An Overview of Bioinformatics Methods for Analyzing Autism Spectrum Disorders

Author(s): Shogo Nakashima, Jose C. Nacher, Jiangning Song, Tatsuya Akutsu*.

Journal Name: Current Pharmaceutical Design

Volume 25 , Issue 43 , 2019

Become EABM
Become Reviewer

Abstract:

Autism Spectrum Disorders (ASD) are a group of neurodevelopmental disorders and are well recognized to be biologically heterogeneous in which various factors are associated, including genetic, metabolic, and environmental ones. Despite its high prevalence, only a few drugs have been approved for the treatment of ASD. Therefore, extensive studies have been conducted to identify ASD risk genes and novel drug targets. Since many genes and many other factors are associated with ASD, various bioinformatics methods have also been developed for the analysis of ASD. In this paper, we review bioinformatics methods for analyzing ASD data with the focus on computational aspects. We classify existing methods into two categories: (i) methods based on genomic variants and gene expression data, and (ii) methods using biological networks, which include gene co-expression networks and protein-protein interaction networks. Next, for each method, we provide an overall flow and elaborate on the computational techniques used. We also briefly review other approaches and discuss possible future directions and strategies for developing bioinformatics approaches to analyze ASD.

Keywords: Autism, ASD, bioinformatics, neurodevelopmental disorders, genomic variants, bioinformatics approaches.

[1]
Rubenstein JL, Merzenich MM. Model of autism: increased ratio of excitation/inhibition in key neural systems. Genes Brain Behav 2003; 2(5): 255-67.
[http://dx.doi.org/10.1034/j.1601-183X.2003.00037.x] [PMID: 14606691]
[2]
Nelson SB, Valakh V. Excitatory/inhibitory balance and circuit homeostasis in autism spectrum disorders. Neuron 2015; 87(4): 684-98.
[http://dx.doi.org/10.1016/j.neuron.2015.07.033] [PMID: 26291155]
[3]
Tabuchi K, Blundell J, Etherton MR, et al. A neuroligin-3 mutation implicated in autism increases inhibitory synaptic transmission in mice. Science 2007; 318(5847): 71-6.
[http://dx.doi.org/10.1126/science.1146221] [PMID: 17823315]
[4]
Zoghbi HY, Bear MF. Synaptic dysfunction in neurodevelopmental disorders associated with autism and intellectual disabilities. Cold Spring Harb Perspect Biol 2012; 4(3) a009886
[http://dx.doi.org/10.1101/cshperspect.a009886] [PMID: 22258914]
[5]
Miles JH. Autism spectrum disorders-a genetics review. Genet Med 2011; 13(4): 278-94.
[http://dx.doi.org/10.1097/GIM.0b013e3181ff67ba] [PMID: 21358411]
[6]
Ansel A, Rosenzweig JP, Zisman PD, Melamed M, Gesundheit B. Variation in gene expression in autism spectrum disorders: an extensive review of transcriptomic studies. Front Neurosci 2017; 10: 601.
[http://dx.doi.org/10.3389/fnins.2016.00601] [PMID: 28105001]
[7]
Poleg S, Golubchik P, Offen D, Weizman A. Cannabidiol as a suggested candidate for treatment of autism spectrum disorder. Prog Neuropsychopharmacol Biol Psychiatry 2019; 89: 90-6.
[http://dx.doi.org/10.1016/j.pnpbp.2018.08.030] [PMID: 30171992]
[8]
de Boer JN, Vingerhoets C, Hirdes M, McAlonan GM, Amelsvoort TV, Zinkstok JR. Efficacy and tolerability of riluzole in psychiatric disorders: a systematic review and preliminary meta-analysis. Psychiatry Res 2019; 278: 294-302.
[http://dx.doi.org/10.1016/j.psychres.2019.06.020] [PMID: 31254879]
[9]
Domenici MR, Ferrante A, Martire A, et al. Adenosine A2A receptor as potential therapeutic target in neuropsychiatric disorders. Pharmacol Res 2019; 147 104338
[http://dx.doi.org/10.1016/j.phrs.2019.104338] [PMID: 31276772]
[10]
Bishop CM. Pattern Recognition and Machine Learning. Springer 2006.
[11]
Grove J, Ripke S, Als TD, et al. Identification of common genetic risk variants for autism spectrum disorder. Nat Genet 2019; 51(3): 431-44.
[http://dx.doi.org/10.1038/s41588-019-0344-8] [PMID: 30804558]
[12]
Parikshak NN, Swarup V, Belgard TG, et al. Genome-wide changes in lncRNA, splicing, and regional gene expression patterns in autism. Nature 2016; 540(7633): 423-7.
[http://dx.doi.org/10.1038/nature20612] [PMID: 27919067]
[13]
Werling DM, Brand H, An JY, et al. An analytical framework for whole-genome sequence association studies and its implications for autism spectrum disorder. Nat Genet 2018; 50(5): 727-36.
[http://dx.doi.org/10.1038/s41588-018-0107-y] [PMID: 29700473]
[14]
Basu SN, Kollu R, Banerjee-Basu S. AutDB: a gene reference resource for autism research. Nucleic Acids Res 2009; 37(Database issue): D832-6.
[http://dx.doi.org/10.1093/nar/gkn835] [PMID: 19015121]
[15]
Leslie R, O’Donnell CJ, Johnson AD. GRASP: analysis of genotype-phenotype results from 1390 genome-wide association studies and corresponding open access database. Bioinformatics 2014; 30(12): i185-94.
[http://dx.doi.org/10.1093/bioinformatics/btu273] [PMID: 24931982]
[16]
Zhan X, Girirajan S, Zhao N, Wu MC, Ghosh D. A novel copy number variants kernel association test with application to autism spectrum disorders studies. Bioinformatics 2016; 32(23): 3603-10.
[http://dx.doi.org/10.1093/bioinformatics/btw500] [PMID: 27497442]
[17]
Tzeng JY, Magnusson PKE, Sullivan PF, Szatkiewicz JP. Swedish Schizophrenia Consortium. Szatkiewicz JP. A new method for detecting associations with rare copy-number variants. PLoS Genet 2015; 11(10) e1005403
[http://dx.doi.org/10.1371/journal.pgen.1005403] [PMID: 26431523]
[18]
Vervier K, Michaelson JJ. TiSAn: estimating tissue-specific effects of coding and non-coding variants. Bioinformatics 2018; 34(18): 3061-8.
[http://dx.doi.org/10.1093/bioinformatics/bty301] [PMID: 29912365]
[19]
Chen R, Wei Q, Zhan X, et al. A haplotype-based framework for group-wise transmission/disequilibrium tests for rare variant association analysis. Bioinformatics 2015; 31(9): 1452-9.
[http://dx.doi.org/10.1093/bioinformatics/btu860] [PMID: 25568282]
[20]
Chen R, Davis LK, Guter S, et al. Leveraging blood serotonin as an endophenotype to identify de novo and rare variants involved in autism. Mol Autism 2017; 8: 14.
[http://dx.doi.org/10.1186/s13229-017-0130-3] [PMID: 28344757]
[21]
Aguiar D, Halldórsson BV, Morrow EM, Istrail S. DELISHUS: an efficient and exact algorithm for genome-wide detection of deletion polymorphism in autism. Bioinformatics 2012; 28(12): i154-62.
[http://dx.doi.org/10.1093/bioinformatics/bts234] [PMID: 22689755]
[22]
Zhou J, Park CY, Theesfeld CL, et al. Whole-genome deep-learning analysis identifies contribution of noncoding mutations to autism risk. Nat Genet 2019; 51(6): 973-80.
[http://dx.doi.org/10.1038/s41588-019-0420-0] [PMID: 31133750]
[23]
Cogill S, Wang L. Support vector machine model of developmental brain gene expression data for prioritization of Autism risk gene candidates. Bioinformatics 2016; 32(23): 3611-8.
[http://dx.doi.org/10.1093/bioinformatics/btw498] [PMID: 27506227]
[24]
Gök M. A novel machine learning model to predict autism spectrum disorders risk gene. Neural Comput Appl 2019; 31(10): 6711-7.
[http://dx.doi.org/10.1007/s00521-0183502-5]
[25]
Hameed SS, Hassan R, Muhammad FF. Selection and classification of gene expression in autism disorder: use of a combination of statistical filters and a GBPSO-SVM algorithm. PLoS One 2017; 12(11) e0187371
[http://dx.doi.org/10.1371/journal.pone.0187371] [PMID: 29095904]
[26]
Gilman SR, Iossifov I, Levy D, Ronemus M, Wigler M, Vitkup D. Rare de novo variants associated with autism implicate a large functional network of genes involved in formation and function of synapses. Neuron 2011; 70(5): 898-907.
[http://dx.doi.org/10.1016/j.neuron.2011.05.021] [PMID: 21658583]
[27]
The Gene Ontology Consortium. The Gene Ontology Resource: 20 years and still GOing strong. Nucleic Acids Res 2019; 47(D1): D330-8.
[http://dx.doi.org/10.1093/nar/gky1055] [PMID: 30395331]
[28]
Kanehisa M, Sato Y, Furumichi M, Morishima K, Tanabe M. New approach for understanding genome variations in KEGG. Nucleic Acids Res 2019; 47(D1): D590-5.
[http://dx.doi.org/10.1093/nar/gky962] [PMID: 30321428]
[29]
Gilman SR, Chang J, Xu B, et al. Diverse types of genetic variation converge on functional gene networks involved in schizophrenia. Nat Neurosci 2012; 15(12): 1723-8.
[http://dx.doi.org/10.1038/nn.3261] [PMID: 23143521]
[30]
Parikshak NN, Luo R, Zhang A, et al. Integrative functional genomic analyses implicate specific molecular pathways and circuits in autism. Cell 2013; 155(5): 1008-21.
[http://dx.doi.org/10.1016/j.cell.2013.10.031] [PMID: 24267887]
[31]
Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 2008; 9: 559.
[http://dx.doi.org/10.1186/1471-2105-9-559] [PMID: 19114008]
[32]
Liu L, Lei J, Sanders SJ, et al. DAWN: a framework to identify autism genes and subnetworks using gene expression and genetics. Mol Autism 2014; 5(1): 22.
[http://dx.doi.org/10.1186/2040-2392-5-22] [PMID: 24602502]
[33]
Liu L, Lei J, Roeder K. Network assisted analysis to reveal the genetic basis of autism. Ann Appl Stat 2015; 9(3): 1571-600.
[http://dx.doi.org/10.1214/15-AOAS844] [PMID: 27134692]
[34]
He X, Sanders SJ, Liu L, et al. Integrated model of de novo and inherited genetic variants yields greater power to identify risk genes. PLoS Genet 2013; 9(8) e1003671
[http://dx.doi.org/10.1371/journal.pgen.1003671] [PMID: 23966865]
[35]
Barrett T, Wilhite SE, Ledoux P, et al. NCBI GEO: archive for functional genomics data sets-update. Nucleic Acids Res 2013; 41(Database issue): D991-5.
[PMID: 23193258]
[36]
Hormozdiari F, Penn O, Borenstein E, Eichler EE. The discovery of integrated gene networks for autism and related disorders. Genome Res 2015; 25(1): 142-54.
[http://dx.doi.org/10.1101/gr.178855.114] [PMID: 25378250]
[37]
Alon N, Yuster R, Zwick U. Color-coding. J Assoc Comput Mach 1995; 42: 844-56.
[http://dx.doi.org/10.1145/210332.210337]
[38]
Hillenmeyer S, Davis LK, Gamazon ER, Cook EH, Cox NJ, Altman RB. STAMS: STRING-assisted module search for genome wide association studies and application to autism. Bioinformatics 2016; 32(24): 3815-22.
[http://dx.doi.org/10.1093/bioinformatics/btw530] [PMID: 27542772]
[39]
Franceschini A, Szklarczyk D, Frankild S, et al. STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res 2013; 41(Database issue): D808-15.
[PMID: 23203871]
[40]
Wang Q, Yu H, Zhao Z, Jia P. E.W._dmGWAS: edge-weighted dense module search for genome-wide association studies and gene expression profiles. Bioinformatics 2015; 31(15): 2591-4.
[http://dx.doi.org/10.1093/bioinformatics/btv150] [PMID: 25805723]
[41]
Krishnan A, Zhang R, Yao V, et al. Genome-wide prediction and functional characterization of the genetic basis of autism spectrum disorder. Nat Neurosci 2016; 19(11): 1454-62.
[http://dx.doi.org/10.1038/nn.4353] [PMID: 27479844]
[42]
Amberger JS, Bocchini CA, Schiettecatte F, Scott AF, Hamosh A. OMIM.org: Online Mendelian Inheritance in Man (OMIM®), an online catalog of human genes and genetic disorders. Nucleic Acids Res 2015; 43(Database issue): D789-98.
[http://dx.doi.org/10.1093/nar/gku1205] [PMID: 25428349]
[43]
Matta J, Zhao J, Ercal G, Obafemi-Ajayi T. Applications of node-based resilience graph theoretic framework to clustering autism spectrum disorders phenotypes. Appl Netw Sci 2018; 3(1): 38.
[http://dx.doi.org/10.1007/s41109-018-0093-0] [PMID: 30839816]
[44]
Shen L, Lin Y, Sun Z, Yuan X, Chen L, Shen B. Knowledge-guided bioinformatics model for identifying autism spectrum disorder diagnostic microRNA biomarkers. Sci Rep 2016; 6: 39663.
[http://dx.doi.org/10.1038/srep39663] [PMID: 28000768]
[45]
Norman U, Cicek AE. ST-Steiner: a spatio-temporal gene discovery algorithm. Bioinformatics 2019; 35(18): 3433-40.
[http://dx.doi.org/10.1093/bioinformatics/btz110] [PMID: 30759247]
[46]
Kawakubo H, Matsui Y, Kushima I, Ozaki N, Shimamura T. A network of networks approach for modeling interconnected brain tissue-specific networks. Bioinformatics 2019; 35(17): 3092-101.
[http://dx.doi.org/10.1093/bioinformatics/btz032] [PMID: 30649245]
[47]
Tuncbag N, Braunstein A, Pagnani A, et al. Simultaneous reconstruction of multiple signaling pathways the prize-collecting steiner forest problem. J Comput Biol 2013; 20(2): 124-36.
[http://dx.doi.org/10.1089/cmb.2012.0092] [PMID: 23383998]
[48]
Vuong HE, Hsiao EY. Emerging roles for the gut microbiome in autism spectrum disorder. Biol Psychiatry 2017; 81(5): 411-23.
[http://dx.doi.org/10.1016/j.biopsych.2016.08.024] [PMID: 27773355]
[49]
Hicks SD, Uhlig R, Afshari P, et al. Oral microbiome activity in children with autism spectrum disorder. Autism Res 2018; 11(9): 1286-99.
[http://dx.doi.org/10.1002/aur.1972] [PMID: 30107083]
[50]
Banerjee K, Zhao N, Srinivasan A, et al. An adaptive multivariate two-sample test with application to microbiome differential abundance analysis. Front Genet 2019; 10: 350.
[http://dx.doi.org/10.3389/fgene.2019.00350] [PMID: 31068967]
[51]
Smith AM, King JJ, West PR, et al. Amino acid dysregulation metabotypes: potential biomarkers for diagnosis and individualized treatment for subtypes of autism spectrum disorder. Biol Psychiatry 2019; 85(4): 345-54.
[http://dx.doi.org/10.1016/j.biopsych.2018.08.016] [PMID: 30446206]
[52]
Bruining H, Eijkemans MJ, Kas MJ, Curran SR, Vorstman JA, Bolton PF. Behavioral signatures related to genetic disorders in autism. Mol Autism 2014; 5(1): 11.
[http://dx.doi.org/10.1186/2040-2392-5-11] [PMID: 24517317]
[53]
Campbell MG, Kohane IS, Kong SW. Pathway-based outlier method reveals heterogeneous genomic structure of autism in blood transcriptome. BMC Med Genomics 2013; 6: 34.
[http://dx.doi.org/10.1186/1755-8794-6-34] [PMID: 24063311]
[54]
Eraslan G, Avsec Ž, Gagneur J, Theis FJ. Deep learning: new computational modelling techniques for genomics. Nat Rev Genet 2019; 20(7): 389-403.
[http://dx.doi.org/10.1038/s41576-019-0122-6] [PMID: 30971806]
[55]
Fortunato S, Hric D. Community detection in networks: a user guide. Phys Rep 2016; 659: 1-44.
[http://dx.doi.org/10.1016/j.physrep.2016.09.002]
[56]
Saelens W, Cannoodt R, Saeys Y. A comprehensive evaluation of module detection methods for gene expression data. Nat Commun 2018; 9(1): 1090.
[http://dx.doi.org/10.1038/s41467-018-03424-4] [PMID: 29545622]
[57]
Kivelä M, Arenas A, Barthelemy M, Gleeson JP, Moreno Y. MA. Multilayer networks. J Complex Netw 2014; 2(3): 203-71.
[http://dx.doi.org/10.1093/comnet/cnu016]
[58]
Liu YY, Slotine JJ, Barabási AL. Controllability of complex networks. Nature 2011; 473(7346): 167-73.
[http://dx.doi.org/10.1038/nature10011] [PMID: 21562557]
[59]
Nacher JC, Akutsu T. Minimum dominating set-based methods for analyzing biological networks. Methods 2016; 102: 57-63.
[http://dx.doi.org/10.1016/j.ymeth.2015.12.017] [PMID: 26773457]
[60]
Kong Y, Yu T. A graph-embedded deep feedforward network for disease outcome classification and feature selection using gene expression data. Bioinformatics 2018; 34(21): 3727-37.
[http://dx.doi.org/10.1093/bioinformatics/bty429] [PMID: 29850911]
[61]
Matsubara T, Ochiai T, Hayashida M, Akutsu T, Nacher JC. Convolutional neural network approach to lung cancer classification integrating protein interaction network and gene expression profiles. J Bioinform Comput Biol 2019; 17(3) 1940007
[http://dx.doi.org/10.1142/S0219720019400079] [PMID: 31288636]
[62]
Lin CY, Ruan P, Li R, et al. Deep learning with evolutionary and genomic profiles for identifying cancer subtypes. J Bioinform Comput Biol 2019; 17(3)1940005
[http://dx.doi.org/10.1142/S0219720019400055] [PMID: 31288637]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 25
ISSUE: 43
Year: 2019
Page: [4552 - 4559]
Pages: 8
DOI: 10.2174/1381612825666191111154837
Price: $65

Article Metrics

PDF: 23
HTML: 6