microRNAs in Autism Spectrum Disorders

Author(s): Mahesh Mundalil Vasu*, Puthiripadath S. Sumitha, Parakkal Rahna, Ismail Thanseem, Ayyappan Anitha*.

Journal Name: Current Pharmaceutical Design

Volume 25 , Issue 41 , 2019


Abstract:

Background: Efforts to unravel the extensive impact of the non-coding elements of the human genome on cell homeostasis and pathological processes have gained momentum over the last couple of decades. miRNAs refer to short, often 18-25 nucleotides long, non-coding RNA molecules which can regulate gene expression. Each miRNA can regulate several mRNAs.

Methods: This article reviews the literature on the roles of miRNAs in autism.

Results: Considering the fact that ~ 1% of the human DNA encodes different families of miRNAs, their overall impact as critical regulators of gene expression in the mammalian brain should be immense. Though the autism spectrum disorders (ASDs) are predominantly genetic in nature and several candidate genes are already identified, the highly heterogeneous and multifactorial nature of the disorder makes it difficult to identify common genetic risk factors. Several studies have suggested that the environmental factors may interact with the genetic factors to increase the risk. miRNAs could possibly be one of those factors which explain this link between genetics and the environment.

Conclusion: In the present review, we have summarized our current knowledge on miRNAs and their complex roles in ASD, and also on their therapeutic applications.

Keywords: Autism spectrum disorders, neurodevelopment, microRNAs, extracellular miRNAs, miRNA therapy, heterogeneous.

[1]
American Psychiatric Association. Diagnostic and statistical manual of mental disorders DSM-IV-TR. 4th ed. Washington, DC: American Psychiatric Association Publishing Inc 2000.
[2]
American Psychiatric Association. 2013. Diagnostic and statistical manual of mental disorders. 5th ed. Arlington, VA. Washington, DC: American Psychiatric Association Publishing Inc. 2013.
[3]
Baio J, Wiggins L, Christensen DL, et al. prevalence of autism spectrum disorder among children aged 8 years - autism and developmental disabilities monitoring network, 11 sites, United States, 2014. MMWR Surveill Summ 2018; 67(6): 1-23.
[http://dx.doi.org/10.15585/mmwr.ss6706a1] [PMID: 29701730]
[4]
Elsabbagh M, Divan G, Koh Y-J, et al. Global prevalence of autism and other pervasive developmental disorders. Autism Res 2012; 5(3): 160-79.
[http://dx.doi.org/10.1002/aur.239] [PMID: 22495912]
[5]
Baron-Cohen S. The extreme male brain theory of autism. Trends Cogn Sci (Regul Ed) 2002; 6(6): 248-54.
[http://dx.doi.org/10.1016/S1364-6613(02)01904-6] [PMID: 12039606]
[6]
Baron-Cohen S, Knickmeyer RC, Belmonte MK. Sex differences in the brain: implications for explaining autism. Science 2005; 310(5749): 819-23.
[http://dx.doi.org/10.1126/science.1115455] [PMID: 16272115]
[7]
Pfaff DW, Rapin I, Goldman S. Male predominance in autism: neuroendocrine influences on arousal and social anxiety. Autism Res 2011; 4(3): 163-76.
[http://dx.doi.org/10.1002/aur.191] [PMID: 21465671]
[8]
Werling DM, Parikshak NN, Geschwind DH. Gene expression in human brain implicates sexually dimorphic pathways in autism spectrum disorders. Nat Commun 2016; 7: 10717.
[http://dx.doi.org/10.1038/ncomms10717] [PMID: 26892004]
[9]
Bailey A, Le Couteur A, Gottesman I, et al. Autism as a strongly genetic disorder: evidence from a British twin study. Psychol Med 1995; 25(1): 63-77.
[http://dx.doi.org/10.1017/S0033291700028099] [PMID: 7792363]
[10]
Waye MMY, Cheng HY. Genetics and epigenetics of autism: a review. Psychiatry Clin Neurosci 2018; 72(4): 228-44.
[http://dx.doi.org/10.1111/pcn.12606] [PMID: 28941239]
[11]
Mitchell KJ. What is complex about complex disorders? Genome Biol 2012; 13(1): 237.
[http://dx.doi.org/10.1186/gb-2012-13-1-237] [PMID: 22269335]
[12]
Geschwind DH. Genetics of autism spectrum disorders. Trends Cogn Sci (Regul Ed) 2011; 15(9): 409-16.
[http://dx.doi.org/10.1016/j.tics.2011.07.003] [PMID: 21855394]
[13]
Frazier TW, Thompson L, Youngstrom EA, et al. A twin study of heritable and shared environmental contributions to autism. J Autism Dev Disord 2014; 44(8): 2013-25.
[http://dx.doi.org/10.1007/s10803-014-2081-2] [PMID: 24604525]
[14]
Gaugler T, Klei L, Sanders SJ, et al. Most genetic risk for autism resides with common variation. Nat Genet 2014; 46(8): 881-5.
[http://dx.doi.org/10.1038/ng.3039] [PMID: 25038753]
[15]
Dietert RR, Dietert JM, Dewitt JC. Environmental risk factors for autism. Emerg Health Threats J 2011; 4: 7111.
[http://dx.doi.org/10.3402/ehtj.v4i0.7111] [PMID: 24149029]
[16]
Chang S, Crothers C, Lai S, Lamm S. Pediatric neurobehavioral diseases in Nevada counties with respect to perchlorate in drinking water: an ecological inquiry. Birth Defects Res A Clin Mol Teratol 2003; 67(10): 886-92.
[http://dx.doi.org/10.1002/bdra.10089] [PMID: 14745943]
[17]
Loke YJ, Hannan AJ, Craig JM. The Role of Epigenetic Change in Autism Spectrum Disorders. Front Neurol 2015; 6: 107.
[http://dx.doi.org/10.3389/fneur.2015.00107] [PMID: 26074864]
[18]
Hannon E, Schendel D, Ladd-Acosta C, et al. Elevated polygenic burden for autism is associated with differential DNA methylation at birth. Genome Med 2018; 10(1): 19.
[http://dx.doi.org/10.1186/s13073-018-0527-4] [PMID: 29587883]
[19]
Andrews SV, Sheppard B, Windham GC, et al. Case-control meta-analysis of blood DNA methylation and autism spectrum disorder. Mol Autism 2018; 9: 40.
[http://dx.doi.org/10.1186/s13229-018-0224-6] [PMID: 29988321]
[20]
Hu Y, Ehli EA, Boomsma DI. MicroRNAs as biomarkers for psychiatric disorders with a focus on autism spectrum disorder: Current progress in genetic association studies, expression profiling, and translational research. Autism Res 2017; 10(7): 1184-203.
[http://dx.doi.org/10.1002/aur.1789] [PMID: 28419777]
[21]
Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993; 75(5): 843-54.
[http://dx.doi.org/10.1016/0092-8674(93)90529-Y] [PMID: 8252621]
[22]
Arora A, Simpson DA. Individual mRNA expression profiles reveal the effects of specific microRNAs. Genome Biol 2008; 9(5): R82.
[23]
Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell 2009; 136(2): 215-33.
[http://dx.doi.org/10.1016/j.cell.2009.01.002] [PMID: 19167326]
[24]
Felekkis K, Touvana E, Stefanou C, Deltas C. microRNAs: a newly described class of encoded molecules that play a role in health and disease. Hippokratia 2010; 14(4): 236-40.
[25]
Krek A, Grün D, Poy MN, et al. Combinatorial microRNA target predictions. Nat Genet 2005; 37(5): 495-500.
[http://dx.doi.org/10.1038/ng1536] [PMID: 15806104]
[26]
Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 2010; 11(9): 597-610.
[http://dx.doi.org/10.1038/nrg2843] [PMID: 20661255]
[27]
Aguda BD, Kim Y, Piper-Hunter MG, Friedman A, Marsh CB. MicroRNA regulation of a cancer network: consequences of the feedback loops involving miR-17-92, E2F, and Myc. Proc Natl Acad Sci USA 2008; 105(50): 19678-83.
[http://dx.doi.org/10.1073/pnas.0811166106] [PMID: 19066217]
[28]
Pichiorri F, De Luca L, Aqeilan RI. MicroRNAs: new players in multiple myeloma. Front Genet 2011; 2: 22.
[29]
Wang K, Zhang S, Weber J, Baxter D, Galas DJ. Export of microRNAs and microRNA-protective protein by mammalian cells. Nucleic Acids Res 2010; 38(20): 7248-59.
[http://dx.doi.org/10.1093/nar/gkq601] [PMID: 20615901]
[30]
Wang H, Shi J, Li B, et al. Expression signature in human calcific aortic valve disease. BioMed Res Int 2017; 2017 4820275
[http://dx.doi.org/10.1155/2017/4820275] [PMID: 28497051]
[31]
Ghorai A, Ghosh U. miRNA gene counts in chromosomes vary widely in a species and biogenesis of miRNA largely depends on transcription or post-transcriptional processing of coding genes. Front Genet 2014; 5: 100.
[http://dx.doi.org/10.3389/fgene.2014.00100] [PMID: 24808907]
[32]
Ambros V, Lee RC, Lavanway A, Williams PT, Jewell D. MicroRNAs and other tiny endogenous RNAs in C. elegans. Curr Biol 2003; 13(10): 807-18.
[http://dx.doi.org/10.1016/S0960-9822(03)00287-2] [PMID: 12747828]
[33]
Wightman B, Ha I, Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 1993; 75(5): 855-62.
[http://dx.doi.org/10.1016/0092-8674(93)90530-4] [PMID: 8252622]
[34]
Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005; 120(1): 15-20.
[http://dx.doi.org/10.1016/j.cell.2004.12.035] [PMID: 15652477]
[35]
Weber JA, Baxter DH, Zhang S, et al. The microRNA spectrum in 12 body fluids. Clin Chem 2010; 56(11): 1733-41.
[http://dx.doi.org/10.1373/clinchem.2010.147405] [PMID: 20847327]
[36]
Sang Q, Yao Z, Wang H, et al. Identification of microRNAs in human follicular fluid: characterization of microRNAs that govern steroidogenesis in vitro and are associated with polycystic ovary syndrome in vivo. J Clin Endocrinol Metab 2013; 98(7): 3068-79.
[http://dx.doi.org/10.1210/jc.2013-1715] [PMID: 23666971]
[37]
Mar-Aguilar F, Mendoza-Ramírez JA, Malagón-Santiago I, et al. Serum circulating microRNA profiling for identification of potential breast cancer biomarkers. Dis Markers 2013; 34(3): 163-9.
[http://dx.doi.org/10.1155/2013/259454] [PMID: 23334650]
[38]
Noferesti SS, Sohel MMH, Hoelker M, et al. Controlled ovarian hyperstimulation induced changes in the expression of circulatory miRNA in bovine follicular fluid and blood plasma. J Ovarian Res 2015; 8: 81.
[http://dx.doi.org/10.1186/s13048-015-0208-5] [PMID: 26645573]
[39]
Kosaka N, Iguchi H, Yoshioka Y, Takeshita F, Matsuki Y, Ochiya T. Secretory mechanisms and intercellular transfer of microRNAs in living cells. J Biol Chem 2010; 285(23): 17442-52.
[http://dx.doi.org/10.1074/jbc.M110.107821] [PMID: 20353945]
[40]
Grasedieck S, Schöler N, Bommer M, et al. Impact of serum storage conditions on microRNA stability. Leukemia 2012; 26(11): 2414-6.
[http://dx.doi.org/10.1038/leu.2012.106] [PMID: 22504138]
[41]
Mitchell PS, Parkin RK, Kroh EM, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA 2008; 105(30): 10513-8.
[http://dx.doi.org/10.1073/pnas.0804549105] [PMID: 18663219]
[42]
Chen X, Ba Y, Ma L, et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 2008; 18(10): 997-1006.
[http://dx.doi.org/10.1038/cr.2008.282] [PMID: 18766170]
[43]
Gilad S, Meiri E, Yogev Y, et al. Serum microRNAs are promising novel biomarkers. PLoS One 2008; 3(9) e3148
[http://dx.doi.org/10.1371/journal.pone.0003148] [PMID: 18773077]
[44]
Taylor DD, Gercel-Taylor C. MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol 2008; 110(1): 13-21.
[http://dx.doi.org/10.1016/j.ygyno.2008.04.033] [PMID: 18589210]
[45]
Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 2007; 9(6): 654-9.
[http://dx.doi.org/10.1038/ncb1596] [PMID: 17486113]
[46]
Sohel MH. Extracellular/circulating microRNAs: release mechanisms, functions and challenges. Achiev Life Sci 2016; 10(2): 175-86.
[http://dx.doi.org/10.1016/j.als.2016.11.007]
[47]
Kogure T, Lin W-L, Yan IK, Braconi C, Patel T. Intercellular nanovesicle-mediated microRNA transfer: a mechanism of environmental modulation of hepatocellular cancer cell growth. Hepatology 2011; 54(4): 1237-48.
[http://dx.doi.org/10.1002/hep.24504] [PMID: 21721029]
[48]
Sohel MMH, Hoelker M, Noferesti SS, et al. Exosomal and non-exosomal transport of extra-cellular microRNAs in follicular fluid: implications for bovine oocyte developmental competence. PLoS One 2013; 8(11) e78505
[http://dx.doi.org/10.1371/journal.pone.0078505] [PMID: 24223816]
[49]
Zhao C, Sun X, Li L. Biogenesis and function of extracellular miRNAs. ExRNA 2019; 1(1): 38.
[http://dx.doi.org/10.1186/s41544-019-0039-4]
[50]
Blandford SN, Galloway DA, Moore CS. The roles of extracellular vesicle microRNAs in the central nervous system. Glia 2018; 66(11): 2267-78.
[http://dx.doi.org/10.1002/glia.23445] [PMID: 29726599]
[51]
Rajman M, Schratt G. MicroRNAs in neural development: from master regulators to fine-tuners. Development 2017; 144(13): 2310-22.
[http://dx.doi.org/10.1242/dev.144337]
[52]
Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116(2): 281-97.
[http://dx.doi.org/10.1016/S0092-8674(04)00045-5] [PMID: 14744438]
[53]
Fineberg SK, Kosik KS, Davidson BL. MicroRNAs potentiate neural development. Neuron 2009; 64(3): 303-9.
[http://dx.doi.org/10.1016/j.neuron.2009.10.020] [PMID: 19914179]
[54]
Adlakha YK, Saini N. Brain microRNAs and insights into biological functions and therapeutic potential of brain enriched miRNA-128. Mol Cancer 2014; 13: 33.
[http://dx.doi.org/10.1186/1476-4598-13-33] [PMID: 24555688]
[55]
Radhakrishnan B, Anand AAP. Role of miRNA-9 in Brain Development. J Exp Neurosci 2016; 10: 101-20.
[http://dx.doi.org/10.4137/JEN.S32843] [PMID: 27721656]
[56]
Zhao C, Sun G, Li S, Shi Y. A feedback regulatory loop involving microRNA-9 and nuclear receptor TLX in neural stem cell fate determination. Nat Struct Mol Biol 2009; 16(4): 365-71.
[http://dx.doi.org/10.1038/nsmb.1576] [PMID: 19330006]
[57]
Dajas-Bailador F, Bonev B, Garcez P, Stanley P, Guillemot F, Papalopulu N. microRNA-9 regulates axon extension and branching by targeting Map1b in mouse cortical neurons. Nat Neurosci 2012; 15(5): 697-9.
[http://dx.doi.org/10.1038/nn.3082] [PMID: 22484572]
[58]
Clovis YM, Enard W, Marinaro F, Huttner WB, De Pietri Tonelli D. Convergent repression of Foxp2 3'UTR by miR-9 and miR-132 in embryonic mouse neocortex: implications for radial migration of neurons. Development 2012; 139(18): 3332-42.
[http://dx.doi.org/10.1242/dev.078063] [PMID: 22874921]
[59]
Liu N-K, Xu X-M. MicroRNA in central nervous system trauma and degenerative disorders. Physiol Genomics 2011; 43(10): 571-80.
[http://dx.doi.org/10.1152/physiolgenomics.00168.2010] [PMID: 21385946]
[60]
Xia H, Cheung WKC, Ng SS, et al. Loss of brain-enriched miR-124 microRNA enhances stem-like traits and invasiveness of glioma cells. J Biol Chem 2012; 287(13): 9962-71.
[61]
Cho KHT, Xu B, Blenkiron C, Fraser M. Emerging roles of miRNAs in brain development and perinatal brain injury. Front Physiol 2019; 10: 227.
[http://dx.doi.org/10.3389/fphys.2019.00227] [PMID: 30984006]
[62]
Sun G, Ye P, Murai K, et al. miR-137 forms a regulatory loop with nuclear receptor TLX and LSD1 in neural stem cells. Nat Commun 2011; 2: 529.
[http://dx.doi.org/10.1038/ncomms1532] [PMID: 22068596]
[63]
Willemsen MH, Vallès A, Kirkels LAMH, et al. Chromosome 1p21.3 microdeletions comprising DPYD and MIR137 are associated with intellectual disability. J Med Genet 2011; 48(12): 810-8.
[http://dx.doi.org/10.1136/jmedgenet-2011-100294] [PMID: 22003227]
[64]
Liu J. Control of protein synthesis and mRNA degradation by microRNAs. Curr Opin Cell Biol 2008; 20(2): 214-21.
[http://dx.doi.org/10.1016/j.ceb.2008.01.006] [PMID: 18329869]
[65]
Siegel G, Obernosterer G, Fiore R, et al. A functional screen implicates microRNA-138-dependent regulation of the depalmitoylation enzyme APT1 in dendritic spine morphogenesis. Nat Cell Biol 2009; 11(6): 705-16.
[http://dx.doi.org/10.1038/ncb1876] [PMID: 19465924]
[66]
Dugas JC, Cuellar TL, Scholze A, et al. Dicer1 and miR-219 are required for normal oligodendrocyte differentiation and myelination. Neuron 2010; 65(5): 597-611.
[http://dx.doi.org/10.1016/j.neuron.2010.01.027] [PMID: 20223197]
[67]
Zhao X, He X, Han X, et al. MicroRNA-mediated control of oligodendrocyte differentiation. Neuron 2010; 65(5): 612-26.
[http://dx.doi.org/10.1016/j.neuron.2010.02.018] [PMID: 20223198]
[68]
Miller BH, Zeier Z, Xi L, et al. MicroRNA-132 dysregulation in schizophrenia has implications for both neurodevelopment and adult brain function. Proc Natl Acad Sci USA 2012; 109(8): 3125-30.
[http://dx.doi.org/10.1073/pnas.1113793109] [PMID: 22315408]
[69]
Scott HL, Tamagnini F, Narduzzo KE, et al. MicroRNA-132 regulates recognition memory and synaptic plasticity in the perirhinal cortex. Eur J Neurosci 2012; 36(7): 2941-8.
[http://dx.doi.org/10.1111/j.1460-9568.2012.08220.x] [PMID: 22845676]
[70]
Shaked I, Meerson A, Wolf Y, et al. MicroRNA-132 potentiates cholinergic anti-inflammatory signaling by targeting acetylcholinesterase. Immunity 2009; 31(6): 965-73.
[http://dx.doi.org/10.1016/j.immuni.2009.09.019] [PMID: 20005135]
[71]
Wayman GA, Davare M, Ando H, et al. An activity-regulated microRNA controls dendritic plasticity by down-regulating p250GAP. Proc Natl Acad Sci USA 2008; 105(26): 9093-8.
[http://dx.doi.org/10.1073/pnas.0803072105] [PMID: 18577589]
[72]
Wanet A, Tacheny A, Arnould T, Renard P. miR-212/132 expression and functions: within and beyond the neuronal compartment. Nucleic Acids Res 2012; 40(11): 4742-53.
[http://dx.doi.org/10.1093/nar/gks151] [PMID: 22362752]
[73]
Tognini P, Pizzorusso T. MicroRNA212/132 family: molecular transducer of neuronal function and plasticity. Int J Biochem Cell Biol 2012; 44(1): 6-10.
[http://dx.doi.org/10.1016/j.biocel.2011.10.015] [PMID: 22062950]
[74]
Sun E, Shi Y. microRNAs: small molecules with big roles in neurodevelopment and diseases. Exp Neurol 2015; 268: 46-53.
[http://dx.doi.org/10.1016/j.expneurol.2014.08.005] [PMID: 25128264]
[75]
Chen H, Shalom-Feuerstein R, Riley J, et al. miR-7 and miR-214 are specifically expressed during neuroblastoma differentiation, cortical development and embryonic stem cells differentiation, and control neurite outgrowth in vitro. Biochem Biophys Res Commun 2010; 394(4): 921-7.
[http://dx.doi.org/10.1016/j.bbrc.2010.03.076] [PMID: 20230785]
[76]
Conaco C, Otto S, Han J-J, Mandel G. Reciprocal actions of REST and a microRNA promote neuronal identity. Proc Natl Acad Sci USA 2006; 103(7): 2422-7.
[http://dx.doi.org/10.1073/pnas.0511041103] [PMID: 16461918]
[77]
Jeon H-M, Sohn Y-W, Oh S-Y, et al. ID4 imparts chemoresistance and cancer stemness to glioma cells by derepressing miR-9*-mediated suppression of SOX2. Cancer Res 2011; 71(9): 3410-21.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-3340] [PMID: 21531766]
[78]
Lin S-T, Huang Y, Zhang L, Heng MY, Ptácek LJ, Fu Y-H. MicroRNA-23a promotes myelination in the central nervous system. Proc Natl Acad Sci USA 2013; 110(43): 17468-73.
[http://dx.doi.org/10.1073/pnas.1317182110] [PMID: 24101522]
[79]
Smirnova L, Gräfe A, Seiler A, Schumacher S, Nitsch R, Wulczyn FG. Regulation of miRNA expression during neural cell specification. Eur J Neurosci 2005; 21(6): 1469-77.
[http://dx.doi.org/10.1111/j.1460-9568.2005.03978.x] [PMID: 15845075]
[80]
Visvanathan J, Lee S, Lee B, Lee JW, Lee S-K. The microRNA miR-124 antagonizes the anti-neural REST/SCP1 pathway during embryonic CNS development. Genes Dev 2007; 21(7): 744-9.
[http://dx.doi.org/10.1101/gad.1519107] [PMID: 17403776]
[81]
Yang Y, Shu X, Liu D, et al. EPAC null mutation impairs learning and social interactions via aberrant regulation of miR-124 and Zif268 translation. Neuron 2012; 73(4): 774-88.
[http://dx.doi.org/10.1016/j.neuron.2012.02.003] [PMID: 22365550]
[82]
Gilje P, Gidlöf O, Rundgren M, et al. The brain-enriched microRNA miR-124 in plasma predicts neurological outcome after cardiac arrest. Crit Care 2014; 18(2): R40.
[http://dx.doi.org/10.1186/cc13753] [PMID: 24588965]
[83]
Edbauer D, Neilson JR, Foster KA, et al. Regulation of synaptic structure and function by FMRP-associated microRNAs miR-125b and miR-132. Neuron 2010; 65(3): 373-84.
[http://dx.doi.org/10.1016/j.neuron.2010.01.005] [PMID: 20159450]
[84]
Boissart C, Nissan X, Giraud-Triboult K, Peschanski M, Benchoua A. miR-125 potentiates early neural specification of human embryonic stem cells. Development 2012; 139(7): 1247-57.
[http://dx.doi.org/10.1242/dev.073627] [PMID: 22357933]
[85]
Le MTN, Teh C, Shyh-Chang N, et al. MicroRNA-125b is a novel negative regulator of p53. Genes Dev 2009; 23(7): 862-76.
[http://dx.doi.org/10.1101/gad.1767609] [PMID: 19293287]
[86]
Paschou M, Doxakis E. Neurofibromin 1 is a miRNA target in neurons. PLoS One 2012; 7(10) e46773
[http://dx.doi.org/10.1371/journal.pone.0046773] [PMID: 23056445]
[87]
Alvarez-Saavedra M, Antoun G, Yanagiya A, et al. miRNA-132 orchestrates chromatin remodeling and translational control of the circadian clock. Hum Mol Genet 2011; 20(4): 731-51.
[http://dx.doi.org/10.1093/hmg/ddq519] [PMID: 21118894]
[88]
Gao J, Wang W-Y, Mao Y-W, et al. A novel pathway regulates memory and plasticity via SIRT1 and miR-134. Nature 2010; 466(7310): 1105-9.
[http://dx.doi.org/10.1038/nature09271] [PMID: 20622856]
[89]
Bicker S, Khudayberdiev S, Weiß K, Zocher K, Baumeister S, Schratt G. The DEAH-box helicase DHX36 mediates dendritic localization of the neuronal precursor-microRNA-134. Genes Dev 2013; 27(9): 991-6.
[http://dx.doi.org/10.1101/gad.211243.112] [PMID: 23651854]
[90]
Gaughwin P, Ciesla M, Yang H, Lim B, Brundin P. Stage-specific modulation of cortical neuronal development by Mmu-miR-134. Cereb Cortex 2011; 21(8): 1857-69.
[http://dx.doi.org/10.1093/cercor/bhq262] [PMID: 21228099]
[91]
Han L, Yue X, Zhou X, et al. MicroRNA-21 expression is regulated by β-catenin/STAT3 pathway and promotes glioma cell invasion by direct targeting RECK. CNS Neurosci Ther 2012; 18(7): 573-83.
[http://dx.doi.org/10.1111/j.1755-5949.2012.00344.x] [PMID: 22630347]
[92]
Meerson A, Cacheaux L, Goosens KA, Sapolsky RM, Soreq H, Kaufer D. Changes in brain MicroRNAs contribute to cholinergic stress reactions. J Mol Neurosci 2010; 40(1-2): 47-55.
[http://dx.doi.org/10.1007/s12031-009-9252-1] [PMID: 19711202]
[93]
Tay YM-S, Tam W-L, Ang Y-S, et al. MicroRNA-134 modulates the differentiation of mouse embryonic stem cells, where it causes post-transcriptional attenuation of Nanog and LRH1. Stem Cells 2008; 26(1): 17-29.
[http://dx.doi.org/10.1634/stemcells.2007-0295] [PMID: 17916804]
[94]
Schratt GM, Tuebing F, Nigh EA, et al. A brain-specific microRNA regulates dendritic spine development. Nature 2006; 439(7074): 283-9.
[http://dx.doi.org/10.1038/nature04367] [PMID: 16421561]
[95]
Sõber S, Laan M, Annilo T. MicroRNAs miR-124 and miR-135a are potential regulators of the mineralocorticoid receptor gene (NR3C2) expression. Biochem Biophys Res Commun 2010; 391(1): 727-32.
[http://dx.doi.org/10.1016/j.bbrc.2009.11.128] [PMID: 19944075]
[96]
Sempere LF, Freemantle S, Pitha-Rowe I, Moss E, Dmitrovsky E, Ambros V. Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol 2004; 5(3): R13.
[http://dx.doi.org/10.1186/gb-2004-5-3-r13] [PMID: 15003116]
[97]
Smrt RD, Szulwach KE, Pfeiffer RL, et al. microRNA miR-137 regulates neuronal maturation by targeting ubiquitin ligase mind bomb-1. Stem Cells 2010; 28(6): 1060-70.
[http://dx.doi.org/10.1002/stem.431] [PMID: 20506192]
[98]
Obernosterer G, Leuschner PJF, Alenius M, Martinez J. Post-transcriptional regulation of microRNA expression. RNA 2006; 12(7): 1161-7.
[http://dx.doi.org/10.1261/rna.2322506] [PMID: 16738409]
[99]
Lugli G, Larson J, Martone ME, Jones Y, Smalheiser NR. Dicer and eIF2c are enriched at postsynaptic densities in adult mouse brain and are modified by neuronal activity in a calpain-dependent manner. J Neurochem 2005; 94(4): 896-905.
[http://dx.doi.org/10.1111/j.1471-4159.2005.03224.x] [PMID: 16092937]
[100]
Nguyen LS, Fregeac J, Bole-Feysot C, et al. Role of miR-146a in neural stem cell differentiation and neural lineage determination: relevance for neurodevelopmental disorders. Mol Autism 2018; 9: 38.
[http://dx.doi.org/10.1186/s13229-018-0219-3] [PMID: 29951184]
[101]
Stappert L, Borghese L, Roese-Koerner B, et al. MicroRNA-based promotion of human neuronal differentiation and subtype specification. PLoS One 2013; 8(3) e59011
[http://dx.doi.org/10.1371/journal.pone.0059011] [PMID: 23527072]
[102]
Woodbury ME, Freilich RW, Cheng CJ, et al. miR-155 is essential for inflammation-induced hippocampal neurogenic dysfunction. J Neurosci 2015; 35(26): 9764-81.
[http://dx.doi.org/10.1523/JNEUROSCI.4790-14.2015] [PMID: 26134658]
[103]
Wang LL, Liu Y, Chung JJ, et al. Local and sustained miRNA delivery from an injectable hydrogel promotes cardiomyocyte proliferation and functional regeneration after ischemic injury. Nat Biomed Eng 2017; 1: 983-92.
[http://dx.doi.org/10.1038/s41551-017-0157-y] [PMID: 29354322]
[104]
Pierce ML, Weston MD, Fritzsch B, Gabel HW, Ruvkun G, Soukup GA. MicroRNA-183 family conservation and ciliated neurosensory organ expression. Evol Dev 2008; 10(1): 106-13.
[http://dx.doi.org/10.1111/j.1525-142X.2007.00217.x] [PMID: 18184361]
[105]
Burek M, König A, Lang M, et al. Hypoxia-induced microRNA-212/132 alter blood-brain barrier integrity through inhibition of tight junction-associated proteins in human and mouse brain microvascular endothelial cells. Transl Stroke Res 2019; 10(6): 672-83.
[http://dx.doi.org/10.1007/s12975-018-0683-2] [PMID: 30617994]
[106]
Cheng H-YM, Papp JW, Varlamova O, et al. microRNA modulation of circadian-clock period and entrainment. Neuron 2007; 54(5): 813-29.
[http://dx.doi.org/10.1016/j.neuron.2007.05.017] [PMID: 17553428]
[107]
Kocerha J, Faghihi MA, Lopez-Toledano MA, et al. MicroRNA-219 modulates NMDA receptor-mediated neurobehavioral dysfunction. Proc Natl Acad Sci USA 2009; 106(9): 3507-12.
[http://dx.doi.org/10.1073/pnas.0805854106] [PMID: 19196972]
[108]
Lopez JP, Lim R, Cruceanu C, et al. miR-1202 is a primate-specific and brain-enriched microRNA involved in major depression and antidepressant treatment. Nat Med 2014; 20(7): 764-8.
[http://dx.doi.org/10.1038/nm.3582] [PMID: 24908571]
[109]
Anitha A, Thanseem I. microRNA and autism. Adv Exp Med Biol 2015; 888: 71-83.
[http://dx.doi.org/10.1007/978-3-319-22671-2_5] [PMID: 26663179]
[110]
Kapsimali M, Kloosterman WP, de Bruijn E, Rosa F, Plasterk RHA, Wilson SW. MicroRNAs show a wide diversity of expression profiles in the developing and mature central nervous system. Genome Biol 2007; 8(8): R173.
[http://dx.doi.org/10.1186/gb-2007-8-8-r173] [PMID: 17711588]
[111]
Tonacci A, Bagnato G, Pandolfo G, et al. MicroRNA Cross-involvement in autism spectrum disorders and atopic dermatitis: a literature review. J Clin Med 2019; 8(1) E88
[http://dx.doi.org/10.3390/jcm8010088] [PMID: 30646527]
[112]
Abu-Elneel K, Liu T, Gazzaniga FS, et al. Heterogeneous dysregulation of microRNAs across the autism spectrum. Neurogenetics 2008; 9(3): 153-61.
[http://dx.doi.org/10.1007/s10048-008-0133-5] [PMID: 18563458]
[113]
Mellios N, Sugihara H, Castro J, et al. miR-132, an experience-dependent microRNA, is essential for visual cortex plasticity. Nat Neurosci 2011; 14(10): 1240-2.
[http://dx.doi.org/10.1038/nn.2909] [PMID: 21892155]
[114]
Magill ST, Cambronne XA, Luikart BW, et al. microRNA-132 regulates dendritic growth and arborization of newborn neurons in the adult hippocampus. Proc Natl Acad Sci USA 2010; 107(47): 20382-7.
[http://dx.doi.org/10.1073/pnas.1015691107] [PMID: 21059906]
[115]
Marler KJ, Suetterlin P, Dopplapudi A, et al. BDNF promotes axon branching of retinal ganglion cells via miRNA-132 and p250GAP. J Neurosci 2014; 34(3): 969-79.
[http://dx.doi.org/10.1523/JNEUROSCI.1910-13.2014] [PMID: 24431455]
[116]
Mundalil Vasu M, Anitha A, Thanseem I, et al. Serum microRNA profiles in children with autism. Mol Autism 2014; 5: 40.
[http://dx.doi.org/10.1186/2040-2392-5-40] [PMID: 25126405]
[117]
Hicks SD, Ignacio C, Gentile K, Middleton FA. Salivary miRNA profiles identify children with autism spectrum disorder, correlate with adaptive behavior, and implicate ASD candidate genes involved in neurodevelopment. BMC Pediatr 2016; 16: 52.
[http://dx.doi.org/10.1186/s12887-016-0586-x] [PMID: 27105825]
[118]
Hicks SD, Carpenter RL, Wagner KE, et al. Saliva microRNA differentiates children with autism from peers with typical and atypical development. J Am Acad Child Adolesc Psychiatry 2019; pii: S0890-8567(19)30210-2.
[119]
Cui C, Yang W, Shi J, et al. Identification and analysis of human sex-biased microRNAs. Genomics Proteomics Bioinformatics 2018; 16(3): 200-11.
[http://dx.doi.org/10.1016/j.gpb.2018.03.004] [PMID: 30005964]
[120]
Ander BP, Barger N, Stamova B, Sharp FR, Schumann CM. Atypical miRNA expression in temporal cortex associated with dysregulation of immune, cell cycle, and other pathways in autism spectrum disorders. Mol Autism 2015; 6: 37.
[http://dx.doi.org/10.1186/s13229-015-0029-9] [PMID: 26146533]
[121]
Mor M, Nardone S, Sams DS, Elliott E. Hypomethylation of miR-142 promoter and upregulation of microRNAs that target the oxytocin receptor gene in the autism prefrontal cortex. Mol Autism 2015; 6: 46.
[http://dx.doi.org/10.1186/s13229-015-0040-1] [PMID: 26273428]
[122]
Wu YE, Parikshak NN, Belgard TG, Geschwind DH. Genome-wide, integrative analysis implicates microRNA dysregulation in autism spectrum disorder. Nat Neurosci 2016; 19(11): 1463-76.
[http://dx.doi.org/10.1038/nn.4373] [PMID: 27571009]
[123]
Pagan C, Goubran-Botros H, Delorme R, et al. Disruption of melatonin synthesis is associated with impaired 14-3-3 and miR-451 levels in patients with autism spectrum disorders. Sci Rep 2017; 7(1): 2096.
[http://dx.doi.org/10.1038/s41598-017-02152-x] [PMID: 28522826]
[124]
Talebizadeh Z, Butler MG, Theodoro MF. Feasibility and relevance of examining lymphoblastoid cell lines to study role of microRNAs in autism. Autism Res 2008; 1(4): 240-50.
[http://dx.doi.org/10.1002/aur.33] [PMID: 19360674]
[125]
Sarachana T, Zhou R, Chen G, Manji HK, Hu VW. Investigation of post-transcriptional gene regulatory networks associated with autism spectrum disorders by microRNA expression profiling of lymphoblastoid cell lines. Genome Med 2010; 2(4): 23.
[http://dx.doi.org/10.1186/gm144]
[126]
Thomas PB. Investigating the role of microRNAs in autism Research Explorer The University of Manchester [Internet] [cited 2019 Aug 15] Available at: https://www.research.manchester.ac.uk/portal/en/theses/investigating-the-role-of-micrornas-in-autism(37c8b281-07f6-41d6-af9a-4230e945fb56).html
[127]
Popov NT, Madjirova NP, Minkov IN, Vachev TI. microRNA HSA-486-3P gene expression profiling in the whole blood of patients with autism. Biotechnol Biotechnol Equip 2012; 26(6): 3385-8.
[http://dx.doi.org/10.5504/BBEQ.2012.0093]
[128]
Vachev T, Minkov I, Stoyanova V, Popov N. Down regulation of miRNA let-7b-3p and let-7d-3p in the peripheral blood of children with autism spectrum disorder. Int J Curr Microbiol Appl Sci 2013; 2: 384-8.
[129]
Huang F, Long Z, Chen Z, et al. Investigation of gene regulatory networks associated with autism spectrum disorder based on miRNA expression in China. PLoS One 2015; 10(6) e0129052
[http://dx.doi.org/10.1371/journal.pone.0129052] [PMID: 26061495]
[130]
Vaccaro T da S, Sorrentino JM, Salvador S, Veit T, Souza DO, de Almeida RF. Alterations in the microRNA of the blood of autism spectrum disorder patients: effects on epigenetic regulation and potential biomarkers Behav Sci (Basel) 2018; 15; 8(8).
[131]
Kichukova TM, Popov NT, Ivanov IS, Vachev TI. Profiling of circulating serum microRNAs in children with autism spectrum disorder using stem-loop qRT-PCR assay. Folia Med (Plovdiv) 2017; 59(1): 43-52.
[http://dx.doi.org/10.1515/folmed-2017-0009]
[132]
Yu D, Jiao X, Cao T, Huang F. Serum miRNA expression profiling reveals miR-486-3p may play a significant role in the development of autism by targeting ARID1B. Neuroreport 2018; 05; 29(17): 1431–6.
[133]
Nguyen D-D, Chang S. Development of novel therapeutic agents by inhibition of oncogenic microRNAs. Int J Mol Sci 2017; 19(1) E65
[http://dx.doi.org/10.3390/ijms19010065] [PMID: 29280958]
[134]
Xin H, Li Y, Liu Z, et al. MiR-133b promotes neural plasticity and functional recovery after treatment of stroke with multipotent mesenchymal stromal cells in rats via transfer of exosome-enriched extracellular particles. Stem Cells 2013; 31(12): 2737-46.
[http://dx.doi.org/10.1002/stem.1409] [PMID: 23630198]
[135]
Lee HK, Finniss S, Cazacu S, Xiang C, Brodie C. Mesenchymal stem cells deliver exogenous miRNAs to neural cells and induce their differentiation and glutamate transporter expression. Stem Cells Dev 2014; 23(23): 2851-61.
[http://dx.doi.org/10.1089/scd.2014.0146] [PMID: 25036385]
[136]
Tiwari D, Peariso K, Gross C. MicroRNA-induced silencing in epilepsy: opportunities and challenges for clinical application. Dev Dyn 2018; 247(1): 94-110.
[http://dx.doi.org/10.1002/dvdy.24582] [PMID: 28850760]
[137]
Jimenez-Mateos EM, Engel T, Merino-Serrais P, et al. Silencing microRNA-134 produces neuroprotective and prolonged seizure-suppressive effects. Nat Med 2012; 18(7): 1087-94.
[http://dx.doi.org/10.1038/nm.2834] [PMID: 22683779]
[138]
Rajman M, Metge F, Fiore R, et al. A microRNA-129-5p/Rbfox crosstalk coordinates homeostatic downscaling of excitatory synapses. EMBO J 2017; 36(12): 1770-87.
[139]
You Y-H, Qin Z-Q, Zhang H-L, Yuan Z-H, Yu X. microRNA-153 promotes brain-derived neurotrophic factor and hippocampal neuron proliferation to alleviate autism symptoms through inhibition of JAK-STAT pathway by LEPR. Biosci Rep 2019; 39(6) BSR20181904
[http://dx.doi.org/10.1042/BSR20181904] [PMID: 30975733]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 25
ISSUE: 41
Year: 2019
Page: [4368 - 4378]
Pages: 11
DOI: 10.2174/1381612825666191105120901
Price: $58

Article Metrics

PDF: 16
HTML: 2

Special-new-year-discount