Methotrexate and Vasculoprotection: Mechanistic Insights and Potential Therapeutic Applications in Old Age

Author(s): Arduino A. Mangoni*, Sara Tommasi, Angelo Zinellu, Salvatore Sotgia, Stefania Bassu, Matteo Piga, Gian L. Erre, Ciriaco Carru.

Journal Name: Current Pharmaceutical Design

Volume 25 , Issue 39 , 2019

Become EABM
Become Reviewer

Abstract:

Increasing age is a strong, independent risk factor for atherosclerosis and cardiovascular disease. Key abnormalities driving cardiovascular risk in old age include endothelial dysfunction, increased arterial stiffness, blood pressure, and the pro-atherosclerotic effects of chronic, low-grade, inflammation. The identification of novel therapies that comprehensively target these alterations might lead to a major breakthrough in cardiovascular risk management in the older population. Systematic reviews and meta-analyses of observational studies have shown that methotrexate, a first-line synthetic disease-modifying anti-rheumatic drug, significantly reduces cardiovascular morbidity and mortality in patients with rheumatoid arthritis, a human model of systemic inflammation, premature atherosclerosis, and vascular aging. We reviewed in vitro and in vivo studies investigating the effects of methotrexate on endothelial function, arterial stiffness, and blood pressure, and the potential mechanisms of action involved. The available evidence suggests that methotrexate might have beneficial effects on vascular homeostasis and blood pressure control by targeting specific inflammatory pathways, adenosine metabolism, and 5' adenosine monophosphate-activated protein kinase. Such effects might be biologically and clinically relevant not only in patients with rheumatoid arthritis but also in older adults with high cardiovascular risk. Therefore, methotrexate has the potential to be repurposed for cardiovascular risk management in old age because of its putative pharmacological effects on inflammation, vascular homeostasis, and blood pressure. However, further study and confirmation of these effects are essential in order to adequately design intervention studies of methotrexate in the older population.

Keywords: Methotrexate, cardiovascular risk, ageing, atherosclerosis, endothelium, arterial stiffness, blood pressure, inflammation.

[1]
Global, regional, and national age-sex specific mortality for 264 causes of death, 1980-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 2017; 390(10100): 1151-210.
[http://dx.doi.org/10.1016/S0140-6736(17)32152-9] [PMID: 28919116]
[2]
Moore A, Mangoni AA, Lyons D, Jackson SH. The cardiovascular system. Br J Clin Pharmacol 2003; 56(3): 254-60.
[http://dx.doi.org/10.1046/j.0306-5251.2003.01876.x] [PMID: 12919173]
[3]
Paneni F, Diaz Cañestro C, Libby P, Lüscher TF, Camici GG. The aging cardiovascular system: understanding it at the cellular and clinical levels. J Am Coll Cardiol 2017; 69(15): 1952-67.
[http://dx.doi.org/10.1016/j.jacc.2017.01.064] [PMID: 28408026]
[4]
Ungvari Z, Tarantini S, Donato AJ, Galvan V, Csiszar A. Mechanisms of vascular aging. Circ Res 2018; 123(7): 849-67.
[http://dx.doi.org/10.1161/CIRCRESAHA.118.311378] [PMID: 30355080]
[5]
Lakatta EG. So! What’s aging? Is cardiovascular aging a disease? J Mol Cell Cardiol 2015; 83: 1-13.
[http://dx.doi.org/10.1016/j.yjmcc.2015.04.005] [PMID: 25870157]
[6]
Aday AW, Ridker PM. Targeting residual inflammatory risk: a shifting paradigm for atherosclerotic disease. Front Cardiovasc Med 2019; 6: 16.
[http://dx.doi.org/10.3389/fcvm.2019.00016] [PMID: 30873416]
[7]
Kalkman DN, Aquino M, Claessen BE, et al. Residual inflammatory risk and the impact on clinical outcomes in patients after percutaneous coronary interventions. Eur Heart J 2018; 39(46): 4101-8.
[http://dx.doi.org/10.1093/eurheartj/ehy633] [PMID: 30358832]
[8]
Lorenzatti AJ, Retzlaff BM. Unmet needs in the management of atherosclerotic cardiovascular disease: is there a role for emerging anti-inflammatory interventions? Int J Cardiol 2016; 221: 581-6.
[http://dx.doi.org/10.1016/j.ijcard.2016.07.061] [PMID: 27420583]
[9]
Ramji DP, Davies TS. Cytokines in atherosclerosis: key players in all stages of disease and promising therapeutic targets. Cytokine Growth Factor Rev 2015; 26(6): 673-85.
[http://dx.doi.org/10.1016/j.cytogfr.2015.04.003] [PMID: 26005197]
[10]
Tousoulis D, Oikonomou E, Economou EK, Crea F, Kaski JC. Inflammatory cytokines in atherosclerosis: current therapeutic approaches. Eur Heart J 2016; 37(22): 1723-32.
[http://dx.doi.org/10.1093/eurheartj/ehv759] [PMID: 26843277]
[11]
Cha Y, Erez T, Reynolds IJ, et al. Drug repurposing from the perspective of pharmaceutical companies. Br J Pharmacol 2018; 175(2): 168-80.
[http://dx.doi.org/10.1111/bph.13798] [PMID: 28369768]
[12]
Wilkinson IB, Qasem A, McEniery CM, Webb DJ, Avolio AP, Cockcroft JR. Nitric oxide regulates local arterial distensibility in vivo. Circulation 2002; 105(2): 213-7.
[http://dx.doi.org/10.1161/hc0202.101970] [PMID: 11790703]
[13]
Stamler JS, Loh E, Roddy MA, Currie KE, Creager MA. Nitric oxide regulates basal systemic and pulmonary vascular resistance in healthy humans. Circulation 1994; 89(5): 2035-40.
[http://dx.doi.org/10.1161/01.CIR.89.5.2035] [PMID: 7514109]
[14]
Sander M, Chavoshan B, Victor RG. A large blood pressure-raising effect of nitric oxide synthase inhibition in humans. Hypertension 1999; 33(4): 937-42.
[http://dx.doi.org/10.1161/01.HYP.33.4.937] [PMID: 10205227]
[15]
Tousoulis D, Kampoli AM, Tentolouris C, Papageorgiou N, Stefanadis C. The role of nitric oxide on endothelial function. Curr Vasc Pharmacol 2012; 10(1): 4-18.
[http://dx.doi.org/10.2174/157016112798829760] [PMID: 22112350]
[16]
Napoli C, de Nigris F, Williams-Ignarro S, Pignalosa O, Sica V, Ignarro LJ. Nitric oxide and atherosclerosis: an update. Nitric Oxide 2006; 15(4): 265-79.
[http://dx.doi.org/10.1016/j.niox.2006.03.011] [PMID: 16684613]
[17]
Gimbrone MA Jr, García-Cardeña G. Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ Res 2016; 118(4): 620-36.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.306301] [PMID: 26892962]
[18]
Tschudi MR, Barton M, Bersinger NA, et al. Effect of age on kinetics of nitric oxide release in rat aorta and pulmonary artery. J Clin Invest 1996; 98(4): 899-905.
[http://dx.doi.org/10.1172/JCI118872] [PMID: 8770860]
[19]
Taddei S, Virdis A, Ghiadoni L, et al. Age-related reduction of NO availability and oxidative stress in humans. Hypertension 2001; 38(2): 274-9.
[http://dx.doi.org/10.1161/01.HYP.38.2.274] [PMID: 11509489]
[20]
Alp NJ, Channon KM. Regulation of endothelial nitric oxide synthase by tetrahydrobiopterin in vascular disease. Arterioscler Thromb Vasc Biol 2004; 24(3): 413-20.
[http://dx.doi.org/10.1161/01.ATV.0000110785.96039.f6] [PMID: 14656731]
[21]
Yang YM, Huang A, Kaley G, Sun D. eNOS uncoupling and endothelial dysfunction in aged vessels. Am J Physiol Heart Circ Physiol 2009; 297(5): H1829-36.
[http://dx.doi.org/10.1152/ajpheart.00230.2009] [PMID: 19767531]
[22]
Sindler AL, Delp MD, Reyes R, Wu G, Muller-Delp JM. Effects of ageing and exercise training on eNOS uncoupling in skeletal muscle resistance arterioles. J Physiol 2009; 587(Pt 15): 3885-97.
[http://dx.doi.org/10.1113/jphysiol.2009.172221] [PMID: 19528246]
[23]
Santhanam L, Christianson DW, Nyhan D, Berkowitz DE. Arginase and vascular aging. J Appl Physiol 2008; 105(5): 1632-42.
[http://dx.doi.org/10.1152/japplphysiol.90627.2008] [PMID: 18719233]
[24]
Radi R. Oxygen radicals, nitric oxide, and peroxynitrite: Redox pathways in molecular medicine. Proc Natl Acad Sci USA 2018; 115(23): 5839-48.
[http://dx.doi.org/10.1073/pnas.1804932115] [PMID: 29802228]
[25]
van der Loo B, Labugger R, Skepper JN, et al. Enhanced peroxynitrite formation is associated with vascular aging. J Exp Med 2000; 192(12): 1731-44.
[http://dx.doi.org/10.1084/jem.192.12.1731] [PMID: 11120770]
[26]
Dikalov SI, Nazarewicz RR. Angiotensin II-induced production of mitochondrial reactive oxygen species: potential mechanisms and relevance for cardiovascular disease. Antioxid Redox Signal 2013; 19(10): 1085-94.
[http://dx.doi.org/10.1089/ars.2012.4604] [PMID: 22443458]
[27]
Donato AJ, Gano LB, Eskurza I, et al. Vascular endothelial dysfunction with aging: endothelin-1 and endothelial nitric oxide synthase. Am J Physiol Heart Circ Physiol 2009; 297(1): H425-32.
[http://dx.doi.org/10.1152/ajpheart.00689.2008] [PMID: 19465546]
[28]
Goettsch W, Lattmann T, Amann K, et al. Increased expression of endothelin-1 and inducible nitric oxide synthase isoform II in aging arteries in vivo: implications for atherosclerosis. Biochem Biophys Res Commun 2001; 280(3): 908-13.
[http://dx.doi.org/10.1006/bbrc.2000.4180] [PMID: 11162610]
[29]
Chang WC, Tai HH. Changes in prostacyclin and thromboxane biosynthesis and their catabolic enzyme activity in kidneys of aging rats. Life Sci 1984; 34(13): 1269-80.
[http://dx.doi.org/10.1016/0024-3205(84)90550-2] [PMID: 6423922]
[30]
Sato I, Kaji K, Morita I, Nagao M, Murota S. Augmentation of endothelin-1, prostacyclin and thromboxane A2 secretion associated with in vitro ageing in cultured human umbilical vein endothelial cells. Mech Ageing Dev 1993; 71(1-2): 73-84.
[http://dx.doi.org/10.1016/0047-6374(93)90036-Q] [PMID: 8309284]
[31]
Gomez E, Schwendemann C, Roger S, et al. Aging and prostacyclin responses in aorta and platelets from WKY and SHR rats. Am J Physiol Heart Circ Physiol 2008; 295(5): H2198-211.
[http://dx.doi.org/10.1152/ajpheart.00507.2008] [PMID: 18820028]
[32]
Erusalimsky JD. Vascular endothelial senescence: from mechanisms to pathophysiology. J Appl Physiol 2009; 106(1): 326-32.
[http://dx.doi.org/10.1152/japplphysiol.91353.2008] [PMID: 19036896]
[33]
Freund A, Patil CK, Campisi J. p38MAPK is a novel DNA damage response-independent regulator of the senescence-associated secretory phenotype. EMBO J 2011; 30(8): 1536-48.
[http://dx.doi.org/10.1038/emboj.2011.69] [PMID: 21399611]
[34]
Kang C, Xu Q, Martin TD, et al. The DNA damage response induces inflammation and senescence by inhibiting autophagy of GATA4. Science 2015; 349(6255)aaa5612
[http://dx.doi.org/10.1126/science.aaa5612] [PMID: 26404840]
[35]
Morgan RG, Ives SJ, Lesniewski LA, et al. Age-related telomere uncapping is associated with cellular senescence and inflammation independent of telomere shortening in human arteries. Am J Physiol Heart Circ Physiol 2013; 305(2): H251-8.
[http://dx.doi.org/10.1152/ajpheart.00197.2013] [PMID: 23666675]
[36]
Minamino T, Miyauchi H, Yoshida T, Ishida Y, Yoshida H, Komuro I. Endothelial cell senescence in human atherosclerosis: role of telomere in endothelial dysfunction. Circulation 2002; 105(13): 1541-4.
[http://dx.doi.org/10.1161/01.CIR.0000013836.85741.17] [PMID: 11927518]
[37]
Lee HY, Oh BH. Aging and arterial stiffness. Circ J 2010; 74(11): 2257-62.
[http://dx.doi.org/10.1253/circj.CJ-10-0910] [PMID: 20962429]
[38]
Collins JA, Munoz JV, Patel TR, Loukas M, Tubbs RS. The anatomy of the aging aorta. Clin Anat 2014; 27(3): 463-6.
[http://dx.doi.org/10.1002/ca.22384] [PMID: 24523152]
[39]
Amar J, Ruidavets JB, Chamontin B, Drouet L, Ferrières J. Arterial stiffness and cardiovascular risk factors in a population-based study. J Hypertens 2001; 19(3): 381-7.
[http://dx.doi.org/10.1097/00004872-200103000-00005] [PMID: 11288807]
[40]
Wilkinson IB, Franklin SS, Cockcroft JR. Nitric oxide and the regulation of large artery stiffness: from physiology to pharmacology. Hypertension 2004; 44(2): 112-6.
[http://dx.doi.org/10.1161/01.HYP.0000138068.03893.40] [PMID: 15262901]
[41]
Chen W, Li S, Fernandez C, et al. Temporal relationship between elevated blood pressure and arterial stiffening among middle-Aged black and white adults: the bogalusa heart study. Am J Epidemiol 2016; 183(7): 599-608.
[http://dx.doi.org/10.1093/aje/kwv274] [PMID: 26960706]
[42]
Stella ML, Failla M, Mangoni AA, Carugo S, Giannattasio C, Mancia G. Effects of isolated systolic hypertension and essential hypertension on large and middle-sized artery compliance. Blood Press 1998; 7(2): 96-102.
[http://dx.doi.org/10.1080/080370598437466] [PMID: 9657536]
[43]
Esler M, Hastings J, Lambert G, Kaye D, Jennings G, Seals DR. The influence of aging on the human sympathetic nervous system and brain norepinephrine turnover. Am J Physiol Regul Integr Comp Physiol 2002; 282(3): R909-16.
[http://dx.doi.org/10.1152/ajpregu.00335.2001] [PMID: 11832414]
[44]
Mangoni AA, Mircoli L, Giannattasio C, Mancia G, Ferrari AU. Effect of sympathectomy on mechanical properties of common carotid and femoral arteries. Hypertension 1997; 30(5): 1085-8.
[http://dx.doi.org/10.1161/01.HYP.30.5.1085] [PMID: 9369260]
[45]
Sun Z. Aging, arterial stiffness, and hypertension. Hypertension 2015; 65(2): 252-6.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.114.03617] [PMID: 25368028]
[46]
Castellon X, Bogdanova V. Chronic inflammatory diseases and endothelial dysfunction. Aging Dis 2016; 7(1): 81-9.
[http://dx.doi.org/10.14336/AD.2015.0803] [PMID: 26815098]
[47]
Mozos I, Malainer C, Horbańczuk J, et al. Inflammatory markers for arterial stiffness in cardiovascular diseases. Front Immunol 2017; 8: 1058.
[http://dx.doi.org/10.3389/fimmu.2017.01058] [PMID: 28912780]
[48]
Jiao Y, Li G, Li Q, et al. mTOR (Mechanistic Target of Rapamycin) Inhibition decreases mechanosignaling, collagen accumulation, and stiffening of the thoracic aorta in elastin-deficient mice. Arterioscler Thromb Vasc Biol 2017; 37(9): 1657-66.
[http://dx.doi.org/10.1161/ATVBAHA.117.309653] [PMID: 28751568]
[49]
Lesniewski LA, Seals DR, Walker AE, et al. Dietary rapamycin supplementation reverses age-related vascular dysfunction and oxidative stress, while modulating nutrient-sensing, cell cycle, and senescence pathways. Aging Cell 2017; 16(1): 17-26.
[http://dx.doi.org/10.1111/acel.12524] [PMID: 27660040]
[50]
Fry JL, Al Sayah L, Weisbrod RM, et al. Vascular smooth muscle sirtuin-1 protects against diet-induced aortic stiffness. Hypertension 2016; 68(3): 775-84.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.116.07622] [PMID: 27432859]
[51]
Safar ME, Levy BI, Struijker-Boudier H. Current perspectives on arterial stiffness and pulse pressure in hypertension and cardiovascular diseases. Circulation 2003; 107(22): 2864-9.
[http://dx.doi.org/10.1161/01.CIR.0000069826.36125.B4] [PMID: 12796414]
[52]
Sutton-Tyrrell K, Najjar SS, Boudreau RM, et al. Elevated aortic pulse wave velocity, a marker of arterial stiffness, predicts cardiovascular events in well-functioning older adults. Circulation 2005; 111(25): 3384-90.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.104.483628] [PMID: 15967850]
[53]
Kannel WB. Elevated systolic blood pressure as a cardiovascular risk factor. Am J Cardiol 2000; 85(2): 251-5.
[http://dx.doi.org/10.1016/S0002-9149(99)00635-9] [PMID: 10955386]
[54]
Selvaraj S, Steg PG, Elbez Y, et al. Pulse pressure and risk for cardiovascular events in patients with atherothrombosis: from the REACH registry. J Am Coll Cardiol 2016; 67(4): 392-403.
[http://dx.doi.org/10.1016/j.jacc.2015.10.084] [PMID: 26821627]
[55]
Lv YB, Gao X, Yin ZX, et al. Revisiting the association of blood pressure with mortality in oldest old people in China: community based, longitudinal prospective study. BMJ 2018; 361: k2158.
[http://dx.doi.org/10.1136/bmj.k2158] [PMID: 29871897]
[56]
McEvoy JW, Chen Y, Rawlings A, et al. Diastolic blood pressure, subclinical myocardial damage, and cardiac events: implications for blood pressure control. J Am Coll Cardiol 2016; 68(16): 1713-22.
[http://dx.doi.org/10.1016/j.jacc.2016.07.754] [PMID: 27590090]
[57]
Ungar A, Pepe G, Lambertucci L, et al. Low diastolic ambulatory blood pressure is associated with greater all-cause mortality in older patients with hypertension. J Am Geriatr Soc 2009; 57(2): 291-6.
[http://dx.doi.org/10.1111/j.1532-5415.2008.02123.x] [PMID: 19207144]
[58]
Smolen JS, Aletaha D, McInnes IB. Rheumatoid arthritis. Lancet 2016; 388(10055): 2023-38.
[http://dx.doi.org/10.1016/S0140-6736(16)30173-8] [PMID: 27156434]
[59]
Dadoun S, Zeboulon-Ktorza N, Combescure C, et al. Mortality in rheumatoid arthritis over the last fifty years: systematic review and meta-analysis. Joint Bone Spine 2013; 80(1): 29-33.
[http://dx.doi.org/10.1016/j.jbspin.2012.02.005] [PMID: 22459416]
[60]
Wallberg-Jonsson S, Ohman ML, Dahlqvist SR. Cardiovascular morbidity and mortality in patients with seropositive rheumatoid arthritis in Northern Sweden. J Rheumatol 1997; 24(3): 445-51.
[PMID: 9058647]
[61]
Aviña-Zubieta JA, Choi HK, Sadatsafavi M, Etminan M, Esdaile JM, Lacaille D. Risk of cardiovascular mortality in patients with rheumatoid arthritis: a meta-analysis of observational studies. Arthritis Rheum 2008; 59(12): 1690-7.
[http://dx.doi.org/10.1002/art.24092] [PMID: 19035419]
[62]
van den Hoek J, Boshuizen HC, Roorda LD, et al. Mortality in patients with rheumatoid arthritis: a 15-year prospective cohort study. Rheumatol Int 2017; 37(4): 487-93.
[http://dx.doi.org/10.1007/s00296-016-3638-5] [PMID: 28032180]
[63]
Erre GL, Piga M, Fedele AL, et al. Prevalence and determinants of peripheral microvascular endothelial dysfunction in rheumatoid arthritis patients: a multicenter cross-sectional study. Mediators Inflamm 2018; 20186548715
[http://dx.doi.org/10.1155/2018/6548715] [PMID: 29483841]
[64]
Barbati C, Vomero M, Colasanti T, et al. TNFα expressed on the surface of microparticles modulates endothelial cell fate in rheumatoid arthritis. Arthritis Res Ther 2018; 20(1): 273.
[http://dx.doi.org/10.1186/s13075-018-1768-8] [PMID: 30526655]
[65]
Totoson P, Maguin-Gaté K, Nappey M, Wendling D, Demougeot C. Endothelial dysfunction in rheumatoid arthritis: mechanistic insights and correlation with circulating markers of systemic inflammation. PLoS One 2016; 11(1)e0146744
[http://dx.doi.org/10.1371/journal.pone.0146744] [PMID: 26761790]
[66]
Dessein PH, Joffe BI, Singh S. Biomarkers of endothelial dysfunction, cardiovascular risk factors and atherosclerosis in rheumatoid arthritis. Arthritis Res Ther 2005; 7(3): R634-43.
[http://dx.doi.org/10.1186/ar1717] [PMID: 15899050]
[67]
Baghdadi LR, Woodman RJ, Shanahan EM, Mangoni AA. The impact of traditional cardiovascular risk factors on cardiovascular outcomes in patients with rheumatoid arthritis: a systematic review and meta-analysis. PLoS One 2015; 10(2)e0117952
[http://dx.doi.org/10.1371/journal.pone.0117952] [PMID: 25689371]
[68]
Gonzalez-Juanatey C, Testa A, Garcia-Castelo A, et al. HLA-DRB1 status affects endothelial function in treated patients with rheumatoid arthritis. Am J Med 2003; 114(8): 647-52.
[http://dx.doi.org/10.1016/S0002-9343(03)00133-5] [PMID: 12798452]
[69]
Bergholm R, Leirisalo-Repo M, Vehkavaara S, Mäkimattila S, Taskinen MR, Yki-Järvinen H. Impaired responsiveness to NO in newly diagnosed patients with rheumatoid arthritis. Arterioscler Thromb Vasc Biol 2002; 22(10): 1637-41.
[http://dx.doi.org/10.1161/01.ATV.0000033516.73864.4E] [PMID: 12377742]
[70]
Erre GL, Buscetta G, Paliogiannis P, et al. Coronary flow reserve in systemic rheumatic diseases: a systematic review and meta-analysis. Rheumatol Int 2018; 38(7): 1179-90.
[http://dx.doi.org/10.1007/s00296-018-4039-8] [PMID: 29732488]
[71]
Erre GL, Mangoni AA, Castagna F, et al. Meta-analysis of asymmetric dimethylarginine concentrations in rheumatic diseases. Sci Rep 2019; 9(1): 5426.
[http://dx.doi.org/10.1038/s41598-019-41994-5] [PMID: 30932011]
[72]
Dimitroulas T, Hodson J, Sandoo A, Smith J, Kitas GD. Endothelial injury in rheumatoid arthritis: a crosstalk between dimethylarginines and systemic inflammation. Arthritis Res Ther 2017; 19(1): 32.
[http://dx.doi.org/10.1186/s13075-017-1232-1] [PMID: 28183353]
[73]
Radhakutty A, Mangelsdorf BL, Drake SM, et al. Opposing effects of rheumatoid arthritis and low dose prednisolone on arginine metabolomics. Atherosclerosis 2017; 266: 190-5.
[http://dx.doi.org/10.1016/j.atherosclerosis.2017.10.004] [PMID: 29035782]
[74]
Ambrosino P, Tasso M, Lupoli R, et al. Non-invasive assessment of arterial stiffness in patients with rheumatoid arthritis: a systematic review and meta-analysis of literature studies. Ann Med 2015; 47(6): 457-67.
[http://dx.doi.org/10.3109/07853890.2015.1068950] [PMID: 26340234]
[75]
Gunter S, Robinson C, Norton GR, et al. Cardiovascular risk factors and disease characteristics are consistently associated with arterial function in rheumatoid arthritis. J Rheumatol 2017; 44(8): 1125-33.
[http://dx.doi.org/10.3899/jrheum.170029] [PMID: 28572463]
[76]
Botta E, Meroño T, Saucedo C, et al. Associations between disease activity, markers of HDL functionality and arterial stiffness in patients with rheumatoid arthritis. Atherosclerosis 2016; 251: 438-44.
[http://dx.doi.org/10.1016/j.atherosclerosis.2016.06.009] [PMID: 27344073]
[77]
Kim YS, Sung YK, Choi CB, et al. The major determinants of arterial stiffness in Korean patients with rheumatoid arthritis are age and systolic blood pressure, not disease-related factors. Rheumatol Int 2012; 32(11): 3455-61.
[http://dx.doi.org/10.1007/s00296-011-2198-y] [PMID: 22057143]
[78]
Ilter A, Kiris A, Karkucak M, Sahin M, Serdar OF, Ugan Y. Arterial stiffness is associated with left ventricular dysfunction in patients with rheumatoid arthritis. Clin Rheumatol 2016; 35(11): 2663-8.
[http://dx.doi.org/10.1007/s10067-015-3163-z] [PMID: 26742756]
[79]
Anyfanti P, Triantafyllou A, Gkaliagkousi E, Koletsos N, Aslanidis S, Douma S. Association of non-invasive hemodynamics with arterial stiffness in rheumatoid arthritis. Scand Cardiovasc J 2018; 52(4): 171-6.
[http://dx.doi.org/10.1080/14017431.2018.1453943] [PMID: 29560750]
[80]
Cioffi G, Viapiana O, Ognibeni F, et al. Clinical profile and outcome of patients with rheumatoid arthritis and abnormally high aortic stiffness. Eur J Prev Cardiol 2016; 23(17): 1848-59.
[http://dx.doi.org/10.1177/2047487316649762] [PMID: 27154592]
[81]
Panoulas VF, Metsios GS, Pace AV, et al. Hypertension in rheumatoid arthritis. Rheumatology (Oxford) 2008; 47(9): 1286-98.
[http://dx.doi.org/10.1093/rheumatology/ken159] [PMID: 18467370]
[82]
van Breukelen-van der Stoep DF, van Zeben D, Klop B, et al. Marked underdiagnosis and undertreatment of hypertension and hypercholesterolaemia in rheumatoid arthritis. Rheumatology (Oxford) 2016; 55(7): 1210-6.
[http://dx.doi.org/10.1093/rheumatology/kew039] [PMID: 27009825]
[83]
van den Oever IAM, Heslinga M, Griep EN, et al. Cardiovascular risk management in rheumatoid arthritis patients still suboptimal: the Implementation of Cardiovascular Risk Management in Rheumatoid Arthritis project. Rheumatology (Oxford) 2017; 56(9): 1472-8.
[http://dx.doi.org/10.1093/rheumatology/kew497] [PMID: 28199724]
[84]
Midtbø H, Gerdts E, Kvien TK, et al. The association of hypertension with asymptomatic cardiovascular organ damage in rheumatoid arthritis. Blood Press 2016; 25(5): 298-304.
[http://dx.doi.org/10.3109/08037051.2016.1172867] [PMID: 27123584]
[85]
Cipriani P, Ruscitti P, Carubbi F, Liakouli V, Giacomelli R. Methotrexate: an old new drug in autoimmune disease. Expert Rev Clin Immunol 2014; 10(11): 1519-30.
[http://dx.doi.org/10.1586/1744666X.2014.962996] [PMID: 25245537]
[86]
Choi HK, Hernán MA, Seeger JD, Robins JM, Wolfe F. Methotrexate and mortality in patients with rheumatoid arthritis: a prospective study. Lancet 2002; 359(9313): 1173-7.
[http://dx.doi.org/10.1016/S0140-6736(02)08213-2] [PMID: 11955534]
[87]
Micha R, Imamura F, Wyler von Ballmoos M, et al. Systematic review and meta-analysis of methotrexate use and risk of cardiovascular disease. Am J Cardiol 2011; 108(9): 1362-70.
[http://dx.doi.org/10.1016/j.amjcard.2011.06.054] [PMID: 21855836]
[88]
Ortiz Z, Shea B, Suarez Almazor M, Moher D, Wells G, Tugwell P. Folic acid and folinic acid for reducing side effects in patients receiving methotrexate for rheumatoid arthritis. Cochrane Database Syst Rev 2000; (2): CD000951
[PMID: 10796393]
[89]
Mangoni AA, Ouldred E, Swif CG, et al. Vascular and blood pressure effects of folic acid in older patients with cardiovascular disease. J Am Geriatr Soc 2001; 49(7): 1003-4.
[http://dx.doi.org/10.1046/j.1532-5415.2001.49196.x] [PMID: 11527499]
[90]
Mangoni AA, Sherwood RA, Swift CG, Jackson SH. Folic acid enhances endothelial function and reduces blood pressure in smokers: a randomized controlled trial. J Intern Med 2002; 252(6): 497-503.
[http://dx.doi.org/10.1046/j.1365-2796.2002.01059.x] [PMID: 12472909]
[91]
Mangoni AA, Sherwood RA, Asonganyi B, Swift CG, Thomas S, Jackson SH. Short-term oral folic acid supplementation enhances endothelial function in patients with type 2 diabetes. Am J Hypertens 2005; 18(2 Pt 1): 220-6.
[http://dx.doi.org/10.1016/j.amjhyper.2004.08.036] [PMID: 15752950]
[92]
Huo Y, Li J, Qin X, et al. Efficacy of folic acid therapy in primary prevention of stroke among adults with hypertension in China: the CSPPT randomized clinical trial. JAMA 2015; 313(13): 1325-35.
[http://dx.doi.org/10.1001/jama.2015.2274] [PMID: 25771069]
[93]
Kong X, Huang X, Zhao M, et al. Platelet count affects efficacy of folic acid in preventing first stroke. J Am Coll Cardiol 2018; 71(19): 2136-46.
[http://dx.doi.org/10.1016/j.jacc.2018.02.072] [PMID: 29747834]
[94]
Roubille C, Richer V, Starnino T, et al. The effects of tumour necrosis factor inhibitors, methotrexate, non-steroidal anti-inflammatory drugs and corticosteroids on cardiovascular events in rheumatoid arthritis, psoriasis and psoriatic arthritis: a systematic review and meta-analysis. Ann Rheum Dis 2015; 74(3): 480-9.
[http://dx.doi.org/10.1136/annrheumdis-2014-206624] [PMID: 25561362]
[95]
Tam HW, Chen CM, Leong PY, et al. Methotrexate might reduce ischemic stroke in patients with rheumatoid arthritis: a population-based retrospective cohort study. Int J Rheum Dis 2018; 21(8): 1591-9.
[http://dx.doi.org/10.1111/1756-185X.13267] [PMID: 29372595]
[96]
Widdifield J, Abrahamowicz M, Paterson JM, et al. Associations between methotrexate use and the risk of cardiovascular events in patients with elderly-onset rheumatoid arthritis. J Rheumatol 2019; 46(5): 467-74.
[http://dx.doi.org/10.3899/jrheum.180427] [PMID: 30504508]
[97]
Ridker PM, Everett BM, Pradhan A, et al. Low-dose methotrexate for the prevention of atherosclerotic events. N Engl J Med 2019; 380(8): 752-62.
[http://dx.doi.org/10.1056/NEJMoa1809798] [PMID: 30415610]
[98]
El-Gowilly SM, Helmy MM, El-Gowelli HM. Pioglitazone ameliorates methotrexate-induced renal endothelial dysfunction via amending detrimental changes in some antioxidant parameters, systemic cytokines and Fas production. Vascul Pharmacol 2015; 74: 139-50.
[http://dx.doi.org/10.1016/j.vph.2015.07.002] [PMID: 26163452]
[99]
Sankrityayan H, Majumdar AS. Curcumin and folic acid abrogated methotrexate induced vascular endothelial dysfunction. Can J Physiol Pharmacol 2016; 94(1): 89-96.
[http://dx.doi.org/10.1139/cjpp-2015-0156] [PMID: 26571019]
[100]
Ma Y, Li L, Shao Y, Bai X, Bai T, Huang X. Methotrexate improves perivascular adipose tissue/endothelial dysfunction via activation of AMPK/eNOS pathway. Mol Med Rep 2017; 15(4): 2353-9.
[http://dx.doi.org/10.3892/mmr.2017.6225] [PMID: 28259947]
[101]
Quan A, Pan Y, Singh KK, et al. Cardiovascular inflammation is reduced with methotrexate in diabetes. Mol Cell Biochem 2017; 432(1-2): 159-67.
[http://dx.doi.org/10.1007/s11010-017-3006-0] [PMID: 28303409]
[102]
Deyab G, Hokstad I, Whist JE, et al. Methotrexate and anti-tumor necrosis factor treatment improves endothelial function in patients with inflammatory arthritis. Arthritis Res Ther 2017; 19(1): 232.
[http://dx.doi.org/10.1186/s13075-017-1439-1] [PMID: 29041979]
[103]
Hjeltnes G, Hollan I, Førre Ø, et al. Endothelial function improves within 6 weeks of treatment with methotrexate or methotrexate in combination with a TNF-α inhibitor in rheumatoid arthritis patients. Scand J Rheumatol 2012; 41(3): 240-2.
[http://dx.doi.org/10.3109/03009742.2012.656698] [PMID: 22401496]
[104]
Guin A, Chatterjee Adhikari M, Chakraborty S, Sinhamahapatra P, Ghosh A. Effects of disease modifying anti-rheumatic drugs on subclinical atherosclerosis and endothelial dysfunction which has been detected in early rheumatoid arthritis: 1-year follow-up study. Semin Arthritis Rheum 2013; 43(1): 48-54.
[http://dx.doi.org/10.1016/j.semarthrit.2012.12.027] [PMID: 23415602]
[105]
Vassilopoulos D, Gravos A, Vlachopoulos C, et al. Adalimumab decreases aortic stiffness independently of its effect in disease activity in patients with rheumatoid arthritis. Clin Rheumatol 2015; 34(2): 359-64.
[http://dx.doi.org/10.1007/s10067-014-2718-8] [PMID: 24928345]
[106]
Mangoni AA, Baghdadi LR, Shanahan EM, et al. Methotrexate, blood pressure and markers of arterial function in patients with rheumatoid arthritis: a repeated cross-sectional study. Ther Adv Musculoskelet Dis 2017; 9(9): 213-29.
[http://dx.doi.org/10.1177/1759720X17719850] [PMID: 28932292]
[107]
Rho YH, Oeser A, Chung CP, Milne GL, Stein CM. Drugs Used in the treatment of rheumatoid arthritis: relationship between current use and cardiovascular risk factors. Arch Drug Inf 2009; 2(2): 34-40.
[http://dx.doi.org/10.1111/j.1753-5174.2009.00019.x] [PMID: 19684849]
[108]
Cuchacovich R, Espinoza LR. Does TNF-alpha blockade play any role in cardiovascular risk among rheumatoid arthritis (RA) patients? Clin Rheumatol 2009; 28(10): 1217-20.
[http://dx.doi.org/10.1007/s10067-009-1208-x] [PMID: 19517156]
[109]
Gyldenløve M, Jensen P, Løvendorf MB, Zachariae C, Hansen PR, Skov L. ‘Short-term treatment with methotrexate does not affect microvascular endothelial function in patients with psoriasis’. J Eur Acad Dermatol Venereol 2015; 29(3): 591-4.
[http://dx.doi.org/10.1111/jdv.12385] [PMID: 24673617]
[110]
Tam LS, Shang Q, Li EK, et al. Infliximab is associated with improvement in arterial stiffness in patients with early rheumatoid arthritis - a randomized trial. J Rheumatol 2012; 39(12): 2267-75.
[http://dx.doi.org/10.3899/jrheum.120541] [PMID: 22984272]
[111]
Baker JF, Sauer B, Teng CC, et al. Initiation of disease-modifying therapies in rheumatoid arthritis is associated with changes in blood pressure. J Clin Rheumatol 2018; 24(4): 203-9.
[http://dx.doi.org/10.1097/RHU.0000000000000736] [PMID: 29664818]
[112]
Verdecchia P, Schillaci G, Borgioni C, Ciucci A, Pede S, Porcellati C. Ambulatory pulse pressure: a potent predictor of total cardiovascular risk in hypertension. Hypertension 1998; 32(6): 983-8.
[http://dx.doi.org/10.1161/01.HYP.32.6.983] [PMID: 9856961]
[113]
Williams B, Lacy PS, Thom SM, et al. Differential impact of blood pressure-lowering drugs on central aortic pressure and clinical outcomes: principal results of the Conduit Artery Function Evaluation (CAFE) study. Circulation 2006; 113(9): 1213-25.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.105.595496] [PMID: 16476843]
[114]
Woodman RJ, Baghdadi LR, Shanahan ME, Mangoni AA. The temporal relationship between arterial stiffening and blood pressure is modified by methotrexate treatment in patients with rheumatoid arthritis. Front Physiol 2017; 8: 593.
[http://dx.doi.org/10.3389/fphys.2017.00593] [PMID: 28861004]
[115]
Kaess BM, Rong J, Larson MG, et al. Aortic stiffness, blood pressure progression, and incident hypertension. JAMA 2012; 308(9): 875-81.
[http://dx.doi.org/10.1001/2012.jama.10503] [PMID: 22948697]
[116]
Wu S, Jin C, Li S, et al. Aging, arterial stiffness, and blood pressure association in chinese adults. hypertension 2019; 73(4): 893-9.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.118.12396] [PMID: 30776974]
[117]
Chan ES, Cronstein BN. Mechanisms of action of methotrexate Bull Hosp Jt Dis (2013) 2013; 71(71) (Suppl. 1): S5-8.
[PMID: 24219035]
[118]
Inoue K, Yuasa H. Molecular basis for pharmacokinetics and pharmacodynamics of methotrexate in rheumatoid arthritis therapy. Drug Metab Pharmacokinet 2014; 29(1): 12-9.
[http://dx.doi.org/10.2133/dmpk.DMPK-13-RV-119] [PMID: 24284432]
[119]
Haskó G, Cronstein B. Regulation of inflammation by adenosine. Front Immunol 2013; 4: 85.
[http://dx.doi.org/10.3389/fimmu.2013.00085] [PMID: 23580000]
[120]
Xu Y, Wang Y, Yan S, et al. Regulation of endothelial intracellular adenosine via adenosine kinase epigenetically modulates vascular inflammation. Nat Commun 2017; 8(1): 943.
[http://dx.doi.org/10.1038/s41467-017-00986-7] [PMID: 29038540]
[121]
Kutryb-Zajac B, Mateuszuk L, Zukowska P, et al. Increased activity of vascular adenosine deaminase in atherosclerosis and therapeutic potential of its inhibition. Cardiovasc Res 2016; 112(2): 590-605.
[http://dx.doi.org/10.1093/cvr/cvw203] [PMID: 28513806]
[122]
Richard LF, Dahms TE, Webster RO. Adenosine prevents permeability increase in oxidant-injured endothelial monolayers. Am J Physiol 1998; 274(1): H35-42.
[PMID: 9458849]
[123]
Dubey RK, Fingerle J, Gillespie DG, et al. Adenosine attenuates human coronary artery smooth muscle cell proliferation by inhibiting multiple signaling pathways that converge on cyclin D. Hypertension 2015; 66(6): 1207-19.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.115.05912] [PMID: 26416848]
[124]
Arsyad A, Dobson GP. Adenosine relaxation in isolated rat aortic rings and possible roles of smooth muscle Kv channels, KATP channels and A2a receptors. BMC Pharmacol Toxicol 2016; 17(1): 23.
[http://dx.doi.org/10.1186/s40360-016-0067-8] [PMID: 27211886]
[125]
Fenton RA, Bruttig SP, Rubio R, Berne RM. Effect of adenosine on calcium uptake by intact and cultured vascular smooth muscle. Am J Physiol 1982; 242(5): H797-804.
[PMID: 7081451]
[126]
Li JM, Fenton RA, Cutler BS, Dobson JG Jr. Adenosine enhances nitric oxide production by vascular endothelial cells. Am J Physiol 1995; 269(2 Pt 1): C519-23.
[http://dx.doi.org/10.1152/ajpcell.1995.269.2.C519] [PMID: 7653535]
[127]
Fukunaga AF, Flacke WE, Bloor BC. Hypotensive effects of adenosine and adenosine triphosphate compared with sodium nitroprusside. Anesth Analg 1982; 61(3): 273-8.
[http://dx.doi.org/10.1213/00000539-198203000-00010] [PMID: 7199840]
[128]
Stella L, de Novellis V, Marabese I, et al. The role of A3 adenosine receptors in central regulation of arterial blood pressure. Br J Pharmacol 1998; 125(3): 437-40.
[http://dx.doi.org/10.1038/sj.bjp.0702126] [PMID: 9806324]
[129]
Ho WY, Lu PJ, Hsiao M, et al. Adenosine modulates cardiovascular functions through activation of extracellular signal-regulated kinases 1 and 2 and endothelial nitric oxide synthase in the nucleus tractus solitarii of rats. Circulation 2008; 117(6): 773-80.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.107.746032] [PMID: 18227383]
[130]
Schindler CW, Karcz-Kubicha M, Thorndike EB, et al. Role of central and peripheral adenosine receptors in the cardiovascular responses to intraperitoneal injections of adenosine A1 and A2A subtype receptor agonists. Br J Pharmacol 2005; 144(5): 642-50.
[http://dx.doi.org/10.1038/sj.bjp.0706043] [PMID: 15678095]
[131]
Mahmud A, Feely J. Acute effect of caffeine on arterial stiffness and aortic pressure waveform. Hypertension 2001; 38(2): 227-31.
[http://dx.doi.org/10.1161/01.HYP.38.2.227] [PMID: 11509481]
[132]
Fredholm BB, Sollevi A. Cardiovascular effects of adenosine. Clin Physiol 1986; 6(1): 1-21.
[http://dx.doi.org/10.1111/j.1475-097X.1986.tb00139.x] [PMID: 3002708]
[133]
Koeppen M, Eckle T, Eltzschig HK. Selective deletion of the A1 adenosine receptor abolishes heart-rate slowing effects of intravascular adenosine in vivo. PLoS One 2009; 4(8)e6784
[http://dx.doi.org/10.1371/journal.pone.0006784] [PMID: 19707555]
[134]
Mangoni AA, Mircoli L, Giannattasio C, Ferrari AU, Mancia G. Heart rate-dependence of arterial distensibility in vivo. J Hypertens 1996; 14(7): 897-901.
[http://dx.doi.org/10.1097/00004872-199607000-00013] [PMID: 8818929]
[135]
Mircoli L, Mangoni AA, Giannattasio C, Mancia G, Ferrari AU. Heart rate-dependent stiffening of large arteries in intact and sympathectomized rats. Hypertension 1999; 34(4 Pt 1): 598-602.
[http://dx.doi.org/10.1161/01.HYP.34.4.598] [PMID: 10523333]
[136]
Tan I, Spronck B, Kiat H, et al. Heart rate dependency of large artery stiffness. Hypertension 2016; 68(1): 236-42.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.116.07462] [PMID: 27245180]
[137]
Hardie DG. AMP-activated protein kinase: an energy sensor that regulates all aspects of cell function. Genes Dev 2011; 25(18): 1895-908.
[http://dx.doi.org/10.1101/gad.17420111] [PMID: 21937710]
[138]
Chen Z, Peng IC, Sun W, et al. AMP-activated protein kinase functionally phosphorylates endothelial nitric oxide synthase Ser633. Circ Res 2009; 104(4): 496-505.
[http://dx.doi.org/10.1161/CIRCRESAHA.108.187567] [PMID: 19131647]
[139]
Banek CT, Bauer AJ, Needham KM, Dreyer HC, Gilbert JS. AICAR administration ameliorates hypertension and angiogenic imbalance in a model of preeclampsia in the rat. Am J Physiol Heart Circ Physiol 2013; 304(8): H1159-65.
[http://dx.doi.org/10.1152/ajpheart.00903.2012] [PMID: 23417865]
[140]
Morrow VA, Foufelle F, Connell JM, Petrie JR, Gould GW, Salt IP. Direct activation of AMP-activated protein kinase stimulates nitric-oxide synthesis in human aortic endothelial cells. J Biol Chem 2003; 278(34): 31629-39.
[http://dx.doi.org/10.1074/jbc.M212831200] [PMID: 12791703]
[141]
Bradley EA, Eringa EC, Stehouwer CD, et al. Activation of AMP-activated protein kinase by 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside in the muscle microcirculation increases nitric oxide synthesis and microvascular perfusion. Arterioscler Thromb Vasc Biol 2010; 30(6): 1137-42.
[http://dx.doi.org/10.1161/ATVBAHA.110.204404] [PMID: 20224051]
[142]
Enkhjargal B, Godo S, Sawada A, et al. Endothelial AMP-activated protein kinase regulates blood pressure and coronary flow responses through hyperpolarization mechanism in mice. Arterioscler Thromb Vasc Biol 2014; 34(7): 1505-13.
[http://dx.doi.org/10.1161/ATVBAHA.114.303735] [PMID: 24855056]
[143]
Lin Y, Chen J, Sun Z. Antiaging gene klotho deficiency promoted high-fat diet-induced arterial stiffening via inactivation of amp-activated protein kinase. Hypertension 2016; 67(3): 564-73.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.115.06825] [PMID: 26781278]
[144]
Gao D, Zuo Z, Tian J, et al. Activation of SIRT1 attenuates klotho deficiency-induced arterial stiffness and hypertension by enhancing AMP-activated protein kinase activity. Hypertension 2016; 68(5): 1191-9.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.116.07709] [PMID: 27620389]
[145]
Mangoni AA, Zinellu A, Sotgia S, Carru C, Piga M, Erre GL. Protective effects of methotrexate against proatherosclerotic cytokines: a review of the evidence. Mediators Inflamm 2017; 20179632846
[http://dx.doi.org/10.1155/2017/9632846] [PMID: 29430085]
[146]
Csiszar A, Labinskyy N, Smith K, Rivera A, Orosz Z, Ungvari Z. Vasculoprotective effects of anti-tumor necrosis factor-alpha treatment in aging. Am J Pathol 2007; 170(1): 388-98.
[http://dx.doi.org/10.2353/ajpath.2007.060708] [PMID: 17200210]
[147]
Alexander MR, Murgai M, Moehle CW, Owens GK. Interleukin-1β modulates smooth muscle cell phenotype to a distinct inflammatory state relative to PDGF-DD via NF-κB-dependent mechanisms. Physiol Genomics 2012; 44(7): 417-29.
[http://dx.doi.org/10.1152/physiolgenomics.00160.2011] [PMID: 22318995]
[148]
Song Y, Shen H, Schenten D, Shan P, Lee PJ, Goldstein DR. Aging enhances the basal production of IL-6 and CCL2 in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 2012; 32(1): 103-9.
[http://dx.doi.org/10.1161/ATVBAHA.111.236349] [PMID: 22034510]
[149]
Howard SC, McCormick J, Pui CH, Buddington RK, Harvey RD. Preventing and managing toxicities of high-dose methotrexate. Oncologist 2016; 21(12): 1471-82.
[http://dx.doi.org/10.1634/theoncologist.2015-0164] [PMID: 27496039]
[150]
Romão VC, Lima A, Bernardes M, Canhão H, Fonseca JE. Three decades of low-dose methotrexate in rheumatoid arthritis: can we predict toxicity? Immunol Res 2014; 60(2-3): 289-310.
[http://dx.doi.org/10.1007/s12026-014-8564-6] [PMID: 25391609]
[151]
Yazici Y, Sokka T, Kautiainen H, Swearingen C, Kulman I, Pincus T. Long term safety of methotrexate in routine clinical care: discontinuation is unusual and rarely the result of laboratory abnormalities. Ann Rheum Dis 2005; 64(2): 207-11.
[http://dx.doi.org/10.1136/ard.2004.023408] [PMID: 15208176]
[152]
Kinder AJ, Hassell AB, Brand J, Brownfield A, Grove M, Shadforth MF. The treatment of inflammatory arthritis with methotrexate in clinical practice: treatment duration and incidence of adverse drug reactions. Rheumatology (Oxford) 2005; 44(1): 61-6.
[http://dx.doi.org/10.1093/rheumatology/keh512] [PMID: 15611303]
[153]
Verschueren P, De Cock D, Corluy L, et al. Effectiveness of methotrexate with step-down glucocorticoid remission induction (COBRA Slim) versus other intensive treatment strategies for early rheumatoid arthritis in a treat-to-target approach: 1-year results of CareRA, a randomised pragmatic open-label superiority trial. Ann Rheum Dis 2017; 76(3): 511-20.
[http://dx.doi.org/10.1136/annrheumdis-2016-209212] [PMID: 27432356]
[154]
Hirshberg B, Muszkat M, Schlesinger O, Rubinow A. Safety of low dose methotrexate in elderly patients with rheumatoid arthritis. Postgrad Med J 2000; 76(902): 787-9.
[http://dx.doi.org/10.1136/pgmj.76.902.787] [PMID: 11085770]
[155]
McKenzie SJ, McLaughlin D, Clark J, Doi SA. The burden of non-adherence to cardiovascular medications among the aging population in Australia: a meta-analysis. Drugs Aging 2015; 32(3): 217-25.
[http://dx.doi.org/10.1007/s40266-015-0245-1] [PMID: 25749743]
[156]
Yang Q, Chang A, Ritchey MD, Loustalot F. Antihypertensive medication adherence and risk of cardiovascular disease among older adults: a population-based cohort study. J Am Heart Assoc 2017; 6(6): 6.
[http://dx.doi.org/10.1161/JAHA.117.006056] [PMID: 28647688]
[157]
Dalrymple JM, Stamp LK, O’Donnell JL, Chapman PT, Zhang M, Barclay ML. Pharmacokinetics of oral methotrexate in patients with rheumatoid arthritis. Arthritis Rheum 2008; 58(11): 3299-308.
[http://dx.doi.org/10.1002/art.24034] [PMID: 18975321]
[158]
Gupta V, Lipsitz LA. Orthostatic hypotension in the elderly: diagnosis and treatment. Am J Med 2007; 120(10): 841-7.
[http://dx.doi.org/10.1016/j.amjmed.2007.02.023] [PMID: 17904451]
[159]
Baghdadi LR, Woodman RJ, Shanahan EM, Wiese MD, Mangoni AA. Genetic polymorphism of the methotrexate transporter ABCG2, blood pressure and markers of arterial function in patients with rheumatoid arthritis: repeated cross-sectional study. Pharm Genomics Pers Med 2018; 11: 205-10.
[http://dx.doi.org/10.2147/PGPM.S170557] [PMID: 30519074]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 25
ISSUE: 39
Year: 2019
Page: [4175 - 4184]
Pages: 10
DOI: 10.2174/1381612825666191112091700
Price: $65

Article Metrics

PDF: 14
HTML: 3