The Functional Significance of Endocrine-immune Interactions in Health and Disease

Author(s): Sridhar Muthusami*, Balasubramanian Vidya, Esaki M Shankar, Jamuna Vadivelu, Ilangovan Ramachandran, Jone A Stanley, Nagarajan Selvamurugan.

Journal Name: Current Protein & Peptide Science

Volume 21 , Issue 1 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Hormones are known to influence various body systems that include skeletal, cardiac, digestive, excretory, and immune systems. Emerging investigations suggest the key role played by secretions of endocrine glands in immune cell differentiation, proliferation, activation, and memory attributes of the immune system. The link between steroid hormones such as glucocorticoids and inflammation is widely known. However, the role of peptide hormones and amino acid derivatives such as growth and thyroid hormones, prolactin, dopamine, and thymopoietin in regulating the functioning of the immune system remains unclear. Here, we reviewed the findings pertinent to the functional role of hormone-immune interactions in health and disease and proposed perspective directions for translational research in the field.

Keywords: Immune system, endocrine system, protein, peptide, cross talk, hormones.

[1]
Feingold, K.; Anawalt, B.; Boyce, A.; Chrousos, G.; Dungan, K.; Grossman, A.; Hershman, J.; Kaltsas, G.; Koch, C.; Kopp, P. 2000.
[2]
Vasconcelos, A.R.; Cabral-Costa, J.V.; Mazucanti, C.H.; Scavone, C.; Kawamoto, E.M. Front. Endocrinol., 2016, 7, 9.
[http://dx.doi.org/10.3389/fendo.2016.00009]
[3]
Savino, W.; Mendes-da-Cruz, D.A.; Lepletier, A.; Dardenne, M. Hormonal control of T-cell development in health and disease. Nat. Rev. Endocrinol., 2016, 12(2), 77-89.
[http://dx.doi.org/10.1038/nrendo.2015.168] [PMID: 26437623]
[4]
Carreño, P.C.; Jiménez, E.; Sacedón, R.; Vicente, A.; Zapata, A.G. Prolactin stimulates maturation and function of rat thymic dendritic cells. J. Neuroimmunol., 2004, 153(1-2), 83-90.
[http://dx.doi.org/10.1016/j.jneuroim.2004.04.020] [PMID: 15265666]
[5]
Carreño, P.C.; Sacedón, R.; Jiménez, E.; Vicente, A.; Zapata, A.G. Prolactin affects both survival and differentiation of T-cell progenitors. J. Neuroimmunol., 2005, 160(1-2), 135-145.
[http://dx.doi.org/10.1016/j.jneuroim.2004.11.008] [PMID: 15710466]
[6]
Cesano, A.; Oberholtzer, E.; Contarini, M.; Geuna, M.; Bellone, G.; Matera, L. Independent and synergistic effect of interleukin-2 and prolactin on development of T- and NK-derived LAK effectors. Immunopharmacology, 1994, 28(1), 67-75.
[http://dx.doi.org/10.1016/0162-3109(94)90040-X] [PMID: 7928303]
[7]
(a) Ram, S.; Acharya, S.; Fernando, J.J.; Anderson, N.R.; Gama, R. Serum prolactin in human immunodeficiency virus infection. Clin. Lab., 2004, 50(9-10), 617-620.
[PMID: 15481638]
(b) Graef, A.S.; Gonzalez, S.S.; Baca, V.R.; Ramirez, M.L.; Daza, L.B.; Blanco, F.F.; Ortiz, O.A.; Lavalle, C.M. High serum prolactin levels in asymptomatic HIV-infected patients and in patients with acquired immunodeficiency syndrome. Clin. Immunol. Immunopathol., 1994, 72(3), 390-393.
[http://dx.doi.org/10.1006/clin.1994.1157] [PMID: 8062450]
(c) Montero, A.; Giovannoni, A.G.; Sen, L. [Hyperprolactinemia is a frequent finding in HIV infection but does not correlate with viral burden Medicina (B. Aires), 2000, 60(4), 427-430.
[PMID: 11188945]
[8]
Leaños-Miranda, A.; Contreras-Hernández, I. Antiprolactin autoantibodies are associated with hyperprolactinemic status in men infected with human immunodeficiency virus. Endocrine, 2002, 19(2), 139-146.
[http://dx.doi.org/10.1385/ENDO:19:2:139] [PMID: 12588043]
[9]
Orlander, H.; Peter, S.; Jarvis, M.; Ricketts-Hall, L. Imipramine induced elevation of prolactin levels in patients with HIV/AIDS improved their immune status. West Indian Med. J., 2009, 58(3), 207-213.
[PMID: 20043526]
[10]
Dunna, S.F.; Finlay, A.Y. Psoriasis: improvement during and worsening after pregnancy. Br. J. Dermatol., 1989, 120(4), 584-584.
[http://dx.doi.org/10.1111/j.1365-2133.1989.tb01338.x] [PMID: 2730848]
[11]
Botezatu, D. Tovaru, M.; Georgescu, S.-R.; Curici, A.; Giurcaneanu, C. Maedica (Buchar.), 2018, 13(1), 25.
[PMID: 29868137]
[12]
Dill, R.; Walker, A.M. Role of prolactin in promotion of immune cell migration into the mammary gland. J. Mammary Gland Biol. Neoplasia, 2017, 22(1), 13-26.
[http://dx.doi.org/10.1007/s10911-016-9369-0] [PMID: 27900586]
[13]
(a) Ban, E.; Gagnerault, M-C.; Jammes, H.; Postel-Vinay, M-C.; Haour, F.; Dardenne, M. Specific binding sites for growth hormone in cultured mouse thymic epithelial cells. Life Sci., 1991, 48(22), 2141-2148.
[http://dx.doi.org/10.1016/0024-3205(91)90147-4] [PMID: 2034041]
(b) de Mello-Coelho, V.; Gagnerault, M-C.; Souberbielle, J-C.; Strasburger, C.J.; Savino, W.; Dardenne, M.; Postel-Vinay, M-C. Growth hormone and its receptor are expressed in human thymic cells. Endocrinology, 1998, 139(9), 3837-3842.
[http://dx.doi.org/10.1210/endo.139.9.6199] [PMID: 9724037]
[14]
Mantero, P.; Matus, G.S.; Corti, R.E.; Cabanne, A.M.; Zerbetto de Palma, G.G.; Marchesi Olid, L.; Piskorz, M.M.; Zubillaga, M.B.; Janjetic, M.A.; Goldman, C.G. Helicobacter pylori and corpus gastric pathology are associated with lower serum ghrelin. World J. Gastroenterol., 2018, 24(3), 397-407.
[http://dx.doi.org/10.3748/wjg.v24.i3.397] [PMID: 29391762]
[15]
Dixit, V.D.; Yang, H.; Sun, Y.; Weeraratna, A.T.; Youm, Y-H.; Smith, R.G.; Taub, D.D. Ghrelin promotes thymopoiesis during aging. J. Clin. Invest., 2007, 117(10), 2778-2790.
[http://dx.doi.org/10.1172/JCI30248] [PMID: 17823656]
[16]
Dale, H. Natural chemical stimulators. Edinburgh Med. J., 1938, 45(7), 461.
[17]
Goridis, C.; Rohrer, H. Specification of catecholaminergic and serotonergic neurons. Nat. Rev. Neurosci., 2002, 3(7), 531-541.
[http://dx.doi.org/10.1038/nrn871] [PMID: 12094209]
[18]
Barnes, M.A.; Carson, M.J.; Nair, M.G. Non-traditional cytokines: How catecholamines and adipokines influence macrophages in immunity, metabolism and the central nervous system. Cytokine, 2015, 72(2), 210-219.
[http://dx.doi.org/10.1016/j.cyto.2015.01.008] [PMID: 25703786]
[19]
Stanojević, S.; Dimitrijević, M.; Kuštrimović, N.; Mitić, K.; Vujić, V.; Leposavić, G. Adrenal hormone deprivation affects macrophage catecholamine metabolism and β2-adrenoceptor density, but not propranolol stimulation of tumour necrosis factor-α production. Exp. Physiol., 2013, 98(3), 665-678.
[http://dx.doi.org/10.1113/expphysiol.2012.070524] [PMID: 23180813]
[20]
Scanzano, A.; Cosentino, M. Adrenergic regulation of innate immunity: a review. Front. Pharmacol., 2015, 6, 171.
[http://dx.doi.org/10.3389/fphar.2015.00171] [PMID: 26321956]
[21]
Reiske, L.; Schmucker, S.; Steuber, J.; Stefanski, V. Glucocorticoids and catecholamines affect in vitro functionality of porcine blood immune cells. Animals (Basel), 2019, 9(8), 545.
[http://dx.doi.org/10.3390/ani9080545] [PMID: 31408932]
[22]
Arreola, R.; Alvarez-Herrera, S.; Pérez-Sánchez, G.; Becerril-Villanueva, E.; Cruz-Fuentes, C.; Flores-Gutierrez, E.O.; Garces-Alvarez, M.E.; de la Cruz-Aguilera, D.L.; Medina-Rivero, E.; Hurtado-Alvarado, G.; Quintero-Fabián, S. Immunomodulatory effects mediated by dopamine. J. Immunol. Res., 2016, 2016, 1-31.
[23]
Ding, S.; Wang, W.; Wang, X.; Liang, Y.; Liu, L.; Ye, Y.; Yang, J.; Gao, H.; Zhuge, Q. Dopamine burden triggers neurodegeneration via production and release of TNF-α from astrocytes in minimal hepatic encephalopathy. Mol. Neurobiol., 2016, 53(8), 5324-5343.
[http://dx.doi.org/10.1007/s12035-015-9445-2] [PMID: 26433377]
[24]
Meredith, E.J.; Holder, M.J.; Chamba, A.; Challa, A.; Drake-Lee, A.; Bunce, C.M.; Drayson, M.T.; Pilkington, G.; Blakely, R.D.; Dyer, M.J.; Barnes, N.M.; Gordon, J. The serotonin transporter (SLC6A4) is present in B-cell clones of diverse malignant origin: probing a potential anti-tumor target for psychotropics. FASEB J., 2005, 19(9), 1187-1189.
[http://dx.doi.org/10.1096/fj.04-3477fje] [PMID: 15870169]
[25]
(a) Kustrimovic, N.; Rasini, E.; Legnaro, M.; Bombelli, R.; Aleksic, I.; Blandini, F.; Comi, C.; Mauri, M.; Minafra, B.; Riboldazzi, G.; Sanchez-Guajardo, V.; Marino, F.; Cosentino, M. Dopaminergic receptors on CD4+ T naive and memory lymphocytes correlate with motor impairment in patients with Parkinson’s disease. Sci. Rep., 2016, 6, 33738.
[http://dx.doi.org/10.1038/srep33738] [PMID: 27652978]
(b) Meredith, E.J.; Holder, M.J.; Rosén, A.; Lee, A.D.; Dyer, M.J.; Barnes, N.M.; Gordon, J. Dopamine targets cycling B cells independent of receptors/transporter for oxidative attack: Implications for non-Hodgkin’s lymphoma. Proc. Natl. Acad. Sci. USA, 2006, 103(36), 13485-13490.
[http://dx.doi.org/10.1073/pnas.0605993103] [PMID: 16938864]
[26]
Winter, O.; Moser, K.; Mohr, E.; Zotos, D.; Kaminski, H.; Szyska, M.; Roth, K.; Wong, D.M.; Dame, C.; Tarlinton, D.M.; Schulze, H.; MacLennan, I.C.; Manz, R.A. Megakaryocytes constitute a functional component of a plasma cell niche in the bone marrow. Blood, 2010, 116(11), 1867-1875.
[http://dx.doi.org/10.1182/blood-2009-12-259457] [PMID: 20538807]
[27]
Chu, V.T.; Fröhlich, A.; Steinhauser, G.; Scheel, T.; Roch, T.; Fillatreau, S.; Lee, J.J.; Löhning, M.; Berek, C. Eosinophils are required for the maintenance of plasma cells in the bone marrow. Nat. Immunol., 2011, 12(2), 151-159.
[http://dx.doi.org/10.1038/ni.1981] [PMID: 21217761]
[28]
Basu, B.; Sarkar, C.; Chakroborty, D.; Ganguly, S.; Shome, S.; Dasgupta, P.S.; Basu, S. D1 and D2 dopamine receptor-mediated inhibition of activated normal T cell proliferation is lost in jurkat T leukemic cells. J. Biol. Chem., 2010, 285(35), 27026-27032.
[http://dx.doi.org/10.1074/jbc.M110.144022] [PMID: 20592018]
[29]
Besser, M.J.; Ganor, Y.; Levite, M. Dopamine by itself activates either D2, D3 or D1/D5 dopaminergic receptors in normal human T-cells and triggers the selective secretion of either IL-10, TNFalpha or both. J. Neuroimmunol., 2005, 169(1-2), 161-171.
[http://dx.doi.org/10.1016/j.jneuroim.2005.07.013] [PMID: 16150496]
[30]
Ferrari, M.; Cosentino, M.; Marino, F.; Bombelli, R.; Rasini, E.; Lecchini, S.; Frigo, G. Dopaminergic D1-like receptor-dependent inhibition of tyrosine hydroxylase mRNA expression and catecholamine production in human lymphocytes. Biochem. Pharmacol., 2004, 67(5), 865-873.
[http://dx.doi.org/10.1016/j.bcp.2003.10.004] [PMID: 15104239]
[31]
McKenna, F.; McLaughlin, P.J.; Lewis, B.J.; Sibbring, G.C.; Cummerson, J.A.; Bowen-Jones, D.; Moots, R.J. Dopamine receptor expression on human T- and B-lymphocytes, monocytes, neutrophils, eosinophils and NK cells: a flow cytometric study. J. Neuroimmunol., 2002, 132(1-2), 34-40.
[http://dx.doi.org/10.1016/S0165-5728(02)00280-1] [PMID: 12417431]
[32]
Prado, C.; Contreras, F.; González, H.; Díaz, P.; Elgueta, D.; Barrientos, M.; Herrada, A.A.; Lladser, Á.; Bernales, S.; Pacheco, R. Stimulation of dopamine receptor D5 expressed on dendritic cells potentiates Th17-mediated immunity. J. Immunol., 2012, 188(7), 3062-3070.
[http://dx.doi.org/10.4049/jimmunol.1103096] [PMID: 22379034]
[33]
Zhao, W.; Huang, Y.; Liu, Z.; Cao, B-B.; Peng, Y-P.; Qiu, Y-H. Dopamine receptors modulate cytotoxicity of natural killer cells via cAMP-PKA-CREB signaling pathway. PLoS One, 2013, 8(6)e65860
[http://dx.doi.org/10.1371/journal.pone.0065860] [PMID: 23799052]
[34]
Kustrimovic, N.; Rasini, E.; Legnaro, M.; Marino, F.; Cosentino, M. Expression of dopaminergic receptors on human CD4+ T lymphocytes: flow cytometric analysis of naive and memory subsets and relevance for the neuroimmunology of neurodegenerative disease. J. Neuroimmune Pharmacol., 2014, 9(3), 302-312.
[http://dx.doi.org/10.1007/s11481-014-9541-5] [PMID: 24682738]
[35]
Huang, Y.; Qiu, A-W.; Peng, Y-P.; Liu, Y.; Huang, H-W.; Qiu, Y-H. Roles of dopamine receptor subtypes in mediating modulation of T lymphocyte function. Neuroendocrinol. Lett., 2010, 31(6), 782-791.
[PMID: 21196914]
[36]
De Vito, P.; Incerpi, S.; Pedersen, J.Z.; Luly, P.; Davis, F.B.; Davis, P.J. Thyroid hormones as modulators of immune activities at the cellular level. Thyroid, 2011, 21(8), 879-890.
[http://dx.doi.org/10.1089/thy.2010.0429] [PMID: 21745103]
[37]
Klecha, A.J.; Barreiro Arcos, M.L.; Frick, L.; Genaro, A.M.; Cremaschi, G. Immune-endocrine interactions in autoimmune thyroid diseases. Neuroimmunomodulation, 2008, 15(1), 68-75.
[http://dx.doi.org/10.1159/000135626] [PMID: 18667802]
[38]
Volpé, R. The immunomodulatory effects of anti-thyroid drugs are mediated via actions on thyroid cells, affecting thyrocyte-immunocyte signalling: a review. Curr. Pharm. Des., 2001, 7(6), 451-460.
[http://dx.doi.org/10.2174/1381612013397898] [PMID: 11281852]
[39]
(a)Bergh, J.J.; Lin, H-Y.; Lansing, L.; Mohamed, S.N.; Davis, F.B.; Mousa, S.; Davis, P. J. Endocrinol., 2005, 146(7), 2864-2871.
[http://dx.doi.org/10.1210/en.2005-0102]
(b)Davis, P.J.; Davis, F.B.; Cody, V. Membrane receptors mediating thyroid hormone action. Trends Endocrinol. Metab., 2005, 16(9), 429-435.
[http://dx.doi.org/10.1016/j.tem.2005.09.007] [PMID: 16214361]
(c)Cody, V.; Davis, P.J.; Davis, F.B. Molecular modeling of the thyroid hormone interactions with alpha v beta 3 integrin. Steroids., 2007, 72(2), 165-170.
[http://dx.doi.org/10.1016/j.steroids.2006.11.008] [PMID: 17166537]
[40]
Cayrol, F.; Díaz Flaqué, M.C.; Fernando, T.; Yang, S.N.; Sterle, H.A.; Bolontrade, M.; Amorós, M.; Isse, B.; Farías, R.N.; Ahn, H.; Tian, Y.F.; Tabbò, F.; Singh, A.; Inghirami, G.; Cerchietti, L.; Cremaschi, G.A. Integrin αvβ3 acting as membrane receptor for thyroid hormones mediates angiogenesis in malignant T cells. Blood, 2015, 125(5), 841-851.
[http://dx.doi.org/10.1182/blood-2014-07-587337] [PMID: 25488971]
[41]
Yacobovich, S.; Tuchinsky, L.; Kirby, M.; Kardash, T.; Agranyoni, O.; Nesher, E.; Redko, B.; Gellerman, G.; Tobi, D.; Gurova, K.; Koman, I.; Ashur Fabian, O.; Pinhasov, A. Novel synthetic cyclic integrin αvβ3 binding peptide ALOS4: Antitumor activity in mouse melanoma models. Oncotarget, 2016, 7(39), 63549-63560.
[http://dx.doi.org/10.18632/oncotarget.11363] [PMID: 27556860]
[42]
Bilal, M.Y.; Dambaeva, S.; Kwak-Kim, J.; Gilman-Sachs, A.; Beaman, K.D. A Role for Iodide and Thyroglobulin in Modulating the Function of Human Immune Cells. Front. Immunol., 2017, 8, 1573.
[http://dx.doi.org/10.3389/fimmu.2017.01573] [PMID: 29187856]
[43]
Hodkinson, C.F.; Simpson, E.E.; Beattie, J.H.; O’Connor, J.M.; Campbell, D.J.; Strain, J.J.; Wallace, J.M. Preliminary evidence of immune function modulation by thyroid hormones in healthy men and women aged 55-70 years. J. Endocrinol., 2009, 202(1), 55-63.
[http://dx.doi.org/10.1677/JOE-08-0488] [PMID: 19398496]
[44]
Villa-Verde, D.M.; Defresne, M.P.; Vannier-dos-Santos, M.A.; Dussault, J.H.; Boniver, J.; Savino, W. Identification of nuclear triiodothyronine receptors in the thymic epithelium. Endocrinology, 1992, 131(3), 1313-1320.
[http://dx.doi.org/10.1210/endo.131.3.1505466] [PMID: 1505466]
[45]
Kwakkel, J.; Surovtseva, O.V.; de Vries, E.M.; Stap, J.; Fliers, E.; Boelen, A. A novel role for the thyroid hormone-activating enzyme type 2 deiodinase in the inflammatory response of macrophages. Endocrinology, 2014, 155(7), 2725-2734.
[http://dx.doi.org/10.1210/en.2013-2066] [PMID: 24731098]
[46]
Roodgar, M.; Ross, C.T.; Kenyon, N.J.; Marcelino, G.; Smith, D.G. Inducible nitric oxide synthase (iNOS) regulatory region variation in non-human primates. Infect. Genet. Evol., 2015, 31, 236-244.
[http://dx.doi.org/10.1016/j.meegid.2015.01.015] [PMID: 25675838]
[47]
Lin, H-Y.; Sun, M.; Tang, H-Y.; Lin, C.; Luidens, M.K.; Mousa, S.A.; Incerpi, S.; Drusano, G.L.; Davis, F.B.; Davis, P.J. L-Thyroxine vs. 3,5,3′-triiodo-L-thyronine and cell proliferation: activation of mitogen-activated protein kinase and phosphatidylinositol 3-kinase. Am. J. Physiol. Cell Physiol., 2009, 296(5), C980-C991.
[http://dx.doi.org/10.1152/ajpcell.00305.2008] [PMID: 19158403]
[48]
May, R.C.; Machesky, L.M. Phagocytosis and the actin cytoskeleton. J. Cell Sci., 2001, 114(Pt 6), 1061-1077.
[PMID: 11228151]
[49]
Hargreaves, C.E.; Grasso, M.; Hampe, C.S.; Stenkova, A.; Atkinson, S.; Joshua, G.W.; Wren, B.W.; Buckle, A.M.; Dunn-Walters, D.; Banga, J.P. Yersinia enterocolitica provides the link between thyroid-stimulating antibodies and their germline counterparts in Graves’ disease. J. Immunol., 2013, 190(11), 5373-5381.
[http://dx.doi.org/10.4049/jimmunol.1203412] [PMID: 23630351]
[50]
Tomer, Y.; Villanueva, R. Hepatitis C and thyroid autoimmunity: is there a link? Am. J. Med., 2004, 117(1), 60-61.
[http://dx.doi.org/10.1016/j.amjmed.2004.04.004] [PMID: 15210391]
[51]
Wahid, B.; Waqar, M.; Rasool, N.; Wasim, M.; Khalid, I.; Idrees, M. Prevalence of thyroid stimulating hormone dysfunction among sofosbuvir-treated HCV-infected patients: A real-world clinical experience. J. Med. Virol., 2019, 91(3), 514-517.
[http://dx.doi.org/10.1002/jmv.25319] [PMID: 30229954]
[52]
van der Spek, A.H.; Surovtseva, O.V.; Aan, S.; Tool, A.T.J.; van de Geer, A.; Demir, K.; van Gucht, A.L.M.; van Trotsenburg, A.S.P.; van den Berg, T.K.; Fliers, E.; Boelen, A. Increased circulating interleukin-8 in patients with resistance to thyroid hormone receptor α. Endocr. Connect., 2017, 6(8), 731-740.
[http://dx.doi.org/10.1530/EC-17-0213] [PMID: 29101248]
[53]
Lunin, S.M.; Novoselova, E.G. Thymus hormones as prospective anti-inflammatory agents. Expert Opin. Ther. Targets, 2010, 14(8), 775-786.
[http://dx.doi.org/10.1517/14728222.2010.499127] [PMID: 20536297]
[54]
Vauleon, E.; Avril, T.; Collet, B.; Mosser, J.; Quillien, V. Overview of cellular immunotherapy for patients with giloblastoma. Clini. Develop Immunol., 2010, 2010 689171
[55]
(a)Preusser, M.; Lim, M.; Hafler, D.A.; Reardon, D.A.; Sampson, J.H. Prospects of immune checkpoint modulators in the treatment of glioblastoma. Nat. Rev. Neurol., 2015, 11(9), 504-514.
[http://dx.doi.org/10.1038/nrneurol.2015.139] [PMID: 26260659]
(b)Zhang, L.; Wang, G.; Chen, S.; Ding, J.; Ju, S.; Cao, H.; Tian, H. Depletion of thymopoietin inhibits proliferation and induces cell cycle arrest/apoptosis in glioblastoma cells. World J. Surg. Oncol., 2016, 14(1), 267.
[http://dx.doi.org/10.1186/s12957-016-1018-y] [PMID: 27756319]
[56]
Goldstein, G.; Scheid, M.P.; Boyse, E.A.; Schlesinger, D.H. Van Wauwe. J. Sci., 1979, 204(4399), 1309-1310.
[57]
Aiuti, F.; Businco, L.; Fiorilli, M.; Galli, E.; Quinti, I.; Rossi, P.; Seminara, R.; Goldstein, G. Thymopoietin pentapeptide treatment of primary immunodeficiencies. Lancet, 1983, 1(8324), 551-554.
[http://dx.doi.org/10.1016/S0140-6736(83)92810-6] [PMID: 6131256]
[58]
(a) Bottasso, O.; Bay, M.L.; Besedovsky, H.; del Rey, A. The immuno-endocrine component in the pathogenesis of tuberculosis. Scand. J. Immunol., 2007, 66(2-3), 166-175.
[http://dx.doi.org/10.1111/j.1365-3083.2007.01962.x] [PMID: 17635794]
(b) Bottasso, O.; Bay, M.L.; Besedovsky, H.; Del Rey, A. Adverse neuro-immune-endocrine interactions in patients with active tuberculosis. Mol. Cell. Neurosci., 2013, 53, 77-85.
[http://dx.doi.org/10.1016/j.mcn.2012.11.002] [PMID: 23147110]
[59]
a) Lyadova, I.; Panteleev, A. Mediators of inflammation,2015, 2015b) Kisuya, J.; Chemtai, A.; Raballah, E.; Keter, A.; Ouma, C. The diagnostic accuracy of Th1 (IFN-γ, TNF-α, and IL-2) and Th2 (IL-4, IL-6 and IL-10) cytokines response in AFB microscopy smear negative PTB- HIV co-infected patients. Sci. Rep., 2019, 9(1), 2966.
[http://dx.doi.org/10.1038/s41598-019-39048-x] [PMID: 30814543]
[60]
Mandala, J.P.; Rajashekar, M.; Latha, G.S. Role of Immuno- Endocrine Interactions in Tuberculosis. J. Infect. Dis. Immun., 2015, 1, 001-009.
[61]
(a) D’Attilio, L.; Santucci, N.; Bongiovanni, B.; Bay, M.L.; Bottasso, O. Front. Endocrinol., 2018, 9, 214.
[http://dx.doi.org/10.3389/fendo.2018.00214]
(b) Rey, A.D.; Mahuad, C.V.; Bozza, V.V.; Bogue, C.; Farroni, M.A.; Bay, M.L.; Bottasso, O.A.; Besedovsky, H.O. Endocrine and cytokine responses in humans with pulmonary tuberculosis. Brain Behav. Immun., 2007, 21(2), 171-179.
[http://dx.doi.org/10.1016/j.bbi.2006.06.005] [PMID: 16890403]
[62]
Harries, A.D.; Kumar, A.M.; Satyanarayana, S.; Lin, Y.; Zachariah, R.; Lönnroth, K.; Kapur, A. Diabetes mellitus and tuberculosis: programmatic management issues. Int. J. Tuberc. Lung Dis., 2015, 19(8), 879-886.
[http://dx.doi.org/10.5588/ijtld.15.0069] [PMID: 26162352]
[63]
Kumar, N.P.; Moideen, K.; Nancy, A.; Viswanathan, V.; Shruthi, B.S.; Sivakumar, S.; Natarajan, M.; Kornfeld, H.; Babu, S. Heterogeneity in the cytokine profile of tuberculosis - diabetes co-morbidity. Cytokine, 2019. 125154824
[http://dx.doi.org/10.1016/j.cyto.2019.154824] [PMID: 31472402]
[64]
Philips, L.; Visser, J. Nel, D.; Blaauw, R. BMC Infect. Dis., 2017, 17(1), 570.
[http://dx.doi.org/10.1186/s12879-017-2657-5] [PMID: 28810840]
[65]
Sánchez-Jiménez, R.; Cerón, E.; Bernal-Alcántara, D.; Castillejos-López, M.; Gonzalez-Trujano, E.; Negrete-García, M.C.; Alvarado-Vásquez, N. Association between IL-15 and insulin plasmatic concentrations in patients with pulmonary tuberculosis and type 2 diabetes. Tuberculosis (Edinb.), 2018, 111, 114-120.
[http://dx.doi.org/10.1016/j.tube.2018.06.009] [PMID: 30029895]
[66]
Bereshchenko, O.; Bruscoli, S.; Riccardi, C. Glucocorticoids, Sex Hormones, and Immunity. Front. Immunol., 2018, 9, 1332-1332.
[http://dx.doi.org/10.3389/fimmu.2018.01332] [PMID: 29946321]
[67]
Savino, W. Endocrine immunology of Chagas disease.Endocrine Immunology; Karger Publishers, 2017, Vol. 48, pp. 160-175.
[http://dx.doi.org/10.1159/000452914]
[68]
Chen, L.; Deng, H.; Cui, H.; Fang, J.; Zuo, Z.; Deng, J.; Li, Y.; Wang, X.; Zhao, L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget, 2017, 9(6), 7204-7218.
[PMID: 29467962]
[69]
Pérez, A.R.; Silva-Barbosa, S.D.; Roggero, E.; Calmon-Hamaty, F.; Villar, S.R.; Gutierrez, F.R.; Silva, J.S.; Savino, W.; Bottasso, O. Immunoendocrinology of the thymus in Chagas disease. Neuroimmunomodulation, 2011, 18(5), 328-338.
[http://dx.doi.org/10.1159/000329494] [PMID: 21952685]
[70]
Teixeira, A.R.; Nascimento, R.J.; Sturm, N.R. Evolution and pathology in chagas disease--a review. Mem. Inst. Oswaldo Cruz, 2006, 101(5), 463-491.
[http://dx.doi.org/10.1590/S0074-02762006000500001] [PMID: 17072450]
[71]
De Bona, E.; Lidani, K.C.F.; Bavia, L.; Omidian, Z.; Gremski, L.H.; Sandri, T.L.; de Messias Reason, I.J. Autoimmunity in Chronic Chagas Disease: A Road of Multiple Pathways to Cardiomyopathy? Front. Immunol., 2018, 9, 1842-1842.
[http://dx.doi.org/10.3389/fimmu.2018.01842] [PMID: 30127792]
[72]
Tanowitz, H.B.; Kirchhoff, L.V.; Simon, D.; Morris, S.A.; Weiss, L.M.; Wittner, M. Chagas’ disease. Clin. Microbiol. Rev., 1992, 5(4), 400-419.
[http://dx.doi.org/10.1128/CMR.5.4.400] [PMID: 1423218]
[73]
Sanmarco, L.M.; Eberhardt, N.; Bergero, G.; Palacio, L.P.Q.; Adami, P.M.; Visconti, L.M.; Minguez, Á.R.; Hernández-Vasquez, Y.; Silva, E.A.C.; Morelli, L. Monocyte glycolysis determines CD8+ T cell functionality in human Chagas disease. JCI Insight, 2019, 4(18) e123490
[74]
Büscher, P.; Cecchi, G.; Jamonneau, V.; Priotto, G. Human African trypanosomiasis. Lancet, 2017, 390(10110), 2397-2409.
[http://dx.doi.org/10.1016/S0140-6736(17)31510-6] [PMID: 28673422]
[75]
Carvalho, T.; Trindade, S.; Pimenta, S.; Santos, A.B.; Rijo-Ferreira, F.; Figueiredo, L.M. Trypanosoma brucei triggers a marked immune response in male reproductive organs. PLoS Negl. Trop. Dis., 2018, 12(8) e0006690
[http://dx.doi.org/10.1371/journal.pntd.0006690] [PMID: 30110342]
[76]
Ponte-Sucre, A. An overview of Trypanosoma brucei infections: An intense host-parasite interaction. Front. Microbiol., 2016, 7, 2126.
[http://dx.doi.org/10.3389/fmicb.2016.02126] [PMID: 28082973]
[77]
Shurtz-Swirski, R.; Shkolnik, T.; Shasha, S.M. Parathyroid hormone and the cellular immune system. Nephron, 1995, 70(1), 21-24.
[http://dx.doi.org/10.1159/000188538] [PMID: 7617112]
[78]
Teng, Y-T.A.; Nguyen, H.; Gao, X.; Kong, Y-Y.; Gorczynski, R.M.; Singh, B.; Ellen, R.P.; Penninger, J.M. Functional human T-cell immunity and osteoprotegerin ligand control alveolar bone destruction in periodontal infection. J. Clin. Invest., 2000, 106(6), R59-R67.
[http://dx.doi.org/10.1172/JCI10763] [PMID: 10995794]
[79]
(a) Lanske, B.; Amling, M.; Neff, L.; Guiducci, J.; Baron, R.; Kronenberg, H.M. Ablation of the PTHrP gene or the PTH/PTHrP receptor gene leads to distinct abnormalities in bone development. J. Clin. Invest., 1999, 104(4), 399-407.
[http://dx.doi.org/10.1172/JCI6629] [PMID: 10449432]
(b) Calvi, L.M.; Sims, N.A.; Hunzelman, J.L.; Knight, M.C.; Giovannetti, A.; Saxton, J.M.; Kronenberg, H.M.; Baron, R.; Schipani, E. Activated parathyroid hormone/parathyroid hormone-related protein receptor in osteoblastic cells differentially affects cortical and trabecular bone. J. Clin. Invest., 2001, 107(3), 277-286.
[http://dx.doi.org/10.1172/JCI11296] [PMID: 11160151]
[80]
Li, J-Y.; D’Amelio, P.; Robinson, J.; Walker, L.D.; Vaccaro, C.; Luo, T.; Tyagi, A.M.; Yu, M.; Reott, M.; Sassi, F.; Buondonno, I.; Adams, J.; Weitzmann, M.N.; Isaia, G.C.; Pacifici, R. IL-17A Is increased in humans with primary hyperparathyroidism and mediates PTH-induced bone loss in mice. Cell Metab., 2015, 22(5), 799-810.
[http://dx.doi.org/10.1016/j.cmet.2015.09.012] [PMID: 26456334]
[81]
Cho, S.W.; Soki, F.N.; Koh, A.J.; Eber, M.R.; Entezami, P.; Park, S.I.; van Rooijen, N.; McCauley, L.K. Osteal macrophages support physiologic skeletal remodeling and anabolic actions of parathyroid hormone in bone. Proc. Natl. Acad. Sci. USA, 2014, 111(4), 1545-1550.
[http://dx.doi.org/10.1073/pnas.1315153111] [PMID: 24406853]
[82]
Umeda, Y.; Takamiya, M.; Yoshizaki, H.; Arisawa, M. Inhibition of mitogen-stimulated T lymphocyte proliferation by calcitonin gene-related peptide. Biochem. Biophys. Res. Commun., 1988, 154(1), 227-235.
[http://dx.doi.org/10.1016/0006-291X(88)90674-2] [PMID: 2840066]
[83]
Kuo, Y-J.; Tsuang, F-Y.; Sun, J-S.; Lin, C-H.; Chen, C-H.; Li, J-Y.; Huang, Y-C.; Chen, W-Y.; Yeh, C-B.; Shyu, J-F. Calcitonin inhibits SDCP-induced osteoclast apoptosis and increases its efficacy in a rat model of osteoporosis. PLoS One, 2012, 7(7) e40272
[http://dx.doi.org/10.1371/journal.pone.0040272] [PMID: 22792258]
[84]
Wei, J.; Wang, J.; Gong, Y.; Zeng, R. Effectiveness of combined salmon calcitonin and aspirin therapy for osteoporosis in ovariectomized rats. Mol. Med. Rep., 2015, 12(2), 1717-1726.
[http://dx.doi.org/10.3892/mmr.2015.3637] [PMID: 25891179]
[85]
Tu, K.N.; Lie, J.D.; Wan, C.K.V.; Cameron, M.; Austel, A.G.; Nguyen, J.K.; Van, K.; Hyun, D. Osteoporosis: A Review of Treatment Options. PT, 2018, 43(2), 92-104.
[PMID: 29386866]
[86]
Felsenfeld, A.J.; Levine, B.S. Calcitonin, the forgotten hormone: does it deserve to be forgotten? Clin. Kidney J., 2015, 8(2), 180-187.
[http://dx.doi.org/10.1093/ckj/sfv011] [PMID: 25815174]
[87]
Vignery, A.; Wang, F.; Ganz, M.B. Macrophages express functional receptors for calcitonin-gene-related peptide. J. Cell. Physiol., 1991, 149(2), 301-306.
[http://dx.doi.org/10.1002/jcp.1041490217] [PMID: 1721072]
[88]
Mikami, N.; Sueda, K.; Ogitani, Y.; Otani, I.; Takatsuji, M.; Wada, Y.; Watanabe, K.; Yoshikawa, R.; Nishioka, S.; Hashimoto, N.; Miyagi, Y.; Fukada, S.; Yamamoto, H.; Tsujikawa, K. Calcitonin gene-related peptide regulates type IV hypersensitivity through dendritic cell functions. PLoS One, 2014, 9(1) e86367
[http://dx.doi.org/10.1371/journal.pone.0086367] [PMID: 24466057]
[89]
Granstein, R.D.; Wagner, J.A.; Stohl, L.L.; Ding, W. Calcitonin gene-related peptide: key regulator of cutaneous immunity. Acta Physiol. (Oxf.), 2015, 213(3), 586-594.
[http://dx.doi.org/10.1111/apha.12442] [PMID: 25534428]
[90]
Assas, B.M.; Miyan, J.A.; Pennock, J.L. Cross-talk between neural and immune receptors provides a potential mechanism of homeostatic regulation in the gut mucosa. Mucosal Immunol., 2014, 7(6), 1283-1289.
[http://dx.doi.org/10.1038/mi.2014.80] [PMID: 25183366]
[91]
(a) Hiemstra, H.S.; Schloot, N.C.; van Veelen, P.A.; Willemen, S.J.; Franken, K.L.; van Rood, J.J.; de Vries, R.R.; Chaudhuri, A.; Behan, P.O.; Drijfhout, J.W.; Roep, B.O. Cytomegalovirus in autoimmunity: T cell crossreactivity to viral antigen and autoantigen glutamic acid decarboxylase. Proc. Natl. Acad. Sci. USA, 2001, 98(7), 3988-3991.
[http://dx.doi.org/10.1073/pnas.071050898] [PMID: 11274421]
(b) Härkönen, T.; Lankinen, H.; Davydova, B.; Hovi, T.; Roivainen, M. Enterovirus infection can induce immune responses that cross-react with beta-cell autoantigen tyrosine phosphatase IA-2/IAR. J. Med. Virol., 2002, 66(3), 340-350.
[http://dx.doi.org/10.1002/jmv.2151] [PMID: 11793386]
[92]
Oldstone, M. Molecular mimicry, microbial infection, and autoimmune disease: evolution of the concept.Molecular Mimicry: Infection-Inducing Autoimmune Disease; Springer, 2005, pp. 1-17.
[http://dx.doi.org/10.1007/3-540-30791-5_1]
[93]
Askenasy, E.M.; Askenasy, N. Is autoimmune diabetes caused by aberrant immune activity or defective suppression of physiological self-reactivity? Autoimmun. Rev., 2013, 12(5), 633-637.
[http://dx.doi.org/10.1016/j.autrev.2012.12.004] [PMID: 23277162]
[94]
(a) Heyma, P.; Harrison, L.C.; Robins-Browne, R. Thyrotrophin (TSH) binding sites on Yersinia enterocolitica recognized by immunoglobulins from humans with Graves’ disease. Clin. Exp. Immunol., 1986, 64(2), 249-254.
[PMID: 3017619]
(b) Zhang, H.; Kaur, I.; Niesel, D.W.; Seetharamaiah, G.S.; Peterson, J.W.; Justement, L.B.; Prabhakar, B.S.; Klimpel, G.R. Yersinia enterocolitica envelope proteins that are crossreactive with the thyrotropin receptor (TSHR) also have B-cell mitogenic activity. J. Autoimmun., 1996, 9(4), 509-516.
[http://dx.doi.org/10.1006/jaut.1996.0068] [PMID: 8864826]
(c) Benvenga, S.; Guarneri, F.; Vaccaro, M.; Santarpia, L.; Trimarchi, F. Homologies between proteins of Borrelia burgdorferi and thyroid autoantigens. Thyroid, 2004, 14(11), 964-966.
[http://dx.doi.org/10.1089/thy.2004.14.964] [PMID: 15671776]
[95]
Portnyagina, O.; Zelepuga, E.; Khomenko, V.; Solov’eva, E.; Solov’eva, T.; Novikova, O. In silico and in vitro analysis of crossreactivity between Yersinia pseudotuberculosis OmpF porin and thyroid-stimulating hormone receptor. Int. J. Biol. Macromol., 2018, 107(Pt B), 2484-2491.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.10.133] [PMID: 29079441]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 21
ISSUE: 1
Year: 2020
Page: [52 - 65]
Pages: 14
DOI: 10.2174/1389203720666191106113435
Price: $65

Article Metrics

PDF: 21
HTML: 3