cheng, C-H.; Lin, Y-H.; Chen, T-H.; Chen, H-Y.; Chi, Y-C.; Lee, C-K.; Wu, C-I.; Lin, G-R. Can silicon carbide serve as a saturable absorber for passive mode-locked fiber lasers? Sci. Rep., 2015, 5, 16463.
[http://dx.doi.org/10.1038/srep16463] [PMID: 26558531]
[62]
Yang, C-C.; Cheng, C-H.; Chen, T-H.; Lin, Y-H.; Chi, Y-C.; Tseng, W-H.; Chang, P-H.; Chen, C-Y.; Chen, K-H.; Chen, L-C.; Wu, C-I.; Lin, G-R. Ge-rich SiGe mode-locker for Erbium-doped fiber lasers. IEEE J. Sel. Top. Quantum Electron., 2018, 24 1100310
[http://dx.doi.org/10.1109/JSTQE.2017.2699788]
[63]
Chen, Y.C.; Raravikar, N.R.; Schadler, L.S.; Ajayan, P.M.; Zhao, Y.P.; Lu, T.M.; Wang, G.C.; Zhang, X.C. Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 μm. Appl. Phys. Lett., 2002, 81, 975-977.
[http://dx.doi.org/10.1063/1.1498007]
[64]
Kataura, H.; Kumazawa, Y.; Maniwa, Y.; Umezu, I.; Suzuki, S.; Ohtsuka, Y.; Achiba, Y. Optical properties of single-wall carbon nanotubes. Synth. Met., 1993, 103, 2555-2558.
[http://dx.doi.org/10.1016/S0379-6779(98)00278-1]
[65]
Weisman, R.B.; Bachilo, S.M. Dependence of optical transition energies on structure for single-walled carbon nanotubes in aqueous suspension: an empirical Kataura plot. Nano Lett., 2003, 3, 1235-1238.
[http://dx.doi.org/10.1021/nl034428i]
[66]
Iijima, S. Helical microtubules of graphitic carbon. Nature, 1991, 354, 56-58.
[http://dx.doi.org/10.1038/354056a0]
[67]
Iijima, S.; Ichihashi, T. Single-shell carbon nanotubes of 1-nm diameter. Nature, 1993, 363, 603-605.
[http://dx.doi.org/10.1038/363603a0]
[68]
Mintmire, J.W.; Dunlap, B.I.; White, C.T. Are fullerene tubules metallic? Phys. Rev. Lett., 1992, 68(5), 631-634.
[http://dx.doi.org/10.1103/PhysRevLett.68.631] [PMID: 10045950]
[69]
Saito, R.; Fujita, M.; Dresselhaus, G.; Dresselhaus, M.S. Electronic structure of chiral graphene tubules. Appl. Phys. Lett., 1992, 60, 2204-2206.
[http://dx.doi.org/10.1063/1.107080]
[70]
Saito, R.; Fujita, M.; Dresselhaus, G.; Dresselhaus, M.S. Electronic structure of graphene tubules based on C60. Phys. Rev. B Condens. Matter, 1992, 46(3), 1804-1811.
[http://dx.doi.org/10.1103/PhysRevB.46.1804] [PMID: 10003828]
[71]
Hamada, N.; Sawada, Si.; Oshiyama, A. New one-dimensional conductors: Graphitic microtubules. Phys. Rev. Lett., 1992, 68(10), 1579-1581.
[http://dx.doi.org/10.1103/PhysRevLett.68.1579] [PMID: 10045167]
[72]
Odom, T.W.; Huang, J.L.; Kim, P.; Lieber, C.M. Atomic structure and electronic properties of single-walled carbon nanotubes. Nature, 1998, 391, 62-64.
[http://dx.doi.org/10.1038/34145]
[73]
Baughman, R.H.; Zakhidov, A.A.; de Heer, W.A. Carbon nanotubes--the route toward applications. Science, 2002, 297(5582), 787-792.
[http://dx.doi.org/10.1126/science.1060928] [PMID: 12161643]
[74]
Javey, A.; Guo, J.; Wang, Q.; Lundstrom, M.; Dai, H. Ballistic carbon nanotube field-effect transistors. Nature, 2003, 424(6949), 654-657.
[http://dx.doi.org/10.1038/nature01797] [PMID: 12904787]
[75]
Kong, J.; Franklin, N.R.; Zhou, C.; Chapline, M.G.; Peng, S.; Cho, K.; Dai, H. Nanotube molecular wires as chemical sensors. Science, 2000, 287(5453), 622-625.
[http://dx.doi.org/10.1126/science.287.5453.622] [PMID: 10649989]
[76]
Lin, M.F. Optical spectra of single-wall carbon nanotube bundles. Phys. Rev. B Condens. Matter Mater. Phys., 2000, 62, 13153-13159.
[http://dx.doi.org/10.1103/PhysRevB.62.13153]
[77]
Bachilo, S.M.; Strano, M.S.; Kittrell, C.; Hauge, R.H.; Smalley, R.E.; Weisman, R.B. Structure-assigned optical spectra of single-walled carbon nanotubes. Science, 2002, 298(5602), 2361-2366.
[http://dx.doi.org/10.1126/science.1078727] [PMID: 12459549]
[78]
Set, S.Y.; Yaguchi, H.; Tanaka, Y.; Jablonski, M. Laser mode locking using a saturable absorber incorporating carbon nanotubes. J. Lightwave Technol., 2004, 22, 51-56.
[http://dx.doi.org/10.1109/JLT.2003.822205]
[79]
Yamashita, S.; Inoue, Y.; Maruyama, S.; Murakami, Y.; Yaguchi, H.; Kotake, T.; Set, S.Y. Mode-locked fiber lasers using adjustable saturable absorption in vertically aligned carbon nanotubes. Jpn. J. Appl. Phys., 2006, 45, L17-L19.
[http://dx.doi.org/10.1143/JJAP.45.L17]
[80]
Scardaci, V.; Rozhin, A.G.; Tan, P.H.; Wang, F.; White, I.H.; Milne, W.I.; Ferrari, A.C. Carbon nanotubes for ultrafast photonics. Phys. Status Solidi, B Basic Res., 2007, 244, 4303-4307.
[http://dx.doi.org/10.1002/pssb.200776194]
[81]
Kieu, K.; Mansuripur, M. Femtosecond laser pulse generation with a fiber taper embedded in carbon nanotube/polymer composite. Opt. Lett., 2007, 32(15), 2242-2244.
[http://dx.doi.org/10.1364/OL.32.002242] [PMID: 17671597]
[82]
Martinez, A.; Uchida, S.; Song, Y.W.; Ishigure, T.; Yamashita, S. Fabrication of Carbon nanotube poly-methyl-methacrylate composites for nonlinear photonic devices. Opt. Express, 2008, 16(15), 11337-11343.
[http://dx.doi.org/10.1364/OE.16.011337] [PMID: 18648452]
[83]
Shohda, F.; Shirato, T.; Nakazawa, M.; Mata, J.; Tsukamoto, J. 147 fs, 51 MHz soliton fiber laser at 1.56 microm with a fiber-connector-type SWNT/P3HT saturable absorber. Opt. Express, 2008, 16(25), 20943-20948.
[http://dx.doi.org/10.1364/OE.16.020943] [PMID: 19065233]
[84]
Chiu, J.C.; Lan, Y.F.; Chang, C.M.; Chen, X.Z.; Yeh, C.Y.; Lee, C.K.; Lin, G-R.; Lin, J.J.; Cheng, W.H. Concentration effect of carbon nanotube based saturable absorber on stabilizing and shortening mode-locked pulse. Opt. Express, 2010, 18(4), 3592-3600.
[http://dx.doi.org/10.1364/OE.18.003592] [PMID: 20389368]
[85]
Shohda, F.; Nakazawa, M.; Mata, J.; Tsukamoto, J. A 113 fs fiber laser operating at 1.56 mum using a cascadable film-type saturable absorber with P3HT-incorporated single-wall carbon nanotubes coated on polyamide. Opt. Express, 2010, 18(9), 9712-9721.
[http://dx.doi.org/10.1364/OE.18.009712] [PMID: 20588820]
[86]
Cheng, K-N.; Chi, Y-C.; Cheng, C-H.; Lin, Y-H.; Lo, J-Y.; Lin, G-R. Effect of beam expansion loss in a carbon nanotube-doped PVA film on passively mode-locked Erbium-doped fiber lasers with different feedback ratios. Laser Phys., 2014, 24105115
[http://dx.doi.org/10.1088/1054-660X/24/10/105115]
[87]
Mohammed, D.Z.; Al-Janabi, A.H. Passively Q-switched Erbium doped fiber laser based on double walled carbon nanotubes-polyvinyl alcohol saturable absorber. Laser Phys., 2016, 26115108
[http://dx.doi.org/10.1088/1054-660X/26/11/115108]
[88]
Chernysheva, M.; Bednyakova, A.; Al Araimi, M.; Howe, R.C.T.; Hu, G.; Hasan, T.; Gambetta, A.; Galzerano, G.; Rümmeli, M.; Rozhin, A. Double-wall carbon nanotube hybrid mode-locker in Tm-doped fibre laser: a novel mechanism for robust bound-state solitons generation. Sci. Rep., 2017, 7, 44314.
[http://dx.doi.org/10.1038/srep44314] [PMID: 28287159]
[89]
Ahmad, H.; Ismail, M.F.; Hassan, S.N.M.; Ahmad, F.; Zulkifli, M.Z.; Harun, S.W. Multiwall carbon nanotube polyvinyl alcohol-based saturable absorber in passively Q-switched fiber laser. Appl. Opt., 2014, 53(30), 7025-7029.
[http://dx.doi.org/10.1364/AO.53.007025] [PMID: 25402790]
[90]
Ahmad, H.; Muhamad, A.; Sharbirin, A.S.; Samion, M.Z.; Ismail, M.F. Tunable Q-switched Thulium-doped fiber laser using multiwall carbon nanotube and Fabry-Perot etalon filter. Opt. Commun., 2017, 383, 359-365.
[http://dx.doi.org/10.1016/j.optcom.2016.09.033]
[91]
Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696), 666-669.
[http://dx.doi.org/10.1126/science.1102896] [PMID: 15499015]
[92]
Peng, K-J.; Lin, Y-H.; Wu, C-L.; Lin, S-F.; Yang, C-Y.; Lin, S-M.; Tsai, D-P.; Lin, G-R. Dissolution-and-reduction CVD synthesis of few-layer graphene on ultra-thin nickel film lifted off for mode-locking fiber lasers. Sci. Rep., 2015, 5, 13689.
[http://dx.doi.org/10.1038/srep13689] [PMID: 26328535]
[93]
Zhu, G.; Zhu, X.; Wang, F.; Xu, S.; Li, Y.; Guo, X.; Balakrishnan, K.; Norwood, R.A.; Peyghambarian, N. Graphene mode-locked fiber laser at 2.8 μm. IEEE Photonics Technol. Lett., 2016, 28, 7-10.
[http://dx.doi.org/10.1109/LPT.2015.2478836]
[94]
Zhang, H.; Tang, D.Y.; Zhao, L.M.; Bao, Q.L.; Loh, K.P. Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene. Opt. Express, 2009, 17(20), 17630-17635.
[http://dx.doi.org/10.1364/OE.17.017630] [PMID: 19907547]
[95]
Bao, Q.; Zhang, H.; Ni, Z.; Wang, Y.; Polavarapu, L.; Shen, Z.; Xu, Q-H.; Tang, D.; Loh, K.P. Monolayer graphene as a saturable absorber in a mode-locked laser. Nano Res., 2011, 4, 297-307.
[http://dx.doi.org/10.1007/s12274-010-0082-9]
[96]
Peng, K-J.; Wu, C-L.; Lin, Y-H.; Liu, Y-J.; Tsai, D-P.; Pai, Y-H.; Lin, G-R. Hydrogen-free PECVD growth of few-layer graphene on an ultra-thin nickel film at the threshold dissolution temperature. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2013, 1, 3862-3870.
[http://dx.doi.org/10.1039/c3tc30332b]
[97]
Gui, L.; Zhang, W.; Li, X.; Xiao, X.; Zhu, H.; Wang, K.; Wu, D.; Yang, C. Self-assembled graphene membrane as an ultrafast mode-locker in an erbium fiber laser. IEEE Photonics Technol. Lett., 2011, 23, 1790-1792.
[http://dx.doi.org/10.1109/LPT.2011.2169660]
[98]
Luo, Z.; Huang, Y.; Wang, J.; Cheng, H.; Cai, Z.; Ye, C. Multiwavelength dissipative-soliton generation in Yb-fiber laser using graphene-deposited fiber-taper. IEEE Photonics Technol. Lett., 2012, 24, 1539-1542.
[http://dx.doi.org/10.1109/LPT.2012.2208100]
[99]
Eda, G.; Fanchini, G.; Chhowalla, M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol., 2008, 3(5), 270-274.
[http://dx.doi.org/10.1038/nnano.2008.83] [PMID: 18654522]
[100]
Li, X.; Zhu, Y.; Cai, W.; Borysiak, M.; Han, B.; Chen, D.; Piner, R.D.; Colombo, L.; Ruoff, R.S. Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett., 2009, 9(12), 4359-4363.
[http://dx.doi.org/10.1021/nl902623y] [PMID: 19845330]
[101]
Bae, S.; Kim, H.; Lee, Y.; Xu, X.; Park, J-S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Kim, H.R.; Song, Y.I.; Kim, Y-J.; Kim, K.S.; Özyilmaz, B.; Ahn, J-H.; Hong, B.H.; Iijima, S. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol., 2010, 5(8), 574-578.
[http://dx.doi.org/10.1038/nnano.2010.132] [PMID: 20562870]
[102]
Suk, J.W.; Kitt, A.; Magnuson, C.W.; Hao, Y.; Ahmed, S.; An, J.; Swan, A.K.; Goldberg, B.B.; Ruoff, R.S. Transfer of CVD-grown monolayer graphene onto arbitrary substrates. ACS Nano, 2011, 5(9), 6916-6924.
[http://dx.doi.org/10.1021/nn201207c] [PMID: 21894965]
[103]
Lu, J.; Yang, J-X.; Wang, J.; Lim, A.; Wang, S.; Loh, K.P. One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids. ACS Nano, 2009, 3(8), 2367-2375.
[http://dx.doi.org/10.1021/nn900546b] [PMID: 19702326]
[104]
Su, C-Y.; Lu, A-Y.; Xu, Y.; Chen, F-R.; Khlobystov, A.N.; Li, L-J. High-quality thin graphene films from fast electrochemical exfoliation. ACS Nano, 2011, 5(3), 2332-2339.
[http://dx.doi.org/10.1021/nn200025p] [PMID: 21309565]
[105]
Wei, D.; Grande, L.; Chundi, V.; White, R.; Bower, C.; Andrew, P.; Ryhänen, T. Graphene from electrochemical exfoliation and its direct applications in enhanced energy storage devices. Chem. Commun. (Camb.), 2012, 48(9), 1239-1241.
[http://dx.doi.org/10.1039/C2CC16859F] [PMID: 22170354]
[106]
Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; Banerjee, S.K.; Colombo, L.; Ruoff, R.S. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science, 2009, 324(5932), 1312-1314.
[http://dx.doi.org/10.1126/science.1171245] [PMID: 19423775]
[107]
Hao, Y.; Bharathi, M.S.; Wang, L.; Liu, Y.; Chen, H.; Nie, S.; Wang, X.; Chou, H.; Tan, C.; Fallahazad, B.; Ramanarayan, H.; Magnuson, C.W.; Tutuc, E.; Yakobson, B.I.; McCarty, K.F.; Zhang, Y-W.; Kim, P.; Hone, J.; Colombo, L.; Ruoff, R.S. The role of surface oxygen in the growth of large single-crystal graphene on copper. Science, 2013, 342(6159), 720-723.
[http://dx.doi.org/10.1126/science.1243879] [PMID: 24158906]
[108]
Reina, A.; Jia, X.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M.S.; Kong, J. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett., 2009, 9(1), 30-35.
[http://dx.doi.org/10.1021/nl801827v] [PMID: 19046078]
[109]
Stankovich, S.; Dikin, D.A.; Piner, R.D.; Kohlhaas, K.A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S.T.; Ruoff, R.S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 2007, 45, 1558-1565.
[http://dx.doi.org/10.1016/j.carbon.2007.02.034]
[110]
Chang, Y.M.; Kim, H.; Lee, J.H.; Song, Y-W. Multilayered graphene efficiently formed by mechanical exfoliation for nonlinear saturable absorbers in fiber mode-locked lasers. Appl. Phys. Lett., 2010, 97 211102
[http://dx.doi.org/10.1063/1.3521257]
[111]
Sobon, G.; Sotor, J.; Abramski, K.M. All-polarization maintaining femtosecond Er-doped fiber laser mode-locked by graphene saturable absorber. Laser Phys. Lett., 2012, 9, 581-586.
[http://dx.doi.org/10.7452/lapl.201210038]
[112]
Sotor, J.; Sobon, G.; Abramski, K.M. Scalar soliton generation in all-polarization-maintaining, graphene mode-locked fiber laser. Opt. Lett., 2012, 37(11), 2166-2168.
[http://dx.doi.org/10.1364/OL.37.002166] [PMID: 22660156]
[113]
Kim, H.; Cho, J.; Jang, S-Y.; Song, Y-W. Deformation-immunized optical deposition of graphene for ultrafast pulsed lasers. Appl. Phys. Lett., 2011, 98 021104
[http://dx.doi.org/10.1063/1.3536502]
[114]
Martinez, A.; Fuse, K.; Xu, B.; Yamashita, S. Optical deposition of graphene and carbon nanotubes in a fiber ferrule for passive mode-locked lasing. Opt. Express, 2010, 18(22), 23054-23061.
[http://dx.doi.org/10.1364/OE.18.023054] [PMID: 21164646]
[115]
Luo, Z-C.; Cao, W-J.; Luo, A-P.; Xu, W-C. Optical deposition of graphene saturable absorber integrated in a fiber laser using a slot collimator for passive mode-locking. Appl. Phys. Express, 2012, 5055103
[http://dx.doi.org/10.1143/APEX.5.055103]
[116]
Lin, Y-H.; Lin, G-R. Kelly sideband variation and self four-wave-mixing in femtosecond fiber soliton laser mode-locked by multiple exfoliated graphite nano-particles. Laser Phys. Lett., 2013, 10 045109
[http://dx.doi.org/10.1088/1612-2011/10/4/045109]
[117]
Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F.M.; Sun, Z.; De, S.; McGovern, I.T.; Holland, B.; Byrne, M.; Gun’Ko, Y.K.; Boland, J.J.; Niraj, P.; Duesberg, G.; Krishnamurthy, S.; Goodhue, R.; Hutchison, J.; Scardaci, V.; Ferrari, A.C.; Coleman, J.N. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol., 2008, 3(9), 563-568.
[http://dx.doi.org/10.1038/nnano.2008.215] [PMID: 18772919]
[118]
Paton, K.R.; Varrla, E.; Backes, C.; Smith, R.J.; Khan, U.; O’Neill, A.; Boland, C.; Lotya, M.; Istrate, O.M.; King, P.; Higgins, T.; Barwich, S.; May, P.; Puczkarski, P.; Ahmed, I.; Moebius, M.; Pettersson, H.; Long, E.; Coelho, J.; O’Brien, S.E.; McGuire, E.K.; Sanchez, B.M.; Duesberg, G.S.; McEvoy, N.; Pennycook, T.J.; Downing, C.; Crossley, A.; Nicolosi, V.; Coleman, J.N. Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat. Mater., 2014, 13(6), 624-630.
[http://dx.doi.org/10.1038/nmat3944] [PMID: 24747780]
[119]
Khan, U.; O’Neill, A.; Lotya, M.; De, S.; Coleman, J.N. High-concentration solvent exfoliation of graphene. Small, 2010, 6(7), 864-871.
[http://dx.doi.org/10.1002/smll.200902066] [PMID: 20209652]
[120]
Sun, Z.; Hasan, T.; Torrisi, F.; Popa, D.; Privitera, G.; Wang, F.; Bonaccorso, F.; Basko, D.M.; Ferrari, A.C. Graphene mode-locked ultrafast laser. ACS Nano, 2010, 4(2), 803-810.
[http://dx.doi.org/10.1021/nn901703e] [PMID: 20099874]
[121]
Yang, C-Y.; Lin, Y-H.; Chi, Y-C.; Wu, C-L.; Lo, J-Y.; Lin, G-R. Pulsewidth saturation and Kelly-sideband shift in a graphene-nanosheet mode-locked fiber laser with weak negative dispersion. Phys. Rev. Appl., 2015, 3044016
[http://dx.doi.org/10.1103/PhysRevApplied.3.044016]
[122]
Bonaccorso, F.; Sun, Z.; Hasan, T.; Ferrari, A.C. Graphene photonics and optoelectronics. Nat. Photonics, 2010, 4, 611-622.
[http://dx.doi.org/10.1038/nphoton.2010.186]
[123]
Yamashita, S. A tutorial on nonlinear photonic applications of carbon nanotube and graphene. J. Lightwave Technol., 2012, 30, 427-447.
[http://dx.doi.org/10.1109/JLT.2011.2172574]
[124]
Zhang, H.; Tang, D.Y.; Zhao, L.; Bao, Q.; Loh, K.P. Vector dissipative solitons in graphene mode locked fiber lasers. Opt. Commun., 2010, 283, 3334-3338.
[http://dx.doi.org/10.1016/j.optcom.2010.04.064]
[125]
Sobon, G.; Sotor, J.; Pasternak, I.; Strupinski, W.; Krzempek, K.; Kaczmarek, P.; Abramski, K.M. Chirped pulse amplification of a femtosecond Er-doped fiber laser mode-locked by a graphene saturable absorber. Laser Phys. Lett., 2013, 10 035104
[http://dx.doi.org/10.1088/1612-2011/10/3/035104]
[126]
Zhang, H.; Bao, Q.; Tang, D.; Zhao, L.; Loh, K. Large energy soliton Erbium-doped fiber laser with a graphene-polymer composite mode locker. Appl. Phys. Lett., 2009, 9 5141103
[http://dx.doi.org/10.1063/1.3244206]
[127]
Popa, D.; Sun, Z.; Torrisi, F.; Hasan, T.; Wang, F.; Ferrari, A.C. Sub 200 fs pulse generation from a graphene mode-locked fiber laser. Appl. Phys. Lett., 2010, 97 203106
[http://dx.doi.org/10.1063/1.3517251]
[128]
Bao, Q.; Zhang, H.; Yang, J-X.; Wang, S.; Tang, D.Y.; Jose, R.; Ramakrishna, S.; Lim, C.T.; Loh, K.P. Graphene-polymer nanofiber membrane for ultrafast photonics. Adv. Funct. Mater., 2010, 20, 782-791.
[http://dx.doi.org/10.1002/adfm.200901658]
[129]
Song, Y-W.; Jang, S-Y.; Han, W-S.; Bae, M-K. Graphene mode-lockers for fiber lasers functioned with evanescent field interaction. Appl. Phys. Lett., 2010. 96051122
[http://dx.doi.org/10.1063/1.3309669]
[130]
Sun, Z.; Popa, D.; Hasan, T.; Torrisi, F.; Wang, F.; Kelleher, E.J.R.; Travers, J.C.; Nicolosi, V.; Ferrari, A.C. A stable, wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser. Nano Res., 2010, 3, 653-660.
[http://dx.doi.org/10.1007/s12274-010-0026-4]
[131]
Zhang, H.; Tang, D.Y.; Knize, R.J.; Zhao, L.; Bao, Q.; Loh, K.P. Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser. Appl. Phys. Lett., 2010, 96 111112
[http://dx.doi.org/10.1063/1.3367743]
[132]
Xu, J.; Wu, S.; Li, H.; Liu, J.; Sun, R.; Tan, F.; Yang, Q-H.; Wang, P. Dissipative soliton generation from a graphene oxide mode-locked Er-doped fiber laser. Opt. Express, 2012, 20(21), 23653-23658.
[http://dx.doi.org/10.1364/OE.20.023653] [PMID: 23188330]
[133]
Liu, Z-B.; He, X.; Wang, D.N. Passively mode-locked fiber laser based on a hollow-core photonic crystal fiber filled with few-layered graphene oxide solution. Opt. Lett., 2011, 36(16), 3024-3026.
[http://dx.doi.org/10.1364/OL.36.003024] [PMID: 21847147]
[134]
Martinez, A.; Yamashita, S. 10 GHz fundamental mode fiber laser using a graphene saturable absorber. Appl. Phys. Lett., 2012, 101 041118
[http://dx.doi.org/10.1063/1.4739512]
[135]
Li, X.; Yu, X.; Sun, Z.; Yan, Z.; Sun, B.; Cheng, Y.; Yu, X.; Zhang, Y.; Wang, Q.J. High-power graphene mode-locked Tm/Ho co-doped fiber laser with evanescent field interaction. Sci. Rep., 2015, 5, 16624.
[http://dx.doi.org/10.1038/srep16624] [PMID: 26567536]
[136]
Zhang, M.; Kelleher, E.J.R.; Torrisi, F.; Sun, Z.; Hasan, T.; Popa, D.; Wang, F.; Ferrari, A.C.; Popov, S.V.; Taylor, J.R. Tm-doped fiber laser mode-locked by graphene-polymer composite. Opt. Express, 2012, 20(22), 25077-25084.
[http://dx.doi.org/10.1364/OE.20.025077] [PMID: 23187274]
[137]
Xu, J-L.; Li, X-L.; He, J-L.; Hao, X-P.; Wu, Y-Z.; Yang, Y.; Yang, K-J. Performance of large-area few-layer graphene saturable absorber in femtosecond bulk laser. Appl. Phys. Lett., 2011, 99 261107
[http://dx.doi.org/10.1063/1.3672213]
[138]
Lagatsky, A.A.; Sun, Z.; Kulmala, T.S.; Sundaram, R.S.; Milana, S.; Torrisi, F.; Antipov, O.L.; Lee, Y.; Ahn, J.H.; Brown, C.T.A.; Sibbett, W.; Ferrari, A.C. 2 μm solid-state laser mode-locked by single-layer graphene. Appl. Phys. Lett., 2013, 102 013113
[http://dx.doi.org/10.1063/1.4773990]
[139]
Cizmeciyan, M.N.; Kim, J.W.; Bae, S.; Hong, B.H.; Rotermund, F.; Sennaroglu, A. Graphene mode-locked femtosecond Cr:ZnSe laser at 2500 nm. Opt. Lett., 2013, 38(3), 341-343.
[http://dx.doi.org/10.1364/OL.38.000341] [PMID: 23381431]
[140]
Yang, C-Y.; Wu, C-L.; Lin, Y-H.; Tsai, L-H.; Chi, Y-C.; Chang, J-H.; Wu, C-I.; Tsai, H-K.; Tsai, D-P.; Lin, G-R. Fabricating graphite nano-sheet powder by slow electrochemical exfoliation of large-scale graphite foil as a mode-locker for fiber lasers. Opt. Mater. Express, 2013, 3 18931905
[http://dx.doi.org/10.1364/OME.3.001893]
[141]
Lee, J.; Lee, J.; Koo, J.; Lee, J.H. Graphite saturable absorber based on the pencil-sketching method for Q-switching of an erbium fiber laser. Appl. Opt., 2016, 55(2), 303-309.
[http://dx.doi.org/10.1364/AO.55.000303] [PMID: 26835766]
[142]
Yuzaile, Y.R.; Awang, N.A.; Zakaria, Z.; Zalkepali, N.U.H.H.; Latif, A.A.; Azmi, A.N.; Hadi, F.S.A. Graphite saturable absorber for Q-switched fiber laser. IJET, 2018, 7, 334-337.
[http://dx.doi.org/10.14419/ijet.v7i4.30.22303]
[143]
Steinberg, D.; Zapata, J.D.; de Souza, E.A.T.; Saito, L.A.M. Mechanically exfoliated graphite onto D-shaped optical fiber for femtosecond mode-locked erbium-doped fiber laser. J. Lightwave Technol., 2018, 36, 1868-1874.
[http://dx.doi.org/10.1109/JLT.2018.2793764]
[144]
Li, W.; Hu, H.; Zhang, X.; Zhao, S.; Fu, K.; Dutta, N.K. High-speed ultrashort pulse fiber ring laser using charcoal nanoparticles. Appl. Opt., 2016, 55(9), 2149-2154.
[http://dx.doi.org/10.1364/AO.55.002149] [PMID: 27140546]
[145]
Hu, H.; Zhang, X.; Li, W.; Dutta, N.K. Hybrid mode-locked fiber ring laser using graphene and charcoal nanoparticles as saturable absorbers. Proc. SPIE, 2016, 9836 983630
[http://dx.doi.org/10.1117/12.2224962]
[146]
Lo, J-Y.; Lin, Y-H.; Chen, T-H.; Feng, Z-C.; Lin, G-R. Passive mode-locking of Erbium doped fiber laser with nano-scale carbon black based saturable absorber. Proceedings of 2014 Asia Communications and Photonics Conference, Shanghai ChinaNovember 11-14, 2014
[http://dx.doi.org/10.1364/ACPC.2014.AF1C.5]

© 2024 Bentham Science Publishers | Privacy Policy