Metal/Metal Oxide Nanoparticles: Toxicity, Applications, and Future Prospects

Author(s): Ratiram G. Chaudhary*, Ganesh S. Bhusari, Ashish D. Tiple, Alok R. Rai, Subhash R. Somkuvar, Ajay K. Potbhare, Trimurti L. Lambat, Prashant P. Ingle, Ahmed A. Abdala*.

Journal Name: Current Pharmaceutical Design

Volume 25 , Issue 37 , 2019

Become EABM
Become Reviewer

Abstract:

The ever-growing resistance of pathogens to antibiotics and crop disease due to pest has triggered severe health concerns in recent years. Consequently, there is a need of powerful and protective materials for the eradication of diseases. Metal/metal oxide nanoparticles (M/MO NPs) are powerful agents due to their therapeutic effects in microbial infections. In this context, the present review article discusses the toxicity, fate, effects and applications of M/MO NPs. This review starts with an introduction, followed by toxicity aspects, antibacterial and testing methods and mechanism. In addition, discussion on the impact of different M/MO NPs and their characteristics such as size, shape, particle dissolution on their induced toxicity on food and plants, as well as applications in pesticides. Finally, prospective on current and future issues are presented.

Keywords: Metal oxide nanoparticles, toxicity, microbial assay, callus poisoning, pest control, plant biotechnology.

[1]
Hickey DJ, Ercan B, Sun L, Webster TJ. Adding MgO nanoparticles to hydroxyapatite-PLLA nanocomposites for improved bone tissue engineering applications. Acta Biomater 2015; 14: 175-84.
[http://dx.doi.org/10.1016/j.actbio.2014.12.004]
[2]
Chaudhary RG, Tanna JA, Mondal A, Gandhare NV, Juneja HD. Silica-coated nickel oxide a core-shell nanostructure: synthesis, characterization and its catalytic property in one-pot synthesis of malononitrile derivative. J Chinese Adv Mat Soc 2017; 5(2): 103-17.
[http://dx.doi.org/10.1080/22243682.2017.1296371]
[3]
Tanna JA, Chaudhary RG, Gandhare NV, Rai AR, Yerpude S, Juneja HD. Copper nanoparticles catalysed an efficient one-pot multicomponents synthesis of chromenes derivatives and its antibacterial activity. J Exp Nanosci 2016; 11(11): 884-900.
[http://dx.doi.org/10.1080/17458080.2016.1177216]
[4]
Zhang L, Pornpattananangkul D, Hu CM, Huang CM. Development of nanoparticles for antimicrobial drug delivery. Curr Med Chem 2010; 17(6): 585-94.
[http://dx.doi.org/10.2174/092986710790416290]
[5]
Domb A, Tabata Y, Ravi Kumar M, Farber S. Nanoparticles for Pharmaceutical Application. Valencia, CA: American Scientific Publishers 2007.
[6]
Kaul S, Gulati N, Verma D, Mukherjee S, Nagaich U. Role of nanotechnology in cosmeceuticals: a review of recent advances. J Pharm 2018; 20183420204
[http://dx.doi.org/10.1155/2018/3420204]
[7]
Sanchez-Dominguez M, Boutonnet M, Solans C. A novel approach to metal and metal oxide nanoparticle synthesis: the oil-in-water microemulsion reaction method. J Nanopart Res 2009; 11(7): 1823.
[http://dx.doi.org/10.1007/s11051-009-9660-8]
[8]
Wang P, Lombi E, Zhao FJ, Kopittke PM. Nanotechnology: a new opportunity in plant sciences. Trends Plant Sci 2016; 21(8): 699-712.
[http://dx.doi.org/10.1016/j.tplants.2016.04.005]
[9]
Bundschuh M, Filser J, Lüderwald S, et al. Nanoparticles in the environment: where do we come from, where do we go to? Environ Sci Eur 2018; 30(1): 1-7.
[http://dx.doi.org/10.1186/s12302-018-0132-6]
[10]
Batley GE, Kirby JK, McLaughlin MJ. Fate and risks of nanomaterials in aquatic and terrestrial environments. Acc Chem Res 2012; 46(3): 854-62.
[http://dx.doi.org/10.1021/ar2003368]
[11]
Kapoor V, Phan D, Pasha AT. Effects of metal oxide nanoparticles on nitrification in wastewater treatment systems: a systematic review. J Environ Sci Health Part A Tox Hazard Subst Environ Eng 2018; 53(7): 659-68.
[http://dx.doi.org/10.1080/10934529.2018.1438825]
[12]
Mukherjee A, Majumdar S, Servin AD, Pagano L, Dhankher OP, White JC. Carbon nanomaterials in agriculture: a critical review. Front Plant Sci 2016; 7: 172.
[http://dx.doi.org/10.3389/fpls.2016.00172]
[13]
Mohamed A, Salama A, Nasser WS, Uheida A. Photodegradation of ibuprofen, cetirizine, and naproxen by PAN-MWCNT/TiO 2–NH 2 nanofiber membrane under UV light irradiation. Environ Sci Eur 2018; 30(1): 47.
[http://dx.doi.org/10.1186/s12302-018-0177-6]
[14]
Ozlu E, Sandhu SS, Kumar S, Arriaga FJ. Soil health indicators impacted by long-term cattle manure and inorganic fertilizer application in a corn-soybean rotation of South Dakota. Sci Rep 2019; 9(1): 1.
[http://dx.doi.org/10.1038/s41598-019-48207-z]
[15]
Simonin M, Guyonnet JP, Martins JM, Ginot M, Richaume A. Influence of soil properties on the toxicity of TiO2 nanoparticles on carbon mineralization and bacterial abundance. J Hazard Mater 2015; 283: 529-35.
[http://dx.doi.org/10.1016/j.jhazmat.2014.10.004]
[16]
Dinesh R, Anandaraj M, Srinivasan V, Hamza S. Engineered nanoparticles in the soil and their potential implications to microbial activity. Geoderma 2012; 173: 19-27.
[http://dx.doi.org/10.1016/j.geoderma.2011.12.018]
[17]
Klaine SJ, Alvarez PJ, Batley GE, et al. Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem 2008; 27(9): 1825-51.
[http://dx.doi.org/10.1897/08-090.1]
[18]
Vogel M, Fischer S, Maffert A, et al. Biotransformation and detoxification of selenite by microbial biogenesis of selenium-sulfur nanoparticles. J Hazard Mater 2018; 344: 749-57.
[http://dx.doi.org/10.1016/j.jhazmat.2017.10.034]
[19]
Kiser MA, Ryu H, Jang H, Hristovski K, Westerhoff P. Biosorption of nanoparticles to heterotrophic wastewater biomass. Water Res 2010; 44(14): 4105-14.
[http://dx.doi.org/10.1016/j.watres.2010.05.036]
[20]
Gottschalk F, Sonderer T, Scholz RW, Nowack B. Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ Sci Technol 2009; 43: 9216-22.
[21]
Li D, Lyon DY, Li Q, Alvarez PJ. Effect of soil sorption and aquatic natural organic matter on the antibacterial activity of a fullerene water suspension. Environ Toxicol Chem 2008; 27(9): 1888-94.
[http://dx.doi.org/10.1897/07-548.1]
[22]
Slavin YN, Asnis J, Häfeli UO, Bach H. Metal nanoparticles: understanding the mechanisms behind antibacterial activity. J Nanobiotechnology 2017; 15(1): 65.
[http://dx.doi.org/10.1186/s12951-017-0308-z]
[23]
Korshed P, Li L, Liu Z, Wang T. The molecular mechanisms of the antibacterial effect of picosecond laser generated silver nanoparticles and their toxicity to human cells. PLoS One 2016; 11(8)e0160078
[http://dx.doi.org/10.1371/journal.pone.0160078]
[24]
Doolette CL, Gupta VV, Lu Y, et al. Quantifying the sensitivity of soil microbial communities to silver sulfide nanoparticles using metagenome sequencing. PLoS One 2016; 11(8)0161979
[http://dx.doi.org/10.1371/journal.pone.0161979]
[25]
Metch JW, Burrows ND, Murphy CJ, Pruden A, Vikesland PJ. Metagenomic analysis of microbial communities yields insight into impacts of nanoparticle design. Nat Nanotechnol 2018; 13(3): 253.
[http://dx.doi.org/10.1038/s41565-017-0029-3]
[26]
Mikolay A, Huggett S, Tikana L, Grass G, Braun J, Nies DH. Survival of bacteria on metallic copper surfaces in a hospital trial. Appl Microbiol Biotechnol 2010; 87(5): 1875-9.
[http://dx.doi.org/10.1007/s00253-010-2640-1]
[27]
Liochev SI. The mechanism of “Fenton-like” reactions and their importance for biological systems. A biologist’s view. Met Ions Biol Syst 1999; 36: 1-39.
[28]
Kehrer JP. The Haber-Weiss reaction and mechanisms of toxicity. Toxicology 2000; 149(1): 43-50.
[http://dx.doi.org/10.1016/S0300-483X(00)00231-6]
[29]
Teske SS, Detweiler CS. The biomechanisms of metal and metal-oxide nanoparticles’ interactions with cells. Int J Environ Res Public Health 2015; 12(2): 1112-34.
[http://dx.doi.org/10.3390/ijerph120201112]
[30]
Koppenol WH. The Haber-Weiss cycle-70 years later. Redox Rep 2001; 6(4): 229-34.
[http://dx.doi.org/10.1179/135100001101536373]
[31]
Behar D, Czapski G, Rabani J, Dorfman LM, Schwarz HA. Acid dissociation constant and decay kinetics of the perhydroxyl radical. J Phys Chem 1970; 74(17): 3209-13.
[http://dx.doi.org/10.1021/j100711a009]
[32]
Atlas RM. Handbook of media for environmental microbiology. Boca Raton, FL: CRC Press. Inc. 2004.
[http://dx.doi.org/10.1201/9781420039726]
[33]
Curtis Peterson W, Hale DC, Matsen JM. An evaluation of the practicality of the spot-indole test for the identification of Escherichia coli in the clinical microbiology laboratory. Am J Clin Pathol 1982; 78(5): 755-8.
[http://dx.doi.org/10.1093/ajcp/78.5.755]
[34]
Wayne PA. Clinical and laboratory standards institute Performance standards for antimicrobial susceptibility testing
[35]
Baker CN, Stocker SA, Culver DH, Thornsberry C. Comparison of the E Test to agar dilution, broth microdilution, and agar diffusion susceptibility testing techniques by using a special challenge set of bacteria. J Clin Microbiol 1991; 29(3): 533-8.
[36]
Wiegand I, Hilpert K, Hancock RE. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc 2008; 3(2): 163.
[http://dx.doi.org/10.1038/nprot.2007.521]
[37]
Ericsson HM, Sherris JC. Antibiotic sensitivity testing. Report of an international collaborative study. Acta Pathol Microbiol Scand B Microbiol Immunol 1971; (Suppl. 217)1+.
[38]
Reller LB, Weinstein M, Jorgensen JH, Ferraro MJ. Antimicrobial susceptibility testing: a review of general principles and contemporary practices. Clin Infect Dis 2009; 49(11): 1749-55.
[http://dx.doi.org/10.1086/647952]
[39]
Pal S, Tak YK, Song JM. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 2007; 73(6): 1712-20.
[http://dx.doi.org/10.1128/AEM.02218-06]
[40]
Shahverdi AR, Fakhimi A, Shahverdi HR, Minaian S. Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomedicine 2007; 3(2): 168-71.
[http://dx.doi.org/10.1016/j.nano.2007.02.001]
[41]
Samrot AV, Shobana N, Jenna R. Antibacterial and antioxidant activity of different staged ripened fruit of Capsicum annuum and its green synthesized silver nanoparticles. Bionanoscience 2018; 8(2): 632-46.
[http://dx.doi.org/10.1007/s12668-018-0521-8]
[42]
Upadhyay LS, Verma N. Recent developments and applications in plant-extract mediated synthesis of silver nanoparticles. Anal Lett 2015; 48(17): 2676-92.
[http://dx.doi.org/10.1080/00032719.2015.1048350]
[43]
Guo M, Li W, Yang F, Liu H. Controllable biosynthesis of gold nanoparticles from a Eucommia ulmoides bark aqueous extract. Spectrochim Acta A Mol Biomol Spectrosc 2015; 142: 73-9.
[http://dx.doi.org/10.1016/j.saa.2015.01.109]
[44]
Manokari M, Shekhawat MS. Biosynthesis and characterization of zinc oxide nanoparticles using Thunbergia erecta (Benth.) T. Anders plant extracts. Arch Agr Environ Sci 2017; 2(3): 148-51.
[45]
Brown AN, Smith K, Samuels TA, Lu J, Obare SO, Scott ME. Nanoparticles functionalized with ampicillin destroy multiple-antibiotic-resistant isolates of Pseudomonas aeruginosa and Enterobacter aerogenes and methicillin-resistant Staphylococcus aureus. Appl Environ Microbiol 2012; 78(8): 2768-74.
[http://dx.doi.org/10.1128/AEM.06513-11]
[46]
Suresh AK, Pelletier DA, Wang W, Morrell-Falvey JL, Gu B, Doktycz MJ. Cytotoxicity induced by engineered silver nanocrystallites is dependent on surface coatings and cell types. Langmuir 2012; 28(5): 2727-35.
[http://dx.doi.org/10.1021/la2042058]
[47]
Kim T, Braun GB, She ZG, Hussain S, Ruoslahti E, Sailor MJ. Composite Porous silicon-silver nanoparticles as theranostic antibacterial agents. ACS Appl Mater Interfaces 2016; 8(44): 30449-57.
[http://dx.doi.org/10.1021/acsami.6b09518]
[48]
Hindi KM, Ditto AJ, Panzner MJ, et al. The antimicrobial efficacy of sustained release silver-carbene complex-loaded L-tyrosine polyphosphate nanoparticles: characterization, in vitro and in vivo studies. Biomaterials 2009; 30(22): 3771-9.
[http://dx.doi.org/10.1016/j.biomaterials.2009.03.044]
[49]
Hoseinzadeh E, Makhdoumi P, Taha P, Hossini H, Stelling J, Amjad Kamal M. A review on nano-antimicrobials: metal nanoparticles, methods and mechanisms. Curr Drug Metab 2017; 18(2): 120-8.
[http://dx.doi.org/10.2174/1389200217666161201111146]
[50]
Ale A, Liberatori G, Vannuccini ML, et al. Exposure to a nanosilver-enabled consumer product results in similar accumulation and toxicity of silver nanoparticles in the marine mussel Mytilus galloprovincialis. Aquat Toxicol 2019; 211: 46-56.
[http://dx.doi.org/10.1016/j.aquatox.2019.03.018]
[51]
Griffitt RJ, Luo J, Gao J, Bonzongo JC, Barber DS. Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms. Environ Toxicol Chem 2008; 27(9): 1972-8.
[http://dx.doi.org/10.1897/08-002.1]
[52]
Lara HH, Ayala-Núñez NV, Turrent LD, Padilla CR. Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria. World J Microbiol Biotechnol 2010; 26(4): 615-21.
[http://dx.doi.org/10.1007/s11274-009-0211-3]
[53]
Fayaz AM, Balaji K, Girilal M, Yadav R, Kalaichelvan PT, Venketesan R. Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomed Nanotechnol Biol Med 2010; 6: 103-9.
[54]
Leid JG, Ditto AJ, Knapp A, et al. In vitro antimicrobial studies of silver carbene complexes: activity of free and nanoparticle carbene formulations against clinical isolates of pathogenic bacteria. J Antimicrob Chemother 2011; 67(1): 138-48.
[http://dx.doi.org/10.1093/jac/dkr408]
[55]
Yang H, Liu C, Yang D, Zhang H, Xi Z. Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: the role of particle size, shape and composition. J Appl Toxicol 2009; 29(1): 69-78.
[http://dx.doi.org/10.1002/jat.1385]
[56]
Li Z, Wu D, Liang Y, Fu R, Matyjaszewski K. Synthesis of well-defined microporous carbons by molecular-scale templating with polyhedral oligomeric silsesquioxane moieties. J Am Chem Soc 2014; 136(13): 4805-8.
[http://dx.doi.org/10.1021/ja412192v]
[57]
Franklin NM, Rogers NJ, Apte SC, Batley GE, Gadd GE, Casey PS. Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility. Environ Sci Technol 2007; 41(24): 8484-90.
[http://dx.doi.org/10.1021/es071445r]
[58]
Sawai J, Shoji S, Igarashi H, et al. Hydrogen peroxide as an antibacterial factor in zinc oxide powder slurry. J Ferment Bioeng 1998; 86(5): 521-2.
[http://dx.doi.org/10.1016/S0922-338X(98)80165-7]
[59]
Zhang L, Jiang Y, Ding Y, Povey M, York D. Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). J Nanopart Res 2007; 9(3): 479-89.
[http://dx.doi.org/10.1007/s11051-006-9150-1]
[60]
Tanna JA, Chaudhary RG, Juneja HD, Gandhare NV, Rai AR. Histidine-capped ZnO nanoparticles: an efficient synthesis, spectral characterization and effective antibacterial activity. Bionanoscience 2015; 5(3): 123-34.
[http://dx.doi.org/10.1007/s12668-015-0170-0]
[61]
Maisch T, Bosl C, Szeimies RM, Lehn N, Abels C. Photodynamic effects of novel XF porphyrin derivatives on prokaryotic and eukaryotic cells. Antimicrob Agents Chemother 2005; 49(4): 1542-52.
[http://dx.doi.org/10.1128/AAC.49.4.1542-1552.2005]
[62]
Wainwright M. Photoantimicrobials-a PACT against resistance and infection. Drugs Future 2004; 29(1): 85-93.
[http://dx.doi.org/10.1358/dof.2004.029.01.777826]
[63]
Banerjee M, Mallick S, Paul A, Chattopadhyay A, Ghosh SS. Heightened reactive oxygen species generation in the antimicrobial activity of a three component iodinated chitosan- silver nanoparticle composite. Langmuir 2010; 26(8): 5901-8.
[http://dx.doi.org/10.1021/la9038528]
[64]
Rizwan W, Young-Soon K, Amrita M, Soon-Il Y, Hyung-Shik S. Formation of ZnO-micro flowers prepared via solution process and their antibacterial activity. Nanoscale Res Lett 2010; 5: 1675-81.
[http://dx.doi.org/10.1007/s11671-010-9694-y]
[65]
Naika HR, Lingaraju K, Manjunath K, et al. Green synthesis of CuO nanoparticles using Gloriosa superba L. extract and their antibacterial activity. J Taibah Univ Sci 2015; 9(1): 7-12.
[http://dx.doi.org/10.1016/j.jtusci.2014.04.006]
[66]
Saporito-Magriñá CM, Musacco-Sebio RN, Andrieux G, et al. Copper-induced cell death and the protective role of glutathione: the implication of impaired protein folding rather than oxidative stress. Metallomics 2018; 10(12): 1743-54.
[http://dx.doi.org/10.1039/C8MT00182K]
[67]
Jadhav MS, Kulkarni S, Raikar P, Barretto DA, Vootla SK, Raikar US. Green biosynthesis of CuO & Ag-CuO nanoparticles from Malus domestica leaf extract and evaluation of antibacterial, antioxidant and DNA cleavage activities. New J Chem 2018; 42(1): 204-13.
[http://dx.doi.org/10.1039/C7NJ02977B]
[68]
Potbhare AK, Chaudhary RG, Chouke PB, et al. Phytosynthesis of nearly monodisperse CuO nanospheres using Phyllanthus reticulatus/Conyza bonariensis and its antioxidant/antibacterial assays. Mater Sci Eng C 2019; 99: 783-93.
[http://dx.doi.org/10.1016/j.msec.2019.02.010]
[69]
Meghana S, Kabra P, Chakraborty S, Padmavathy N. Understanding the pathway of antibacterial activity of copper oxide nanoparticles. RSC Advances 2015; 5(16): 12293-9.
[http://dx.doi.org/10.1039/C4RA12163E]
[70]
Hans M, Erbe A, Mathews S, Chen Y, Solioz M, Mücklich F. Role of copper oxides in contact killing of bacteria. Langmuir 2013; 29: 16160-6.
[71]
Huang Z, Maness PC, Blake DM, Wolfrum EJ, Smolinski SL, Jacoby WA. Bactericidal mode of titanium dioxide photocatalysis. J Photochem Photobiol A: Chem 2000; 130: 163-70.
[72]
Chaudhary RG, Tanna JA, Gandhare NV, Rai AR, Juneja HD. Synthesis of nickel nanoparticles: microscopic investigation, an efficient catalyst and effective antibacterial activity. Adv Mater Lett 2015; 6(11): 990-8.
[http://dx.doi.org/10.5185/amlett.2015.5901]
[73]
Kikuchi Y, Sunada K, Iyoda T, Hashimoto K, Fujishima A. Photocatalytic bactericidal effect of TiO2 thin films: dynamic view of the active oxygen species responsible for the effect. J Photochem Photobiol Chem 1997; 106(1-3): 51-6.
[http://dx.doi.org/10.1016/S1010-6030(97)00038-5]
[74]
Sunada K, Watanabe T, Hashimoto K. Studies on photokilling of bacteria on TiO2 thin film. J Photochem Photobiol Chem 2003; 156(1-3): 227-33.
[http://dx.doi.org/10.1016/S1010-6030(02)00434-3]
[75]
Nadtochenko V, Denisov N, Sarkisov O, Gumy D, Pulgarin C, Kiwi J. Laser kinetic spectroscopy of the interfacial charge transfer between membrane cell walls of E. coli and TiO2. J Photochem Photobiol Chem 2006; 181(2-3): 401-7.
[http://dx.doi.org/10.1016/j.jphotochem.2005.12.028]
[76]
Nadtochenko VA, Sarkisov OM, Nikandrov VV, Chubukov PA, Denisov NN. Inactivation of pathogenic microorganisms in the photocatalytic process on nanosized TiO2 crystals. Russ J Phys Chem B Focus Phys 2008; 2(1): 105-14.
[77]
Jesline A, John NP, Narayanan PM, Vani C, Murugan S. Antimicrobial activity of zinc and titanium dioxide nanoparticles against biofilm-producing methicillin-resistant Staphylococcus aureus. Appl Nanosci 2015; 5(2): 157-62.
[http://dx.doi.org/10.1007/s13204-014-0301-x]
[78]
Tang ZX, Lv BF. MgO nanoparticles as antibacterial agent: preparation and activity. Braz J Chem Eng 2014; 31(3): 591-601.
[http://dx.doi.org/10.1590/0104-6632.20140313s00002813]
[79]
Stoimenov PK, Klinger RL, Marchin GL, Klabunde KJ. Metal oxide nanoparticles as bactericidal agents. Langmuir 2002; 18(17): 6679-86.
[http://dx.doi.org/10.1021/la0202374]
[80]
Zhang L, Jiang Y, Ding Y, Povey M, York D. Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). J Nanopart Res 2007; 9: 479-89.
[81]
Makhluf S, Dror R, Nitzan Y, Abramovich Y, Jelinek R, Gedanken A. Microwave‐assisted synthesis of nanocrystalline MgO and its use as a bacteriocide. Adv Funct Mater 2005; 15(10): 1708-15.
[http://dx.doi.org/10.1002/adfm.200500029]
[82]
Jin T, He Y. Antibacterial activities of magnesium oxide (MgO) nanoparticles against foodborne pathogens. J Nanopart Res 2011; 13(12): 6877-85.
[http://dx.doi.org/10.1007/s11051-011-0595-5]
[83]
Roy A, Gauri SS, Bhattacharya M, Bhattacharya J. Antimicrobial activity of CaO nanoparticles. J Biomed Nanotechnol 2013; 9(9): 1570-8.
[http://dx.doi.org/10.1166/jbn.2013.1681]
[84]
Sawai J, Shiga H, Kojima H. Kinetic analysis of death of bacteria in CaO powder slurry. Int Biodeterior Biodegradation 2001; 47(1): 23-6.
[http://dx.doi.org/10.1016/S0964-8305(00)00115-3]
[85]
Sawai J, Yoshikawa T. Quantitative evaluation of antifungal activity of metallic oxide powders (MgO, CaO and ZnO) by an indirect conductimetric assay. J Appl Microbiol 2004; 96(4): 803-9.
[http://dx.doi.org/10.1111/j.1365-2672.2004.02234.x]
[86]
Hewitt CJ, Bellara SR, Andreani A, Nebe-von-Caron G, McFarlane CM. An evaluation of the anti-bacterial action of ceramic powder slurries using multi-parameter flow cytometry. Biotechnol Lett 2001; 23(9): 667-75.
[http://dx.doi.org/10.1023/A:1010379714673]
[87]
Bae DH, Yeon JH, Park SY, Lee DH, Ha SD. Bactericidal effects of CaO (scallop-shell powder) on foodborne pathogenic bacteria. Arch Pharm Res 2006; 29(4): 298-301.
[http://dx.doi.org/10.1007/BF02968574]
[88]
Eerdunchaolu Takehana K. Yamamoto E, et al. Characteristics of dorsal lingual papillae of the Bactrian camel (Camelus bactrianus). Anat Histol Embryol 2001; 30(3): 147-51.
[http://dx.doi.org/10.1111/j.1439-0264.2001.t01-1-0317.x]
[89]
Sharma PC, Jain A, Jain S. Fluoroquinolone antibacterials: a review on chemistry, microbiology and therapeutic prospects. Acta Pol Pharm 2009; 66(6): 587-604.
[90]
Ivanov VK, Shcherbakov AB, Ryabokon’ IG, Usatenko AV, Zholobak NM, Tretyakov YD. Inactivation of the nitroxyl radical by ceria nanoparticles. Dokl Chem 2010; 1430(2): 43-6.
[http://dx.doi.org/10.1134/S0012500810020035]
[91]
Irshad R, Tahir K, Li B, Ahmad A, Siddiqui AR, Nazir S. Antibacterial activity of biochemically capped iron oxide nanoparticles: a view towards green chemistry. J Photochem Photobiol B 2017; 170: 241-6.
[http://dx.doi.org/10.1016/j.jphotobiol.2017.04.020]
[92]
Sonkusare VN, Chaudhary RG, Bhusari GS, Rai AR, Juneja HD. Microwave-mediated synthesis, photocatalytic degradation and antibacterial activity of α-Bi2O3 microflowers/novel γ-Bi2O3 microspindles. Nano-Structures & Nano-Objects 2018; 13: 121-31.
[http://dx.doi.org/10.1016/j.nanoso.2018.01.002]
[93]
Zerfaß C, Christie-Oleza JA, Soyer OS. Manganese oxide biomineralization provides protection against nitrite toxicity in a cell-density-dependent manner. Appl Environ Microbiol 2019; 85(2): e02129-18.
[94]
Imlay JA. Where in the world do bacteria experience oxidative stress? Environ Microbiol 2019; 21(2): 521-30.
[http://dx.doi.org/10.1111/1462-2920.14445]
[95]
Kanwal A, Qaseem S, Naeem M, Ali SR, Shaffique M, Maqbool M. Size-dependent inhibition of bacterial growth by chemically engineered spherical ZnO nanoparticles. J Biol Phys 2019; 45(2): 147-59.
[http://dx.doi.org/10.1007/s10867-019-9520-4]
[96]
Cui Y, Melby ES, Mensch AC, et al. Quantitative mapping of oxidative stress response to lithium cobalt oxide nanoparticles in single cells using multiplexed in situ gene expression analysis. Nano Lett 2019; 19(3): 1990-7.
[http://dx.doi.org/10.1021/acs.nanolett.8b05172]
[97]
Hossain M, Saha S, Abdal Dayem A, et al. Bax Inhibitor-1 acts as an anti-influenza factor by inhibiting ROS mediated cell death and augmenting Heme-oxygenase 1 expression in influenza virus infected cells. Int J Mol Sci 2018; 19(3): 712.
[http://dx.doi.org/10.3390/ijms19030712]
[98]
Thukkaram M, Sitaram S, Subbiahdoss G. Antibacterial efficacy of iron-oxide nanoparticles against biofilms on different biomaterial surfaces Int J Biomater 2014; 2014.
[http://dx.doi.org/10.1155/2014/716080]
[99]
Kim HE, Lee HJ, Kim MS, et al. Differential microbicidal effects of bimetallic iron–copper nanoparticles on Escherichia coli and MS2 Coliphage. Environ Sci Technol 2019; 53(5): 2679-87.
[http://dx.doi.org/10.1021/acs.est.8b06077]
[100]
Mahardika D, Park HS, Choo KH. Ferrihydrite-impregnated granular activated carbon (FH@ GAC) for efficient phosphorus removal from wastewater secondary effluent. Chemosphere 2018; 207: 527-33.
[http://dx.doi.org/10.1016/j.chemosphere.2018.05.124]
[101]
Auffan M, Rose J, Wiesner MR, Bottero JY. Chemical stability of metallic nanoparticles: a parameter controlling their potential cellular toxicity in vitro. Environ Pollut 2009; 157(4): 1127-33.
[http://dx.doi.org/10.1016/j.envpol.2008.10.002]
[102]
Muthukumar H, Matheswaran M. Amaranthus spinosus. Leaf extract mediated FeO nanoparticles: physicochemical traits, photocatalytic and antioxidant activity. ACS Sustain Chem& Eng 2015; 3(12): 3149-56.
[http://dx.doi.org/10.1021/acssuschemeng.5b00722]
[103]
Potbhare AK, Chauke PB, Zahra S, et al. Microwave-mediated fabrication of mesoporous bi-doped cual2o4 nanocomposites for antioxidant and antibacterial performances. Materials Today: Proceedings 2019; 15: 454-63.
[104]
de la Rosa G, Garcia-Castaneda C, Vazquez-Nunez E, et al. Physiological and biochemical response of plants to engineered NMs: implications on future design. Plant Physiol Biochem 2017; 110: 226-35.
[http://dx.doi.org/10.1016/j.plaphy.2016.06.014]
[105]
Peng C, Zhang H, Fang H, et al. Natural organic matter-induced alleviation of the phytotoxicity to rice (Oryza sativa L.) caused by copper oxide nanoparticles. Environ Toxicol Chem 2015; 34(9): 1996-2003.
[http://dx.doi.org/10.1002/etc.3016]
[106]
Zuverza-Mena N, Martinez-Fernandez D, Du W, et al. Exposure of engineered nanomaterials to plants: insights into the physiological and biochemical responses-A review. Plant Physiol Biochem 2017; 110: 236-64.
[http://dx.doi.org/10.1016/j.plaphy.2016.05.037]
[107]
Judy JD, McNear DH Jr, Chen C, et al. Nanomaterials in biosolids inhibit nodulation, shift microbial community composition, and result in increased metal uptake relative to bulk/dissolved metals. Environ Sci Technol 2015; 49(14): 8751-8.
[http://dx.doi.org/10.1021/acs.est.5b01208]
[108]
Genady EA, Ahmed SS, Fahmy AH, Ashour RM. Copper sulfate nanoparticles enhance growth parameters, flavonoid content and antimicrobial activity of Ocimum basilicum Linnaeus. J Am Sci 2017; 13: 108-14.
[109]
Raliya R, Franke C, Chavalmane S, Nair R, Reed N, Biswas P. Quantitative understanding of nanoparticle uptake in watermelon plants. Front Plant Sci 2016; 7: 1288.
[http://dx.doi.org/10.3389/fpls.2016.01288]
[110]
Hatami S, Würth C, Kaiser M, et al. Absolute photoluminescence quantum yields of IR26 and IR-emissive Cd1- x HgxTe and PbS quantum dots-method-and material-inherent challenges. Nanoscale 2015; 7(1): 133-43.
[http://dx.doi.org/10.1039/C4NR04608K]
[111]
Khan MN, Mobin M, Abbas ZK, AlMutairi KA, Siddiqui ZH. Role of nanomaterials in plants under challenging environments. Plant Physiol Biochem 2017; 110: 194-209.
[http://dx.doi.org/10.1016/j.plaphy.2016.05.038]
[112]
Hong J, Rico CM, Zhao L, et al. Toxic effects of copper-based nanoparticles or compounds to lettuce (Lactuca sativa) and alfalfa (Medicago sativa). Environ Sci Process Impacts 2015; 17(1): 177-85.
[http://dx.doi.org/10.1039/C4EM00551A]
[113]
Keller AA, Adeleye AS, Conway JR, et al. Comparative environmental fate and toxicity of copper nanomaterials. NanoImpact 2017; 7: 28-40.
[http://dx.doi.org/10.1016/j.impact.2017.05.003]
[114]
Nair PM, Chung IM. Impact of copper oxide nanoparticles exposure on Arabidopsis thaliana growth, root system development, root lignificaion, and molecular level changes. Environ Sci Pollut Res Int 2014; 21(22): 12709-22.
[http://dx.doi.org/10.1007/s11356-014-3210-3]
[115]
Hong J, Wang L, Sun Y, et al. Foliar applied nanoscale and microscale CeO2 and CuO alter cucumber (Cucumis sativus) fruit quality. Sci Total Environ 2016; 563: 904-11.
[http://dx.doi.org/10.1016/j.scitotenv.2015.08.029]
[116]
Juarez-Maldonado A, Ortega-Ortíz H, Pérez-Labrada F, Cadenas-Pliego G, Benavides-Mendoza A. Cu Nanoparticles absorbed on chitosan hydrogels positively alter morphological, production, and quality characteristics of tomato. J Appl Bot Food Qual 2016; 24: 89.
[117]
Pinedo-Guerrero ZH, Hernández-Fuentes AD, Ortega-Ortiz H, Benavides-Mendoza A, Cadenas-Pliego G. Cu nanoparticles in hydrogels of chitosan-PVA affects the characteristics of post-harvest and bioactive compounds of jalapeño pepper. Molecules 2017; 22(6): 926.
[http://dx.doi.org/10.3390/molecules22060926]
[118]
Shaw AK, Ghosh S, Kalaji HM, et al. Nano-CuO stress induced modulation of antioxidative defense and photosynthetic performance of Syrian barley (Hordeum vulgare L.). Environ Exp Bot 2014; 102: 37-47.
[http://dx.doi.org/10.1016/j.envexpbot.2014.02.016]
[119]
López-Vargas E, Ortega-Ortíz H, Cadenas-Pliego G, et al. Foliar application of copper nanoparticles increases the fruit quality and the content of bioactive compounds in tomatoes. Appl Sci (Basel) 2018; 8(7): 1020.
[http://dx.doi.org/10.3390/app8071020]
[120]
Barbasz A, Kreczmer B, Oćwieja M. Effects of exposure of callus cells of two wheat varieties to silver nanoparticles and silver salt (AgNO3). Acta Physiol Plant 2016; 38(3): 76.
[http://dx.doi.org/10.1007/s11738-016-2092-z]
[121]
Suresh J, Pradheesh G, Alexramani V, Sundrarajan M, Hong SI. Green synthesis and characterization of zinc oxide nanoparticle using insulin plant (Costus pictus D. Don) and investigation of its antimicrobial as well as anticancer activities. Adv Nat Sci Nanosci Nanotech 2018; 9(1)015008
[http://dx.doi.org/10.1088/2043-6254/aaa6f1]
[122]
Keswani C, Bisen K, Singh V, Sarma BK, Singh HB. Formulation technology of biocontrol agents: present status and future prospects.In: Bioformulations: for sustainable agriculture. New Delhi: Springer 2016; pp. 35-52.
[123]
Hojjat SS. Impact of silver nanoparticles on germinated fenugreek seed. Int J Agric Crop Sci 2015; 8(4): 627-30.
[124]
Vessey JK. Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 2003; 255(2): 571-86.
[http://dx.doi.org/10.1023/A:1026037216893]
[125]
Alloway BJ. Soil factors associated with zinc deficiency in crops and humans. Environ Geochem Health 2009; 31(5): 537-48.
[http://dx.doi.org/10.1007/s10653-009-9255-4]
[126]
Rashid A, Ryan J. Micronutrient constraints to crop production in soils with Mediterranean-type characteristics: a review. J Plant Nutr 2004; 27(6): 959-75.
[http://dx.doi.org/10.1081/PLN-120037530]
[127]
Mortvedt JJ. Crop response to level of water-soluble zinc in granular zinc fertilizers. Fert Res 1992; 33(3): 249-55.
[http://dx.doi.org/10.1007/BF01050880]
[128]
Gangloff WJ, Westfall DG, Peterson GA, Mortvedt JJ. Mobility of organic and inorganic zinc fertilizers in soils. Commun Soil Sci Plant Anal 2006; 37(1-2): 199-209.
[http://dx.doi.org/10.1080/00103620500403200]
[129]
Xie Y, He Y, Irwin PL, Jin T, Shi X. Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Appl Environ Microbiol 2011; 77(7): 2325-31.
[http://dx.doi.org/10.1128/AEM.02149-10]
[130]
Long TC, Saleh N, Tilton RD, Lowry GV, Veronesi B. Titanium dioxide (P25) produces reactive oxygen species in immortalized brain microglia (BV2): implications for nanoparticle neurotoxicity. Environ Sci Technol 2006; 40(14): 4346-52.
[http://dx.doi.org/10.1021/es060589n]
[131]
Lovrić J, Cho SJ, Winnik FM, Maysinger D. Unmodified cadmium telluride quantum dots induce reactive oxygen species formation leading to multiple organelle damage and cell death. Chem Biol 2005; 12(11): 1227-34.
[http://dx.doi.org/10.1016/j.chembiol.2005.09.008]
[132]
Lewinski N, Colvin V, Drezek R. Cytotoxicity of nanoparticles small 2008 4(1): 26-49.
[133]
Thwala M, Musee N, Sikhwivhilu L, Wepener V. The oxidative toxicity of Ag and ZnO nanoparticles towards the aquatic plant Spirodela punctuta and the role of testing media parameters. Environ Sci Process Impacts 2013; 15(10): 1830-43.
[http://dx.doi.org/10.1039/c3em00235g]
[134]
Panda SK, Chaudhury I, Khan MH. Heavy metals induce lipid peroxidation and affect antioxidants in wheat leaves. Biol Plant 2003; 46(2): 289-94.
[http://dx.doi.org/10.1023/A:1022871131698]
[135]
Aarti PD, Tanaka R, Tanaka A. Effects of oxidative stress on chlorophyll biosynthesis in cucumber (Cucumis sativus) cotyledons. Physiol Plant 2006; 128(1): 186-97.
[http://dx.doi.org/10.1111/j.1399-3054.2006.00720.x]
[136]
Jamdagni P, Khatri P, Rana JS. Green synthesis of zinc oxide nanoparticles using flower extract of Nyctanthes arbor-tristis and their antifungal activity. J King Saud Univ Sci 2018; 30(2): 168-75.
[http://dx.doi.org/10.1016/j.jksus.2016.10.002]
[137]
Sang L, Zhao Y, Burda C. TiO2 nanoparticles as functional building blocks. Chem Rev 2014; 114(19): 9283-318.
[http://dx.doi.org/10.1021/cr400629p]
[138]
Owolade O, Ogunleti D. Effects of titanium dioxide on the diseases, development and yield of edible cowpea. J Plant Prot Res 2008; 48(3): 329-36.
[http://dx.doi.org/10.2478/v10045-008-0042-5]
[139]
Khodakovskaya MV, Lahiani MH. Nanoparticles and plants: from toxicity to activation of growth.In: Handbook of Nanotoxicology Nanomedicine and Stem Cell Use in Toxicology. John Wiley & Sons 2014; p. 121.
[140]
Chen H, Seiber JN, Hotze M. ACS select on nanotechnology in food and agriculture: a perspective on implications and applications. J Agric Food Chem 2014; 62(6): 1209-12.
[http://dx.doi.org/10.1021/jf5002588]
[141]
Ali MA, Rehman I, Iqbal A, et al. Nanotechnology, a new frontier in Agriculture Adv life sci 2014; 1(3): 129-38.
[142]
Clemente Z, Grillo R, Jonsson M, et al. Ecotoxicological evaluation of poly (ε-caprolactone) nanocapsules containing triazine herbicides. J Nanosci Nanotechnol 2014; 14(7): 4911-7.
[http://dx.doi.org/10.1166/jnn.2014.8681]
[143]
Namasivayam KR, Aruna A. Gokila. Evaluation of silver nanoparticles-chitosan encapsulated synthetic herbicide paraquate (AgNp-CS-PQ) preparation for the controlled release and improved herbicidal activity against Eichhornia crassipes. Res J Biotechnol 2014; 9(9): 19-27.
[144]
Konotop YO, Kovalenko MS, Ulynets VZ, Meleshko AO, Batsmanova LM, Taran NY. Phytotoxicity of colloidal solutions of metal-containing nanoparticles. Cytol Genet 2014; 48(2): 99-102.
[http://dx.doi.org/10.3103/S0095452714020054]
[145]
Musante C, White JC. Toxicity of silver and copper to Cucurbita pepo: differential effects of nano and bulk‐size particles. Environ Toxicol 2012; 27(9): 510-7.
[http://dx.doi.org/10.1002/tox.20667]
[146]
Hawthorne J, Musante C, Sinha SK, White JC. Accumulation and phytotoxicity of engineered nanoparticles to Cucurbita pepo. Int J Phytoremediation 2012; 14(4): 429-42.
[http://dx.doi.org/10.1080/15226514.2011.620903]
[147]
Atha DH, Wang H, Petersen EJ, et al. Copper oxide nanoparticle mediated DNA damage in terrestrial plant models. Environ Sci Technol 2012; 46(3): 1819-27.
[http://dx.doi.org/10.1021/es202660k]
[148]
Lee WM, An YJ, Yoon H, Kweon HS. Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticum aestivum): plant agar test for water‐insoluble nanoparticles. Environ Toxicol Chem 2008; 27(9): 1915-21.
[http://dx.doi.org/10.1897/07-481.1]
[149]
Nekrasova GF, Ushakova OS, Ermakov AE, Uimin MA, Byzov IV. Effects of copper (II) ions and copper oxide nanoparticles on Elodea densa Planch. Russ J Ecol 2011; 42(6): 458.
[http://dx.doi.org/10.1134/S1067413611060117]
[150]
Kim S, Lee S, Lee I. Alteration of phytotoxicity and oxidant stress potential by metal oxide nanoparticles in Cucumis sativus. Water Air Soil Pollut 2012; 223(5): 2799-806.
[http://dx.doi.org/10.1007/s11270-011-1067-3]
[151]
Branton D, Deamer DW, Marziali A, et al. The potential and challenges of nanopore sequencing. Nat Biotechnol 2008; 26(10): 1146-53.
[152]
Dekkers S, Krystek P, Peters RJ, et al. Presence and risks of nanosilica in food products. Nanotoxicology 2011; 5(3): 393-405.
[http://dx.doi.org/10.3109/17435390.2010.519836]
[153]
Peters R, Kramer E, Oomen AG, et al. Presence of nano-sized silica during in vitro digestion of foods containing silica as a food additive. ACS Nano 2012; 6(3): 2441-51.
[http://dx.doi.org/10.1021/nn204728k]
[154]
Athinarayanan J, Periasamy VS, Alsaif MA, Al-Warthan AA, Alshatwi AA. Presence of nanosilica (E551) in commercial food products: TNF-mediated oxidative stress and altered cell cycle progression in human lung fibroblast cells. Cell Biol Toxicol 2014; 30(2): 89-100.
[http://dx.doi.org/10.1007/s10565-014-9271-8]
[155]
Magnuson BA, Jonaitis TS, Card JW. A brief review of the occurrence, use, and safety of food‐related nanomaterials. J Food Sci 2011; 76(6): R126-33.
[http://dx.doi.org/10.1111/j.1750-3841.2011.02170.x]
[156]
Jovanovic B, Menkveld AJ. Middlemen in limit order markets Available at: SSRN 1624329. 2016 Jun 20.
[157]
Chen XX, Cheng B, Yang YX, et al. Characterization and preliminary toxicity assay of nano‐titanium dioxide additive in sugar‐coated chewing gum. Small 2013; 9(9‐10): 1765-74.
[http://dx.doi.org/10.1002/smll.201201506]
[158]
Maherani B. Encapsulation and Targeting of Biofunctional Molecules in Nanoliposomes: Study of Physico-Chemical Properties and Mechanisms of Transfer through Liposome Membrane. (Doctoral dissertation, Université de Lorraine).
[159]
Ezhilarasi PN, Karthik P, Chhanwal N, Anandharamakrishnan C. Nanoencapsulation techniques for food bioactive components: a review. Food Bioprocess Technol 2013; 6(3): 628-47.
[http://dx.doi.org/10.1007/s11947-012-0944-0]
[160]
Borel T, Sabliov CM. Nanodelivery of bioactive components for food applications: types of delivery systems, properties, and their effect on ADME profiles and toxicity of nanoparticles. Annu Rev Food Sci Technol 2014; 5: 197-213.
[http://dx.doi.org/10.1146/annurev-food-030713-092354]
[161]
McCracken C, Zane A, Knight DA, Dutta PK, Waldman WJ. Minimal intestinal epithelial cell toxicity in response to short-and long-term food-relevant inorganic nanoparticle exposure. Chem Res Toxicol 2013; 26(10): 1514-25.
[http://dx.doi.org/10.1021/tx400231u]
[162]
Bajpai VK, Kamle M, Shukla S, et al. Prospects of using nanotechnology for food preservation, safety, and security. Yao Wu Shi Pin Fen Xi 2018; 26(4): 1201-14.
[http://dx.doi.org/10.1016/j.jfda.2018.06.011]
[163]
McClements DJ. Design of nano‐laminated coatings to control bioavailability of lipophilic food components. J Food Sci 2010; 75(1): R30-42.
[http://dx.doi.org/10.1111/j.1750-3841.2009.01452.x]
[164]
Shi S, Wang W, Liu L, Wu S, Wei Y, Li W. Effect of chitosan/nano-silica coating on the physicochemical characteristics of longan fruit under ambient temperature. J Food Eng 2013; 118(1): 125-31.
[http://dx.doi.org/10.1016/j.jfoodeng.2013.03.029]
[165]
Yu Y, Zhang S, Ren Y, Li H, Zhang X, Di J. Jujube preservation using chitosan film with nano-silicon dioxide. J Food Eng 2012; 113(3): 408-14.
[http://dx.doi.org/10.1016/j.jfoodeng.2012.06.021]
[166]
Medeiros BG, Souza MP, Pinheiro AC, et al. Physical characterisation of an alginate/lysozyme nano-laminate coating and its evaluation on ‘Coalho’cheese shelf life. Food Bioprocess Technol 2014; 7(4): 1088-98.
[http://dx.doi.org/10.1007/s11947-013-1097-5]
[167]
Yang FM, Li HM, Li F, et al. Effect of nano‐packing on preservation quality of fresh strawberry (Fragaria ananassa Duch. cv Fengxiang) during storage at 4°C. J Food Sci 2010; 75(3): C236-40.
[http://dx.doi.org/10.1111/j.1750-3841.2010.01520.x]
[168]
Ahmad A, Senapati S, Khan MI, Kumar R, Sastry M. Extracellular biosynthesis of monodisperse gold nanoparticles by a novel extremophilic actinomycete, Thermomonospora sp. Langmuir 2003; 19(8): 3550-3.
[http://dx.doi.org/10.1021/la026772l]
[169]
Ahmad P, Ed. Oxidative damage to plants: antioxidant networks and signaling. Academic Press 2014.
[170]
Malabadi RB, Chalannavar RK, Meti NT, Mulgund GS, Nataraja K, Kumar SV. Synthesis of antimicrobial silver nanoparticles by callus cultures and in vitro derived plants of Catharanthus roseus. Res Pharm 2012; 2(6): 18-31.
[171]
Hegazy HS, Rabie GH, Shaaban LD, Raie DS. Extracellular synthesis of silver nanoparticles by callus of Medicago sativa. Life Sci J 2014; 11(10): 1211-4.
[172]
Mandeh M, Omidi M, Rahaie M. In vitro influences of TiO 2 nanoparticles on barley (Hordeum vulgare L.) tissue culture. Biol Trace Elem Res 2012; 150(1-3): 376-80.
[http://dx.doi.org/10.1007/s12011-012-9480-z]
[173]
Mahna N, Vahed SZ, Khani S. Plant in vitro culture goes nano: nanosilver-mediated decontamination of ex vitro explants. J Nanomed Nanotechnol 2013; 4(161): 1.
[http://dx.doi.org/10.4172/2157-7439.1000161]
[174]
Arab MM, Yadollahi A, Hosseini-Mazinani M, Bagheri S. Effects of antimicrobial activity of silver nanoparticles on in vitro establishment of G× N15 (hybrid of almond× peach) rootstock. J Gen Eng Biotech 2014; 12(2): 103.
[175]
Helaly MN, El-Metwally MA, El-Hoseiny H, Omar SA, El-Sheery NI. Effect of nanoparticles on biological contamination of in vitro cultures and organogenic regeneration of banana. Aust J Crop Sci 2014; 8(4): 612.
[176]
Murashige T, Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 1962; 15(3): 473-97.
[http://dx.doi.org/10.1111/j.1399-3054.1962.tb08052.x]
[177]
Akasaka-Kennedy Y, Yoshida H, Takahata Y. Efficient plant regeneration from leaves of rapeseed (Brassica napus L.): the influence of AgNO3 and genotype. Plant Cell Rep 2005; 24(11): 649-54.
[http://dx.doi.org/10.1007/s00299-005-0010-8]
[178]
Maróti M, Bognár J. Effect of heavy metals on the growth of tissue cultures (II). Acta Biol Hung 1988; 39(1): 75-85.
[179]
Samantaray S, Rout GR, Das P. In vitro selection and regeneration of zinc tolerant calli from Setaria italica L. Plant Sci 1999; 143(2): 201-9.
[http://dx.doi.org/10.1016/S0168-9452(99)00036-9]
[180]
Turner AP, Dickinson NM. Copper tolerance of Acer pseudoplatanus L. (sycamore) in tissue culture. New Phytol 1993; 123(3): 523-30.
[http://dx.doi.org/10.1111/j.1469-8137.1993.tb03764.x]
[181]
Bagade R, Chaudhary RG, Potbhare A, et al. Microspheres/custard‐apples copper (II) chelate polymer: characterization, docking, antioxidant and antibacterial assay. ChemistrySelect 2019; 4(20): 6233-44.
[http://dx.doi.org/10.1002/slct.201901115]
[182]
Chouke PB, Potbhare AK, Bhusari GS, et al. Green fabrication of Zinc oxide nanospheres by Aspidopterys Cordata for effective antioxidant and antibacterial activity. Adv Mater Letts 2019; 10: 355-60.
[http://dx.doi.org/10.5185/amlett.2019.2235]
[183]
Bacchetta C, Ale A, Simoniello MF, et al. Genotoxicity and oxidative stress in fish after a short-term exposure to silver nanoparticles. Ecol Indic 2017; 76: 230-9.
[http://dx.doi.org/10.1016/j.ecolind.2017.01.018]
[184]
Mogul MG, Akin H, Hasirci N, Trantolo DJ, Gresser JD, Wise DL. Controlled release of biologically active agents for purposes of agricultural crop management. Resour Conserv Recycling 1996; 16(1-4): 289-320.
[http://dx.doi.org/10.1016/0921-3449(95)00063-1]
[185]
Shalaby TA, Bayoumi Y, Abdalla N, et al. Nanoparticles, soils, plants and sustainable agriculture.In: Nanoscience in Food and Agriculture 1. Cham: Springer 2016; pp. 283-312.
[186]
Khot LR, Sankaran S, Maja JM, Ehsani R, Schuster EW. Applications of nanomaterials in agricultural production and crop protection: a review. Crop Prot 2012; 35: 64-70.
[http://dx.doi.org/10.1016/j.cropro.2012.01.007]
[187]
Chakravarthy AK, Bhattacharyya A, Shashank PR, Epidi TT, Doddabasappa B, Mandal SK. DNA-tagged nano gold: a new tool for the control of the armyworm, Spodoptera litura Fab.(Lepidoptera: Noctuidae). Afr J Biotechnol 2012; 11(38): 9295-301.
[http://dx.doi.org/10.5897/AJB11.883]
[188]
Naik BR, Gowreeswari GS, Singh Y, Satyavathi R, Daravath SS, Reddy PR. Bio-synthesis of silver nanoparticles from leaf extract of Pongamia pinnata as an effective larvicide on dengue vector Aedes albopictus (Skuse)(Diptera: Culicidae). Adv Entomol 2014; 2(02): 93.
[http://dx.doi.org/10.4236/ae.2014.22016]
[189]
Velusamy P, Das J, Pachaiappan R, Vaseeharan B, Pandian K. Greener approach for synthesis of antibacterial silver nanoparticles using aqueous solution of neem gum (Azadirachta indica L.). Ind Crops Prod 2015; 66: 103-9.
[http://dx.doi.org/10.1016/j.indcrop.2014.12.042]
[190]
Vivek R, Thangam R, Muthuchelian K, Gunasekaran P, Kaveri K, Kannan S. Green biosynthesis of silver nanoparticles from Annona squamosa leaf extract and its in vitro cytotoxic effect on MCF-7 cells. Process Biochem 2012; 47(12): 2405-10.
[http://dx.doi.org/10.1016/j.procbio.2012.09.025]
[191]
He Y, Du Z, Lv H, et al. Green synthesis of silver nanoparticles by Chrysanthemum morifolium Ramat. extract and their application in clinical ultrasound gel. Int J Nanomedicine 2013; 8: 1809.
[http://dx.doi.org/10.2147/IJN.S43289]
[192]
Ehrlich H, Janussen D, Simon P, et al. Nanostructural organization of naturally occurring composites-Part II: Silica-chitin-based biocomposites. J Nanomater 2008; 2008: 54.
[http://dx.doi.org/10.1155/2008/670235]
[193]
Watson GS, Watson JA. Natural nano-structures on insects-possible functions of ordered arrays characterized by atomic force microscopy. Appl Surf Sci 2004; 235(1-2): 139-44.
[http://dx.doi.org/10.1016/j.apsusc.2004.05.129]
[194]
Zhang G, Zhang J, Xie G, Liu Z, Shao H. Cicada wings: a stamp from nature for nanoimprint lithography. Small 2006; 2(12): 1440-3.
[http://dx.doi.org/10.1002/smll.200600255]
[195]
Guan H, Chi D, Yu J, Li X. A novel photodegradable insecticide: preparation, characterization and properties evaluation of nano-Imidacloprid. Pestic Biochem Physiol 2008; 92(2): 83-91.
[http://dx.doi.org/10.1016/j.pestbp.2008.06.008]
[196]
Fanger GO. Microencapsulation: a brief history and introduction.In: Microencapsulation. Boston, MA: Springer 1974; pp. 1-20.
[197]
Kuntworbe N, Martini N, Shaw J, Al‐Kassas R. Malaria intervention policies and pharmaceutical nanotechnology as a potential tool for malaria management. Drug Dev Res 2012; 73(4): 167-84.
[http://dx.doi.org/10.1002/ddr.21010]
[198]
Joshi MD, Unger WJ, Storm G, Van Kooyk Y, Mastrobattista E. Targeting tumor antigens to dendritic cells using particulate carriers. J Control Release 2012; 161(1): 25-37.
[http://dx.doi.org/10.1016/j.jconrel.2012.05.010]
[199]
Peteu SF, Oancea F, Sicuia OA, Constantinescu F, Dinu S. Responsive polymers for crop protection. Polymers (Basel) 2010; 2(3): 229-51.
[http://dx.doi.org/10.3390/polym2030229]
[200]
Margulis-Goshen K, Magdassi S. Nanotechnology: an advanced approach to the development of potent insecticides.In: Advanced Technologies for Managing Insect Pests. Dordrecht: Springer 2013; pp. 295-314.
[http://dx.doi.org/10.1007/978-94-007-4497-4_15]
[201]
Goswami A, Roy I, Sengupta S, Debnath N. Novel applications of solid and liquid formulations of nanoparticles against insect pests and pathogens. Thin Solid Films 2010; 519: 1252-7.
[http://dx.doi.org/10.2478/v10045-008-0042-5]
[202]
Sekhon BS. Nanotechnology in agri-food production: an overview. Nanotechnol Sci Appl 2014; 7: 31.
[http://dx.doi.org/10.2147/NSA.S39406]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 25
ISSUE: 37
Year: 2019
Page: [4013 - 4029]
Pages: 17
DOI: 10.2174/1381612825666191111091326
Price: $65

Article Metrics

PDF: 17
HTML: 5