Enhancing the Therapeutic Efficacy of Bortezomib in Cancer Therapy Using Polymeric Nanostructures

Author(s): Mitra Korani, Shahla Korani, Elham Zendehdel, Amin Reza Nikpoor, Mahmoud Reza Jaafari*, Hossein M. Orafai, Thomas P. Johnston, Amirhossein Sahebkar*.

Journal Name: Current Pharmaceutical Design

Volume 25 , Issue 46 , 2019

Abstract:

Bortezomib (VELCADE®) is a boronate peptide and first-in-class proteasome inhibitor serving an important role in degenerating several intracellular proteins. It is a reversible inhibitor of the 26S proteasome, with antitumor activity and antiproliferative properties. This agent principally exerts its antineoplastic effects by inhibiting key players in the nuclear factor κB (NFκB) pathway involved in cell proliferation, apoptosis, and angiogenesis. This medication is used in the management of multiple myeloma. However, more recently, it has been used as a therapeutic option for mantle cell lymphoma. While promising, bortezomib has limited clinical applications due to its adverse effects (e.g., hematotoxicity and peripheral neuropathy) and low effectiveness in solid tumors resulting from its poor penetration into such masses and suboptimal pharmacokinetic parameters. Other limitations to bortezomib include its low chemical stability and bioavailability, which can be overcome by using nanoparticles for its delivery. Nanoparticle delivery systems can facilitate the targeted delivery of chemotherapeutic agents in high doses to the target site, while sparing healthy tissues. Therefore, this drug delivery system has provided a solution to circumvent the limitations faced with the delivery of traditional cancer chemotherapeutic agents. Our aim in this review was to describe polymer-based nanocarriers that can be used for the delivery of bortezomib in cancer chemotherapy.

Keywords: Bortezomib, polymer-based nanocarriers, proteasome inhibitor, hematotoxicity, peripheral neuropathy, drug delivery system.

[1]
Swami A, Reagan MR, Basto P, et al. Engineered nanomedicine for myeloma and bone microenvironment targeting. Proc Natl Acad Sci USA 2014; 111(28): 10287-92.
[http://dx.doi.org/10.1073/pnas.1401337111] [PMID: 24982170]
[2]
Robak P, Robak T. Bortezomib for the treatment of hematologic malignancies: 15 years later. Drugs R D 2019; 19(2): 73-92.
[http://dx.doi.org/10.1007/s40268-019-0269-9] [PMID: 30993606]
[3]
Scott K, Hayden PJ, Will A, Wheatley K, Coyne I. Bortezomib for the treatment of multiple myeloma. Cochrane Database Syst Rev 2016; 4 CD010816
[http://dx.doi.org/10.1002/14651858.CD010816.pub2] [PMID: 27096326]
[4]
Richardson PG, Mitsiades C, Schlossman R, et al. Bortezomib in the front-line treatment of multiple myeloma. Expert Rev Anticancer Ther 2008; 8(7): 1053-72.
[http://dx.doi.org/10.1586/14737140.8.7.1053] [PMID: 18588451]
[5]
Argyriou AA, Iconomou G, Kalofonos HP. Bortezomib-induced peripheral neuropathy in multiple myeloma: a comprehensive review of the literature. Blood 2008; 112(5): 1593-9.
[http://dx.doi.org/10.1182/blood-2008-04-149385] [PMID: 18574024]
[6]
Brignole C, Marimpietri D, Pastorino F, et al. Effect of bortezomib on human neuroblastoma cell growth, apoptosis, and angiogenesis. J Natl Cancer Inst 2006; 98(16): 1142-57.
[http://dx.doi.org/10.1093/jnci/djj309] [PMID: 16912267]
[7]
Okazuka K, Ishida T. Proteasome inhibitors for multiple myeloma. Jpn J Clin Oncol 2018; 48(9): 785-93.
[http://dx.doi.org/10.1093/jjco/hyy108] [PMID: 30102324]
[8]
Roeten MSF, Cloos J, Jansen G. Positioning of proteasome inhibitors in therapy of solid malignancies. Cancer Chemother Pharmacol 2018; 81(2): 227-43.
[http://dx.doi.org/10.1007/s00280-017-3489-0] [PMID: 29184971]
[9]
Bertaina A, Vinti L, Strocchio L, et al. The combination of bortezomib with chemotherapy to treat relapsed/refractory acute lymphoblastic leukaemia of childhood. Br J Haematol 2017; 176(4): 629-36.
[http://dx.doi.org/10.1111/bjh.14505] [PMID: 28116786]
[10]
Hu Q, Qian C, Sun W, et al. Engineered nanoplatelets for enhanced treatment of multiple myeloma and thrombus. Adv Mater 2016; 28(43): 9573-80.
[http://dx.doi.org/10.1002/adma.201603463] [PMID: 27626769]
[11]
Wang M, Cai X, Yang J, et al. A targeted and pH-responsive bortezomib nanomedicine in the treatment of metastatic bone tumors. ACS Appl Mater Interfaces 2018; 10(48): 41003-11.
[http://dx.doi.org/10.1021/acsami.8b07527] [PMID: 30403331]
[12]
Korani M, Ghaffari S, Attar H, Mashreghi M, Jaafari MR. Preparation and characterization of nanoliposomal bortezomib formulations and evaluation of their anti-cancer efficacy in mice bearing C26 colon carcinoma and B16F0 melanoma. Nanomedicine (Lond) 2019; 20 102013
[http://dx.doi.org/10.1016/j.nano.2019.04.016] [PMID: 31103736]
[13]
Field-Smith A, Morgan GJ, Davies FE. Bortezomib (Velcade™) in the treatment of multiple myeloma. Ther Clin Risk Manag 2006; 2(3): 271-9.
[http://dx.doi.org/10.2147/tcrm.2006.2.3.271] [PMID: 18360602]
[14]
Wang M, Wang Y, Hu K, Shao N, Cheng Y. Tumor extracellular acidity activated “off-on” release of bortezomib from a biocompatible dendrimer. Biomater Sci 2015; 3(3): 480-9.
[http://dx.doi.org/10.1039/C4BM00365A] [PMID: 26222291]
[15]
Park SB, Goldstein D, Krishnan AV, et al. Chemotherapy-induced peripheral neurotoxicity: a critical analysis. CA Cancer J Clin 2013; 63(6): 419-37.
[http://dx.doi.org/10.3322/caac.21204] [PMID: 24590861]
[16]
Chen D, Frezza M, Schmitt S, Kanwar J, Dou QP. Bortezomib as the first proteasome inhibitor anticancer drug: current status and future perspectives. Curr Cancer Drug Targets 2011; 11(3): 239-53.
[http://dx.doi.org/10.2174/156800911794519752] [PMID: 21247388]
[17]
Su J, Chen F, Cryns VL, Messersmith PB. Catechol polymers for pH-responsive, targeted drug delivery to cancer cells. J Am Chem Soc 2011; 133(31): 11850-3.
[http://dx.doi.org/10.1021/ja203077x] [PMID: 21751810]
[18]
Masaki R. Mechanism of action of bortezomib in multiple myeloma therapy. Int J Myeloma 2016; 6: 1-6.
[19]
Zendedel E, Atkin SL, Sahebkar A. Use of stem cells as carriers of oncolytic viruses for cancer treatment. J Cell Physiol 2019; 234: 14906-13.
[http://dx.doi.org/10.1002/jcp.28320] [PMID: 30770550]
[20]
Cheung N-KV, Dyer MA. Neuroblastoma: developmental biology, cancer genomics and immunotherapy. Nat Rev Cancer 2013; 13(6): 397-411.
[http://dx.doi.org/10.1038/nrc3526] [PMID: 23702928]
[21]
Amoroso L, Haupt R, Garaventa A, Ponzoni M. Investigational drugs in phase II clinical trials for the treatment of neuroblastoma. Expert Opin Investig Drugs 2017; 26(11): 1281-93.
[http://dx.doi.org/10.1080/13543784.2017.1380625] [PMID: 28906153]
[22]
Shen J, Song G, An M, et al. The use of hollow mesoporous silica nanospheres to encapsulate bortezomib and improve efficacy for non-small cell lung cancer therapy. Biomaterials 2014; 35(1): 316-26.
[http://dx.doi.org/10.1016/j.biomaterials.2013.09.098] [PMID: 24125776]
[23]
Li C, Hu J, Li W, Song G, Shen J. Combined bortezomib-based chemotherapy and p53 gene therapy using hollow mesoporous silica nanospheres for p53 mutant non-small cell lung cancer treatment. Biomater Sci 2016; 5(1): 77-88.
[http://dx.doi.org/10.1039/C6BM00449K] [PMID: 27822577]
[24]
Liu J, Xu L, Liu C, et al. Preparation and characterization of cationic curcumin nanoparticles for improvement of cellular uptake. Carbohydr Polym 2012; 90(1): 16-22.
[http://dx.doi.org/10.1016/j.carbpol.2012.04.036] [PMID: 24751005]
[25]
Garnett MC, Kallinteri P. Nanomedicines and nanotoxicology: some physiological principles. Occup Med (Lond) 2006; 56(5): 307-11.
[http://dx.doi.org/10.1093/occmed/kql052] [PMID: 16868128]
[26]
Lee J, Twomey M, Machado C, et al. Caveolae-mediated endocytosis of conjugated polymer nanoparticles. Macromol Biosci 2013; 13(7): 913-20.
[http://dx.doi.org/10.1002/mabi.201300030] [PMID: 23629923]
[27]
Sinha R, Kim GJ, Nie S, Shin DM. Nanotechnology in cancer therapeutics: bioconjugated nanoparticles for drug delivery. Mol Cancer Ther 2006; 5(8): 1909-17.
[http://dx.doi.org/10.1158/1535-7163.MCT-06-0141] [PMID: 16928810]
[28]
Peres I, Rocha S, Loureiro JA, do Carmo Pereira M, Ivanova G, Coelho M. Carbohydrate particles as protein carriers and scaffolds: physico-chemical characterization and collagen stability. J Nanopart Res 2012; 14: 1144.
[http://dx.doi.org/10.1007/s11051-012-1144-6]
[29]
Nam HY, Kwon SM, Chung H, et al. Cellular uptake mechanism and intracellular fate of hydrophobically modified glycol chitosan nanoparticles. J Control Release 2009; 135(3): 259-67.
[http://dx.doi.org/10.1016/j.jconrel.2009.01.018] [PMID: 19331853]
[30]
Yousefpour P, Atyabi F, Vasheghani-Farahani E, Movahedi A-AM, Dinarvand R. Targeted delivery of doxorubicin-utilizing chitosan nanoparticles surface-functionalized with anti-Her2 trastuzumab. Int J Nanomedicine 2011; 6: 1977-90.
[PMID: 21976974]
[31]
Gomes JF, Rocha S, do Carmo Pereira M, et al. Lipid/particle assemblies based on maltodextrin-gum Arabic core as bio-carriers. Colloids Surf B Biointerfaces 2010; 76(2): 449-55.
[http://dx.doi.org/10.1016/j.colsurfb.2009.12.004] [PMID: 20060275]
[32]
Liu Z, Jiao Y, Wang Y, Zhou C, Zhang Z. Polysaccharides-based nanoparticles as drug delivery systems. Adv Drug Deliv Rev 2008; 60(15): 1650-62.
[http://dx.doi.org/10.1016/j.addr.2008.09.001] [PMID: 18848591]
[33]
Gratton SE, Ropp PA, Pohlhaus PD, et al. The effect of particle design on cellular internalization pathways. Proc Natl Acad Sci USA 2008; 105(33): 11613-8.
[http://dx.doi.org/10.1073/pnas.0801763105] [PMID: 18697944]
[34]
Kim B, Han G, Toley BJ, Kim CK, Rotello VM, Forbes NS. Tuning payload delivery in tumour cylindroids using gold nanoparticles. Nat Nanotechnol 2010; 5(6): 465-72.
[http://dx.doi.org/10.1038/nnano.2010.58] [PMID: 20383126]
[35]
Chan JM, Valencia PM, Zhang L, Langer R, Farokhzad OC. Polymeric nanoparticles for drug delivery. Methods Mol Biol 2010; 624: 163-75.
[http://dx.doi.org/10.1007/978-1-60761-609-2_11]
[36]
Unsoy G, Yalcin S, Khodadust R, Mutlu P, Onguru O, Gunduz U. Chitosan magnetic nanoparticles for pH responsive bortezomib release in cancer therapy. Biomed Pharmacother 2014; 68(5): 641-8.
[http://dx.doi.org/10.1016/j.biopha.2014.04.003] [PMID: 24880680]
[37]
Zhao Z, Li Y, Xie M-B. Silk fibroin-based nanoparticles for drug delivery. Int J Mol Sci 2015; 16(3): 4880-903.
[http://dx.doi.org/10.3390/ijms16034880] [PMID: 25749470]
[38]
Detappe A, Kunjachan S, Sancey L, et al. Advanced multimodal nanoparticles delay tumor progression with clinical radiation therapy. J Control Release 2016; 238: 103-13.
[http://dx.doi.org/10.1016/j.jconrel.2016.07.021] [PMID: 27423325]
[39]
Detappe A, Thomas E, Tibbitt MW, et al. Ultrasmall silica-based bismuth gadolinium nanoparticles for dual magnetic resonance-computed tomography image guided radiation therapy. Nano Lett 2017; 17(3): 1733-40.
[http://dx.doi.org/10.1021/acs.nanolett.6b05055] [PMID: 28145723]
[40]
Xiao H, Qi R, Li T, et al. Maximizing synergistic activity when combining RNAi and platinum-based anticancer agents. J Am Chem Soc 2017; 139(8): 3033-44.
[http://dx.doi.org/10.1021/jacs.6b12108] [PMID: 28166401]
[41]
Ghoroghchian PP, Frail PR, Susumu K, et al. Near-infrared-emissive polymersomes: self-assembled soft matter for in vivo optical imaging. Proc Natl Acad Sci USA 2005; 102(8): 2922-7.
[http://dx.doi.org/10.1073/pnas.0409394102] [PMID: 15708979]
[42]
Shen S, Du X-J, Liu J, Sun R, Zhu Y-H, Wang J. Delivery of bortezomib with nanoparticles for basal-like triple-negative breast cancer therapy. J Control Release 2015; 208: 14-24.
[http://dx.doi.org/10.1016/j.jconrel.2014.12.043] [PMID: 25575864]
[43]
Xiao RZ, Zeng ZW, Zhou GL, Wang JJ, Li FZ, Wang AM. Recent advances in PEG-PLA block copolymer nanoparticles. Int J Nanomedicine 2010; 5: 1057-65.
[PMID: 21170353]
[44]
Saito N, Okada T, Horiuchi H, et al. A biodegradable polymer as a cytokine delivery system for inducing bone formation. Nat Biotechnol 2001; 19(4): 332-5.
[http://dx.doi.org/10.1038/86715] [PMID: 11283590]
[45]
Nava-Arzaluz MG, Piñón-Segundo E, Ganem-Rondero A, Lechuga-Ballesteros D. Single emulsion-solvent evaporation technique and modifications for the preparation of pharmaceutical polymeric nanoparticles. Recent Pat Drug Deliv Formul 2012; 6(3): 209-23.
[http://dx.doi.org/10.2174/187221112802652633] [PMID: 22734869]
[46]
Demirdöğen RE, Emen FM, Ocakoglu K, Murugan P, Sudesh K, Avşar G. Green nanotechnology for synthesis and characterization of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) nanoparticles for sustained bortezomib release using supercritical CO2 assisted particle formation combined with electrodeposition. Int J Biol Macromol 2018; 107(Pt A): 436-45.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.09.011]] [PMID: 28888547]
[47]
Wang Y-W, Yang F, Wu Q, et al. Effect of composition of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) on growth of fibroblast and osteoblast. Biomaterials 2005; 26(7): 755-61.
[http://dx.doi.org/10.1016/j.biomaterials.2004.03.023] [PMID: 15350780]
[48]
Chang HM, Wang ZH, Luo HN, et al. Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)-based scaffolds for tissue engineering. Braz J Med Biol Res 2014; 47(7): 533-9.
[http://dx.doi.org/10.1590/1414-431X20143930] [PMID: 25003631]
[49]
Gould PL, Holland SJ, Tighe BJ. Polymers for biodegradable medical devices IV. Hydroxybutyrate-valerate copolymers as non-disintegrating matrices for controlled-release oral dosage forms. Int J Pharm 1987; 38: 231-7.
[http://dx.doi.org/10.1016/0378-5173(87)90119-0]
[50]
Heathman TR, Webb WR, Han J, et al. Controlled production of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) nanoparticles for targeted and sustained drug delivery. J Pharm Sci 2014; 103(8): 2498-508.
[http://dx.doi.org/10.1002/jps.24035] [PMID: 24931627]
[51]
Zhang X-Q, Xu X, Bertrand N, Pridgen E, Swami A, Farokhzad OC. Interactions of nanomaterials and biological systems: implications to personalized nanomedicine. Adv Drug Deliv Rev 2012; 64(13): 1363-84.
[http://dx.doi.org/10.1016/j.addr.2012.08.005] [PMID: 22917779]
[52]
Neri D, Bicknell R. Tumour vascular targeting. Nat Rev Cancer 2005; 5(6): 436-46.
[http://dx.doi.org/10.1038/nrc1627] [PMID: 15928674]
[53]
Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2007; 2(12): 751-60.
[http://dx.doi.org/10.1038/nnano.2007.387] [PMID: 18654426]
[54]
Acharya S, Dilnawaz F, Sahoo SK. Targeted epidermal growth factor receptor nanoparticle bioconjugates for breast cancer therapy. Biomaterials 2009; 30(29): 5737-50.
[http://dx.doi.org/10.1016/j.biomaterials.2009.07.008] [PMID: 19631377]
[55]
Minko T. Drug targeting to the colon with lectins and neoglycoconjugates. Adv Drug Deliv Rev 2004; 56(4): 491-509.
[http://dx.doi.org/10.1016/j.addr.2003.10.017] [PMID: 14969755]
[56]
Alexis F, Pridgen E, Molnar LK, Farokhzad OC. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm 2008; 5(4): 505-15.
[http://dx.doi.org/10.1021/mp800051m] [PMID: 18672949]
[57]
Martínez A, Muñiz E, Teijón C, Iglesias I, Teijón JM, Blanco MD. Targeting tamoxifen to breast cancer xenograft tumours: preclinical efficacy of folate-attached nanoparticles based on alginate-cysteine/disulphide-bond-reduced albumin. Pharm Res 2014; 31(5): 1264-74.
[http://dx.doi.org/10.1007/s11095-013-1247-5] [PMID: 24218224]
[58]
Pastorino F, Brignole C, Di Paolo D, et al. Overcoming biological barriers in neuroblastoma therapy: the vascular targeting approach with liposomal drug nanocarriers. Small 2019; 15(10)e1804591
[http://dx.doi.org/10.1002/smll.201804591] [PMID: 30706636]
[59]
Frasco MF, Almeida GM, Santos-Silva F, Pereira Mdo C, Coelho MA. Transferrin surface-modified PLGA nanoparticles-mediated delivery of a proteasome inhibitor to human pancreatic cancer cells. J Biomed Mater Res A 2015; 103(4): 1476-84.
[http://dx.doi.org/10.1002/jbm.a.35286] [PMID: 25046528]
[60]
Yang W, Gao X, Wang B. Boronic acid compounds as potential pharmaceutical agents. Med Res Rev 2003; 23(3): 346-68.
[http://dx.doi.org/10.1002/med.10043] [PMID: 12647314]
[61]
Minkkilä A, Saario SM, Käsnänen H, Leppänen J, Poso A, Nevalainen T. Discovery of boronic acids as novel and potent inhibitors of fatty acid amide hydrolase. J Med Chem 2008; 51(22): 7057-60.
[http://dx.doi.org/10.1021/jm801051t] [PMID: 18983140]
[62]
Kong Y, Grembecka J, Edler MC, et al. Structure-based discovery of a boronic acid bioisostere of combretastatin A-4. Chem Biol 2005; 12(9): 1007-14.
[http://dx.doi.org/10.1016/j.chembiol.2005.06.016] [PMID: 16183025]
[63]
Ruggeri ZM, Mendolicchio GL. Adhesion mechanisms in platelet function. Circ Res 2007; 100(12): 1673-85.
[http://dx.doi.org/10.1161/01.RES.0000267878.97021.ab] [PMID: 17585075]
[64]
Wardlaw JM, Murray V, Berge E, et al. Recombinant tissue plasminogen activator for acute ischaemic stroke: an updated systematic review and meta-analysis. Lancet 2012; 379(9834): 2364-72.
[http://dx.doi.org/10.1016/S0140-6736(12)60738-7] [PMID: 22632907]
[65]
Bilati U, Allémann E, Doelker E. Development of a nanoprecipitation method intended for the entrapment of hydrophilic drugs into nanoparticles. Eur J Pharm Sci 2005; 24(1): 67-75.
[http://dx.doi.org/10.1016/j.ejps.2004.09.011] [PMID: 15626579]
[66]
Murciano J-C, Medinilla S, Eslin D, Atochina E, Cines DB, Muzykantov VR. Prophylactic fibrinolysis through selective dissolution of nascent clots by tPA-carrying erythrocytes. Nat Biotechnol 2003; 21(8): 891-6.
[http://dx.doi.org/10.1038/nbt846] [PMID: 12845330]
[67]
de la Puente P, Luderer MJ, Federico C, et al. Enhancing proteasome-inhibitory activity and specificity of bortezomib by CD38 targeted nanoparticles in multiple myeloma. J Control Release 2018; 270: 158-76.
[http://dx.doi.org/10.1016/j.jconrel.2017.11.045] [PMID: 29196043]
[68]
Soe ZC, Poudel BK, Nguyen HT, et al. Folate-targeted nanostructured chitosan/chondroitin sulfate complex carriers for enhanced delivery of bortezomib to colorectal cancer cells. Asian J Pharm Sci 2019; 14: 40-51.
[http://dx.doi.org/10.1016/j.ajps.2018.09.004]
[69]
Kirtane AR, Narayan P, Liu G, Panyam J. Polymer-surfactant nanoparticles for improving oral bioavailability of doxorubicin. J Pharm Investig 2017; 47: 65-73.
[http://dx.doi.org/10.1007/s40005-016-0293-5]
[70]
Wang J, Li S, Han Y, et al. Poly (Ethylene Glycol) - polylactide micelles for cancer therapy. Front Pharmacol 2018; 9: 202.
[http://dx.doi.org/10.3389/fphar.2018.00202] [PMID: 29662450]
[71]
Ventola CL. Progress in nanomedicine: approved and investigational nanodrugs. P&T 2017; 42(12): 742-55.
[PMID: 29234213]
[72]
Wu K, Cheng R, Zhang J, Meng F, Deng C, Zhong Z. Micellar nanoformulation of lipophilized bortezomib: high drug loading, improved tolerability and targeted treatment of triple negative breast cancer. J Mater Chem B Mater Biol Med 2017; 5: 5658-67.
[http://dx.doi.org/10.1039/C7TB01297G]
[73]
Fang Y, Jiang Y, Zou Y, et al. Targeted glioma chemotherapy by cyclic RGD peptide-functionalized reversibly core-crosslinked multifunctional poly(ethylene glycol)-b-poly(ε-caprolactone) micelles. Acta Biomater 2017; 50: 396-406.
[http://dx.doi.org/10.1016/j.actbio.2017.01.007] [PMID: 28065871]
[74]
Zou Y, Fang Y, Meng H, et al. Self-crosslinkable and intracellularly decrosslinkable biodegradable micellar nanoparticles: a robust, simple and multifunctional nanoplatform for high-efficiency targeted cancer chemotherapy J Control Release 2016; 244(Pt B): 326-5.
[http://dx.doi.org/10.1016/j.jconrel.2016.05.060 ] [PMID: 27245309]
[75]
Dickinson BC, Chang CJ. Chemistry and biology of reactive oxygen species in signaling or stress responses. Nat Chem Biol 2011; 7(8): 504-11.
[http://dx.doi.org/10.1038/nchembio.607] [PMID: 21769097]
[76]
Ray PD, Huang B-W, Tsuji Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal 2012; 24(5): 981-90.
[http://dx.doi.org/10.1016/j.cellsig.2012.01.008] [PMID: 22286106]
[77]
Pelicano H, Carney D, Huang P. ROS stress in cancer cells and therapeutic implications. Drug Resist Updat 2004; 7(2): 97-110.
[http://dx.doi.org/10.1016/j.drup.2004.01.004] [PMID: 15158766]
[78]
Hasegawa U, Moriyama M, Uyama H, van der Vlies AJ. Antioxidant micelles for bortezomib delivery. Colloid Polym Sci 2015; 293: 1887-92.
[http://dx.doi.org/10.1007/s00396-015-3582-z]
[79]
Zhu J, Huo Q, Xu M, et al. Bortezomib-catechol conjugated prodrug micelles: combining bone targeting and aryl boronate-based pH-responsive drug release for cancer bone-metastasis therapy. Nanoscale 2018; 10(38): 18387-97.
[http://dx.doi.org/10.1039/C8NR03899F] [PMID: 30256367]
[80]
Gu Z, Wang X, Cheng R, Cheng L, Zhong Z. Hyaluronic acid shell and disulfide-crosslinked core micelles for in vivo targeted delivery of bortezomib for the treatment of multiple myeloma. Acta Biomater 2018; 80: 288-95.
[http://dx.doi.org/10.1016/j.actbio.2018.09.022] [PMID: 30240956]
[81]
Elsabahy M, Heo GS, Lim S-M, Sun G, Wooley KL. Polymeric nanostructures for imaging and therapy. Chem Rev 2015; 115(19): 10967-1011.
[http://dx.doi.org/10.1021/acs.chemrev.5b00135] [PMID: 26463640]
[82]
Eetezadi S, Ekdawi SN, Allen C. The challenges facing block copolymer micelles for cancer therapy: in vivo barriers and clinical translation. Adv Drug Deliv Rev 2015; 91: 7-22.
[http://dx.doi.org/10.1016/j.addr.2014.10.001] [PMID: 25308250]
[83]
Bae Y, Kataoka K. Intelligent polymeric micelles from functional poly(ethylene glycol)-poly(amino acid) block copolymers. Adv Drug Deliv Rev 2009; 61(10): 768-84.
[http://dx.doi.org/10.1016/j.addr.2009.04.016] [PMID: 19422866]
[84]
Ge Z, Liu S. Functional block copolymer assemblies responsive to tumor and intracellular microenvironments for site-specific drug delivery and enhanced imaging performance. Chem Soc Rev 2013; 42(17): 7289-325.
[http://dx.doi.org/10.1039/c3cs60048c] [PMID: 23549663]
[85]
Mountrichas G, Pispas S. Synthesis and pH responsive self-assembly of new double hydrophilic block copolymers. Macromolecules 2006; 39: 4767-74.
[http://dx.doi.org/10.1021/ma0605604]
[86]
Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nat Mater 2013; 12(11): 991-1003.
[http://dx.doi.org/10.1038/nmat3776] [PMID: 24150417]
[87]
MacEwan SR, Callahan DJ, Chilkoti A. Stimulus-responsive macromolecules and nanoparticles for cancer drug delivery. Nanomedicine (Lond) 2010; 5(5): 793-806.
[http://dx.doi.org/10.2217/nnm.10.50] [PMID: 20662649]
[88]
Zhang X, Yuan T, Dong H, et al. Novel block glycopolymers prepared as delivery nanocarriers for controlled release of bortezomib. Colloid Polym Sci 2018; 296(11): 1827-39.
[http://dx.doi.org/10.1007/s00396-018-4406-8] [PMID: 30416246]
[89]
Tomalia DA, Khanna SN. A systematic framework and nanoperiodic concept for unifying nanoscience: hard/soft nanoelements, superatoms, meta-atoms, new emerging properties, periodic property patterns, and predictive Mendeleev-like nanoperiodic tables. Chem Rev 2016; 116(4): 2705-74.
[http://dx.doi.org/10.1021/acs.chemrev.5b00367] [PMID: 26821999]
[90]
Svenson S, Tomalia DA. Dendrimers in biomedical applications-reflections on the field. Adv Drug Deliv Rev 2012; 64: 102-15.
[http://dx.doi.org/10.1016/j.addr.2012.09.030]
[91]
Wang H, Huang Q, Chang H, Xiao J, Cheng Y. Stimuli-responsive dendrimers in drug delivery. Biomater Sci 2016; 4(3): 375-90.
[http://dx.doi.org/10.1039/C5BM00532A] [PMID: 26806314]
[92]
Zhao L, Wu Q, Cheng Y, Zhang J, Wu J, Xu T. High-throughput screening of dendrimer-binding drugs. J Am Chem Soc 2010; 132(38): 13182-4.
[http://dx.doi.org/10.1021/ja106128u] [PMID: 20825185]


Rights & PermissionsPrintExport Cite as


Article Details

VOLUME: 25
ISSUE: 46
Year: 2019
Page: [4883 - 4892]
Pages: 10
DOI: 10.2174/1381612825666191106150018
Price: $65

Article Metrics

PDF: 19
HTML: 4
EPUB: 1
PRC: 1