Novel Findings and Therapeutic Targets on Cardioprotection of Ischemia/ Reperfusion Injury in STEMI

Author(s): Jianqiang Li, Danghui Sun, Yue Li*.

Journal Name: Current Pharmaceutical Design

Volume 25 , Issue 35 , 2019

Become EABM
Become Reviewer

Abstract:

Acute ST-segment elevation myocardial infarction (STEMI) remains a leading cause of morbidity and mortality around the world. A large number of STEMI patients after the infarction gradually develop heart failure due to the infarcted myocardium. Timely reperfusion is essential to salvage ischemic myocardium from the infarction, but the restoration of coronary blood flow in the infarct-related artery itself induces myocardial injury and cardiomyocyte death, known as ischemia/reperfusion injury (IRI). The factors contributing to IRI in STEMI are complex, and microvascular obstruction, inflammation, release of reactive oxygen species, myocardial stunning, and activation of myocardial cell death are involved. Therefore, additional cardioprotection is required to prevent the heart from IRI. Although many mechanical conditioning procedures and pharmacological agents have been identified as effective cardioprotective approaches in animal studies, their translation into the clinical practice has been relatively disappointing due to a variety of reasons. With new emerging data on cardioprotection in STEMI over the past few years, it is mandatory to reevaluate the effectiveness of “old” cardioprotective interventions and highlight the novel therapeutic targets and new treatment strategies of cardioprotection.

Keywords: STEMI, cardioprotection, ischemic conditioning, ischemia/reperfusion injury, MPTP, cardiomyocyte death.

[1]
Kaul P, Ezekowitz JA, Armstrong PW, et al. Incidence of heart failure and mortality after acute coronary syndromes. Am Heart J 2013; 165(3): 379-85: e2.
[http://dx.doi.org/10.1016/j.ahj.2012.12.005] [PMID: 23453107]
[2]
Fröhlich GM, Meier P, White SK, Yellon DM, Hausenloy DJ. Myocardial reperfusion injury: looking beyond primary PCI. Eur Heart J 2013; 34(23): 1714-22.
[http://dx.doi.org/10.1093/eurheartj/eht090] [PMID: 23536610]
[3]
Ibáñez B, Heusch G, Ovize M, Van de Werf F. Evolving therapies for myocardial ischemia/reperfusion injury. J Am Coll Cardiol 2015; 65(14): 1454-71.
[http://dx.doi.org/10.1016/j.jacc.2015.02.032] [PMID: 25857912]
[4]
Hausenloy DJ, Botker HE, Engstrom T, et al. Targeting reperfusion injury in patients with ST-segment elevation myocardial infarction: trials and tribulations. Eur Heart J 2017; 38(13): 935-41.
[PMID: 27118196]
[5]
Hausenloy DJ, Garcia-Dorado D, Bøtker HE, et al. Novel targets and future strategies for acute cardioprotection: position paper of the european society of cardiology working group on cellular biology of the Heart. Cardiovasc Res 2017; 113(6): 564-85.
[http://dx.doi.org/10.1093/cvr/cvx049] [PMID: 28453734]
[6]
Maroko PR, Kjekshus JK, Sobel BE, et al. Factors influencing infarct size following experimental coronary artery occlusions. Circulation 1971; 43(1): 67-82.
[http://dx.doi.org/10.1161/01.CIR.43.1.67] [PMID: 5540853]
[7]
Heusch G. Molecular basis of cardioprotection: signal transduction in ischemic pre-, post-, and remote conditioning. Circ Res 2015; 116(4): 674-99.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.305348] [PMID: 25677517]
[8]
Heusch G. Critical issues for the translation of cardioprotection. Circ Res 2017; 120(9): 1477-86.
[http://dx.doi.org/10.1161/CIRCRESAHA.117.310820] [PMID: 28450365]
[9]
Heusch G, Rassaf T. Time to give up on cardioprotection? A critical appraisal of clinical studies on ischemic pre-, post-, and remote Conditioning. Circ Res 2016; 119(5): 676-95.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.308736] [PMID: 27539973]
[10]
Zhao ZQ, Corvera JS, Halkos ME, et al. Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. Am J Physiol Heart Circ Physiol 2003; 285(2): 579-88.
[http://dx.doi.org/10.1152/ajpheart.01064.2002] [PMID: 12860564]
[11]
Argaud L, Gateau-Roesch O, Raisky O, Loufouat J, Robert D, Ovize M. Postconditioning inhibits mitochondrial permeability transition. Circulation 2005; 111(2): 194-7.
[http://dx.doi.org/10.1161/01.CIR.0000151290.04952.3B] [PMID: 15642769]
[12]
Staat P, Rioufol G, Piot C, et al. Postconditioning the human heart. Circulation 2005; 112(14): 2143-8.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.105.558122] [PMID: 16186417]
[13]
Birnbaum Y, Hale SL, Kloner RA. Ischemic preconditioning at a distance: reduction of myocardial infarct size by partial reduction of blood supply combined with rapid stimulation of the gastrocnemius muscle in the rabbit. Circulation 1997; 96(5): 1641-6.
[http://dx.doi.org/10.1161/01.CIR.96.5.1641] [PMID: 9315559]
[14]
Bøtker HE, Kharbanda R, Schmidt MR, et al. Remote ischaemic conditioning before hospital admission, as a complement to angioplasty, and effect on myocardial salvage in patients with acute myocardial infarction: a randomised trial. Lancet 2010; 375(9716): 727-34.
[http://dx.doi.org/10.1016/S0140-6736(09)62001-8] [PMID: 20189026]
[15]
Hausenloy DJ, Lecour S, Yellon DM. Reperfusion injury salvage kinase and survivor activating factor enhancement prosurvival signaling pathways in ischemic postconditioning: two sides of the same coin. Antioxid Redox Signal 2011; 14(5): 893-907.
[http://dx.doi.org/10.1089/ars.2010.3360] [PMID: 20615076]
[16]
Hausenloy DJ, Yellon DM. Preconditioning and postconditioning: united at reperfusion. Pharmacol Ther 2007; 116(2): 173-91.
[http://dx.doi.org/10.1016/j.pharmthera.2007.06.005] [PMID: 17681609]
[17]
Lacerda L, Somers S, Opie LH, Lecour S. Ischaemic postconditioning protects against reperfusion injury via the SAFE pathway. Cardiovasc Res 2009; 84(2): 201-8.
[http://dx.doi.org/10.1093/cvr/cvp274] [PMID: 19666677]
[18]
Yellon DM, Downey JM. Preconditioning the myocardium: from cellular physiology to clinical cardiology. Physiol Rev 2003; 83(4): 1113-51.
[http://dx.doi.org/10.1152/physrev.00009.2003] [PMID: 14506302]
[19]
Heusch G, Boengler K, Schulz R. Inhibition of mitochondrial permeability transition pore opening: the holy grail of cardioprotection. Basic Res Cardiol 2010; 105(2): 151-4.
[http://dx.doi.org/10.1007/s00395-009-0080-9] [PMID: 20066536]
[20]
Bernardi P, Di Lisa F. The mitochondrial permeability transition pore: molecular nature and role as a target in cardioprotection. J Mol Cell Cardiol 2015; 78: 100-6.
[http://dx.doi.org/10.1016/j.yjmcc.2014.09.023] [PMID: 25268651]
[21]
Liu Y, Gao WD, O’Rourke B, Marban E. Priming effect of adenosine on K(ATP) currents in intact ventricular myocytes: implications for preconditioning. Am J Physiol 1997; 273(4): 1637-43.
[PMID: 9362225]
[22]
Liu Y, Sato T, O’Rourke B, Marban E. Mitochondrial ATP-dependent potassium channels: novel effectors of cardioprotection? Circulation 1998; 97(24): 2463-9.
[http://dx.doi.org/10.1161/01.CIR.97.24.2463] [PMID: 9641699]
[23]
Sasaki N, Sato T, Ohler A, O’Rourke B, Marbán E. Activation of mitochondrial ATP-dependent potassium channels by nitric oxide. Circulation 2000; 101(4): 439-45.
[http://dx.doi.org/10.1161/01.CIR.101.4.439] [PMID: 10653837]
[24]
Garg V, Hu K. Protein kinase C isoform-dependent modulation of ATP-sensitive K+ channels in mitochondrial inner membrane. Am J Physiol Heart Circ Physiol 2007; 293(1): 322-32.
[http://dx.doi.org/10.1152/ajpheart.01035.2006] [PMID: 17351068]
[25]
Costa AD, Garlid KD, West IC, et al. Protein kinase G transmits the cardioprotective signal from cytosol to mitochondria. Circ Res 2005; 97(4): 329-36.
[http://dx.doi.org/10.1161/01.RES.0000178451.08719.5b] [PMID: 16037573]
[26]
Rosenberg JH, Werner JH, Moulton MJ, Agrawal DK. Current modalities and mechanisms underlying cardioprotection by ischemic conditioning. J Cardiovasc Transl Res 2018; 11(4): 292-307.
[http://dx.doi.org/10.1007/s12265-018-9813-1] [PMID: 29797232]
[27]
Iliodromitis EK, Cohen MV, Dagres N, Andreadou I, Kremastinos DT, Downey JM. What is wrong with cardiac conditioning? We may be shooting at moving targets. J Cardiovasc Pharmacol Ther 2015; 20(4): 357-69.
[http://dx.doi.org/10.1177/1074248414566459] [PMID: 25627214]
[28]
Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 1986; 74(5): 1124-36.
[http://dx.doi.org/10.1161/01.CIR.74.5.1124] [PMID: 3769170]
[29]
Heusch G. Nitroglycerin and delayed preconditioning in humans: yet another new mechanism for an old drug? Circulation 2001; 103(24): 2876-8.
[http://dx.doi.org/10.1161/01.CIR.103.24.2876] [PMID: 11413072]
[30]
Herrett E, Bhaskaran K, Timmis A, Denaxas S, Hemingway H, Smeeth L. Association between clinical presentations before myocardial infarction and coronary mortality: a prospective population-based study using linked electronic records. Eur Heart J 2014; 35(35): 2363-71.
[http://dx.doi.org/10.1093/eurheartj/ehu286] [PMID: 25038774]
[31]
Schmidt M, Horváth-Puhó E, Pedersen L, Sørensen HT, Bøtker HE. Time-dependent effect of preinfarction angina pectoris and intermittent claudication on mortality following myocardial infarction: A danish nationwide cohort study. Int J Cardiol 2015; 187: 462-9.
[http://dx.doi.org/10.1016/j.ijcard.2015.03.328] [PMID: 25846654]
[32]
Skyschally A, Walter B, Heusch G. Coronary microembolization during early reperfusion: infarct extension, but protection by ischaemic postconditioning. Eur Heart J 2013; 34(42): 3314-21.
[http://dx.doi.org/10.1093/eurheartj/ehs434] [PMID: 23242190]
[33]
Thibault H, Piot C, Staat P, et al. Long-term benefit of postconditioning. Circulation 2008; 117(8): 1037-44.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.107.729780] [PMID: 18268150]
[34]
Freixa X, Bellera N, Ortiz-Pérez JT, et al. Ischaemic postconditioning revisited: lack of effects on infarct size following primary percutaneous coronary intervention. Eur Heart J 2012; 33(1): 103-12.
[http://dx.doi.org/10.1093/eurheartj/ehr297] [PMID: 21846677]
[35]
Hahn JY, Song YB, Kim EK, et al. Ischemic postconditioning during primary percutaneous coronary intervention: the effects of postconditioning on myocardial reperfusion in patients with ST-segment elevation myocardial infarction (POST) randomized trial. Circulation 2013; 128(17): 1889-96.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.113.001690] [PMID: 24068776]
[36]
Limalanathan S, Andersen GØ, Kløw NE, Abdelnoor M, Hoffmann P, Eritsland J. Effect of ischemic postconditioning on infarct size in patients with ST-elevation myocardial infarction treated by primary PCI results of the POSTEMI (POstconditioning in ST-Elevation Myocardial Infarction) randomized trial. J Am Heart Assoc 2014; 3(2)e000679
[http://dx.doi.org/10.1161/JAHA.113.000679] [PMID: 24760962]
[37]
Engstrøm T, Kelbæk H, Helqvist S, et al. Effect of Ischemic Postconditioning during primary percutaneous coronary intervention for patients with ST-Segment elevation myocardial infarction: a randomized clinical trial. JAMA Cardiol 2017; 2(5): 490-7.
[http://dx.doi.org/10.1001/jamacardio.2017.0022] [PMID: 28249094]
[38]
Yang XM, Cui L, Alhammouri A, Downey JM, Cohen MV. Triple therapy greatly increases myocardial salvage during ischemia/reperfusion in the in situ rat heart. Cardiovasc Drugs Ther 2013; 27(5): 403-12.
[http://dx.doi.org/10.1007/s10557-013-6474-9] [PMID: 23832692]
[39]
Cohen MV, Downey JM. Combined cardioprotectant and antithrombotic actions of platelet P2Y12 receptor antagonists in acute coronary syndrome: just what the doctor ordered. J Cardiovasc Pharmacol Ther 2014; 19(2): 179-90.
[http://dx.doi.org/10.1177/1074248413508465] [PMID: 24298192]
[40]
Przyklenk K, Bauer B, Ovize M, Kloner RA, Whittaker P. Regional ischemic ‘preconditioning’ protects remote virgin myocardium from subsequent sustained coronary occlusion. Circulation 1993; 87(3): 893-9.
[http://dx.doi.org/10.1161/01.CIR.87.3.893] [PMID: 7680290]
[41]
Rentoukas I, Giannopoulos G, Kaoukis A, et al. Cardioprotective role of remote ischemic periconditioning in primary percutaneous coronary intervention: enhancement by opioid action. JACC Cardiovasc Interv 2010; 3(1): 49-55.
[http://dx.doi.org/10.1016/j.jcin.2009.10.015] [PMID: 20129568]
[42]
Crimi G, Pica S, Raineri C, et al. Remote ischemic post-conditioning of the lower limb during primary percutaneous coronary intervention safely reduces enzymatic infarct size in anterior myocardial infarction: a randomized controlled trial. JACC Cardiovasc Interv 2013; 6(10): 1055-63.
[http://dx.doi.org/10.1016/j.jcin.2013.05.011] [PMID: 24156966]
[43]
White SK, Frohlich GM, Sado DM, et al. Remote ischemic conditioning reduces myocardial infarct size and edema in patients with ST-segment elevation myocardial infarction. JACC Cardiovasc Interv 2015; 8(1 Pt B): 178-88.
[http://dx.doi.org/10.1016/j.jcin.2014.05.015] [PMID: 25240548]
[44]
Sloth AD, Schmidt MR, Munk K, et al. CONDI Investigators. Improved long-term clinical outcomes in patients with ST-elevation myocardial infarction undergoing remote ischaemic conditioning as an adjunct to primary percutaneous coronary intervention. Eur Heart J 2014; 35(3): 168-75.
[http://dx.doi.org/10.1093/eurheartj/eht369] [PMID: 24031025]
[45]
Sloth AD, Schmidt MR, Munk K, et al. Cost-effectiveness of remote ischaemic conditioning as an adjunct to primary percutaneous coronary intervention in patients with ST-elevation myocardial infarction. Eur Heart J Acute Cardiovasc Care 2016; pii: 2048872615626657.
[http://dx.doi.org/10.1177/2048872615626657] [PMID: 26812905]
[46]
Verouhis D, Sörensson P, Gourine A, et al. Effect of remote ischemic conditioning on infarct size in patients with anterior ST-elevation myocardial infarction. Am Heart J 2016; 181: 66-73.
[http://dx.doi.org/10.1016/j.ahj.2016.08.004] [PMID: 27823695]
[47]
Johnsen J, Pryds K, Salman R, Løfgren B, Kristiansen SB, Bøtker HE. The remote ischemic preconditioning algorithm: effect of number of cycles, cycle duration and effector organ mass on efficacy of protection. Basic Res Cardiol 2016; 111(2): 10.
[http://dx.doi.org/10.1007/s00395-016-0529-6] [PMID: 26768477]
[48]
Haller PM, Vargas KG, Haller MC, et al. Remote ischaemic conditioning for myocardial infarction or elective PCI: systematic review and meta-analyses of randomised trials. Eur Heart J Acute Cardiovasc Care 2018.pii: 2048872618784150
[http://dx.doi.org/10.1177/2048872618784150] [PMID: 29911392]
[49]
Elbadawi A, Ha LD, Abuzaid AS, Crimi G, Azzouz MS. Meta-analysis of randomized trials on remote ischemic conditioning during primary percutaneous coronary intervention in patients with ST-Segment elevation myocardial Infarction. Am J Cardiol 2017; 119(6): 832-8.
[http://dx.doi.org/10.1016/j.amjcard.2016.11.036] [PMID: 28065491]
[50]
McLeod SL, Iansavichene A, Cheskes S. Remote ischemic perconditioning to reduce reperfusion injury during acute ST-Segment-elevation myocardial infarction: a systematic review and meta-analysis. J Am Heart Assoc 2017; 6(5)e005522
[http://dx.doi.org/10.1161/JAHA.117.005522] [PMID: 28515120]
[51]
Hausenloy DJ, Kharbanda R, Rahbek Schmidt M, et al. Effect of remote ischaemic conditioning on clinical outcomes in patients presenting with an ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention. Eur Heart J 2015; 36(29): 1846-8.
[PMID: 26460398]
[52]
Kloner RA. Current state of clinical translation of cardioprotective agents for acute myocardial infarction. Circ Res 2013; 113(4): 451-63.
[http://dx.doi.org/10.1161/CIRCRESAHA.112.300627] [PMID: 23908332]
[53]
Olafsson B, Forman MB, Puett DW, et al. Reduction of reperfusion injury in the canine preparation by intracoronary adenosine: importance of the endothelium and the no-reflow phenomenon. Circulation 1987; 76(5): 1135-45.
[http://dx.doi.org/10.1161/01.CIR.76.5.1135] [PMID: 3664998]
[54]
Goto M, Miura T, Iliodoromitis EK, et al. Adenosine infusion during early reperfusion failed to limit myocardial infarct size in a collateral deficient species. Cardiovasc Res 1991; 25(11): 943-9.
[http://dx.doi.org/10.1093/cvr/25.11.943] [PMID: 1813123]
[55]
Mahaffey KW, Puma JA, Barbagelata NA, et al. Adenosine as an adjunct to thrombolytic therapy for acute myocardial infarction: results of a multicenter, randomized, placebo-controlled trial: the acute myocardial infarction study of adenosine (AMISTAD) trial. J Am Coll Cardiol 1999; 34(6): 1711-20.
[http://dx.doi.org/10.1016/S0735-1097(99)00418-0] [PMID: 10577561]
[56]
Ross AM, Gibbons RJ, Stone GW, Kloner RA, Alexander RW. AMISTAD-II Investigators. A randomized, double-blinded, placebo-controlled multicenter trial of adenosine as an adjunct to reperfusion in the treatment of acute myocardial infarction (AMISTAD-II). J Am Coll Cardiol 2005; 45(11): 1775-80.
[http://dx.doi.org/10.1016/j.jacc.2005.02.061] [PMID: 15936605]
[57]
Kloner RA, Forman MB, Gibbons RJ, Ross AM, Alexander RW, Stone GW. Impact of time to therapy and reperfusion modality on the efficacy of adenosine in acute myocardial infarction: the AMISTAD-2 trial. Eur Heart J 2006; 27(20): 2400-5.
[http://dx.doi.org/10.1093/eurheartj/ehl094] [PMID: 16782719]
[58]
Desmet W, Bogaert J, Dubois C, et al. High-dose intracoronary adenosine for myocardial salvage in patients with acute ST-segment elevation myocardial infarction. Eur Heart J 2011; 32(7): 867-77.
[http://dx.doi.org/10.1093/eurheartj/ehq492] [PMID: 21196444]
[59]
Fokkema ML, Vlaar PJ, Vogelzang M, et al. Effect of high-dose intracoronary adenosine administration during primary percutaneous coronary intervention in acute myocardial infarction: a randomized controlled trial. Circ Cardiovasc Interv 2009; 2(4): 323-9.
[http://dx.doi.org/10.1161/CIRCINTERVENTIONS.109.858977.109.858977] [PMID: 20031735]
[60]
Bulluck H, Sirker A, Loke YK, Garcia-Dorado D, Hausenloy DJ. Clinical benefit of adenosine as an adjunct to reperfusion in ST-elevation myocardial infarction patients: an updated meta-analysis of randomized controlled trials. Int J Cardiol 2016; 202: 228-37.
[http://dx.doi.org/10.1016/j.ijcard.2015.09.005] [PMID: 26402450]
[61]
Hausenloy DJ, Boston-Griffiths EA, Yellon DM. Cyclosporin A and cardioprotection: from investigative tool to therapeutic agent. Br J Pharmacol 2012; 165(5): 1235-45.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01700.x] [PMID: 21955136]
[62]
Piot C, Croisille P, Staat P, et al. Effect of cyclosporine on reperfusion injury in acute myocardial infarction. N Engl J Med 2008; 359(5): 473-81.
[http://dx.doi.org/10.1056/NEJMoa071142] [PMID: 18669426]
[63]
Mewton N, Croisille P, Gahide G, et al. Effect of cyclosporine on left ventricular remodeling after reperfused myocardial infarction. J Am Coll Cardiol 2010; 55(12): 1200-5.
[http://dx.doi.org/10.1016/j.jacc.2009.10.052] [PMID: 20298926]
[64]
Cung TT, Morel O, Cayla G, et al. Cyclosporine before PCI in patients with acute myocardial infarction. N Engl J Med 2015; 373(11): 1021-31.
[http://dx.doi.org/10.1056/NEJMoa1505489] [PMID: 26321103]
[65]
Ottani F, Latini R, Staszewsky L, et al. CYCLE investigators. Cyclosporine A in reperfused myocardial infarction: the multicenter, controlled, open-label CYCLE Trial. J Am Coll Cardiol 2016; 67(4): 365-74.
[http://dx.doi.org/10.1016/j.jacc.2015.10.081] [PMID: 26821623]
[66]
Sonne DP, Engstrøm T, Treiman M. Protective effects of GLP-1 analogues exendin-4 and GLP-1(9-36) amide against ischemia-reperfusion injury in rat heart. Regul Pept 2008; 146(1-3): 243-9.
[http://dx.doi.org/10.1016/j.regpep.2007.10.001] [PMID: 17976835]
[67]
Timmers L, Henriques JP, de Kleijn DP, et al. Exenatide reduces infarct size and improves cardiac function in a porcine model of ischemia and reperfusion injury. J Am Coll Cardiol 2009; 53(6): 501-10.
[http://dx.doi.org/10.1016/j.jacc.2008.10.033] [PMID: 19195607]
[68]
Lønborg J, Vejlstrup N, Kelbæk H, et al. Exenatide reduces reperfusion injury in patients with ST-segment elevation myocardial infarction. Eur Heart J 2012; 33(12): 1491-9.
[http://dx.doi.org/10.1093/eurheartj/ehr309] [PMID: 21920963]
[69]
Woo JS, Kim W, Ha SJ, et al. Cardioprotective effects of exenatide in patients with ST-segment-elevation myocardial infarction undergoing primary percutaneous coronary intervention: results of exenatide myocardial protection in revascularization study. Arterioscler Thromb Vasc Biol 2013; 33(9): 2252-60.
[http://dx.doi.org/10.1161/ATVBAHA.113.301586] [PMID: 23868944]
[70]
Lønborg J, Kelbæk H, Vejlstrup N, et al. Exenatide reduces final infarct size in patients with ST-segment-elevation myocardial infarction and short-duration of ischemia. Circ Cardiovasc Interv 2012; 5(2): 288-95.
[http://dx.doi.org/10.1161/CIRCINTERVENTIONS.112.968388] [PMID: 22496084]
[71]
Roos ST, Timmers L, Biesbroek PS, et al. No benefit of additional treatment with exenatide in patients with an acute myocardial infarction. Int J Cardiol 2016; 220: 809-14.
[http://dx.doi.org/10.1016/j.ijcard.2016.06.283] [PMID: 27394978]
[72]
Kataoka Y, Yagi N, Kokubu N, Kasahara Y, Abe M, Otsuka Y. Effect of pretreatment with pioglitazone on reperfusion injury in diabetic patients with acute myocardial infarction. Circ J 2011; 75(8): 1968-74.
[http://dx.doi.org/10.1253/circj.CJ-11-0098] [PMID: 21670539]
[73]
Oidor-Chan VH, Hong E, Pérez-Severiano F, et al. Fenofibrate plus metformin produces cardioprotection in a Type 2 diabetes and acute myocardial infarction model. PPAR Res 2016; 20168237264
[http://dx.doi.org/10.1155/2016/8237264] [PMID: 27069466]
[74]
Lexis CP, van der Horst IC, Lipsic E, et al. GIPS-III Investigators. Effect of metformin on left ventricular function after acute myocardial infarction in patients without diabetes: the GIPS-III randomized clinical trial. JAMA 2014; 311(15): 1526-35.
[http://dx.doi.org/10.1001/jama.2014.3315] [PMID: 24687169]
[75]
Ibanez B, Prat-González S, Speidl WS, et al. Early metoprolol administration before coronary reperfusion results in increased myocardial salvage: analysis of ischemic myocardium at risk using cardiac magnetic resonance. Circulation 2007; 115(23): 2909-16.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.106.679639] [PMID: 17515460]
[76]
Van de Werf F, Janssens L, Brzostek T, et al. Short-term effects of early intravenous treatment with a beta-adrenergic blocking agent or a specific bradycardiac agent in patients with acute myocardial infarction receiving thrombolytic therapy. J Am Coll Cardiol 1993; 22(2): 407-16.
[http://dx.doi.org/10.1016/0735-1097(93)90044-2] [PMID: 8335810]
[77]
Ibanez B, Macaya C, Sánchez-Brunete V, et al. Effect of early metoprolol on infarct size in ST-segment-elevation myocardial infarction patients undergoing primary percutaneous coronary intervention: the effect of metoprolol in cardioprotection during an acute myocardial infarction (METOCARD-CNIC) trial. Circulation 2013; 128(14): 1495-503.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.113.003653] [PMID: 24002794]
[78]
Pizarro G, Fernández-Friera L, Fuster V, et al. Long-term benefit of early pre-reperfusion metoprolol administration in patients with acute myocardial infarction: results from the METOCARD-CNIC trial (Effect of metoprolol in cardioprotection during an acute myocardial infarction). J Am Coll Cardiol 2014; 63(22): 2356-62.
[http://dx.doi.org/10.1016/j.jacc.2014.03.014] [PMID: 24694530]
[79]
Roolvink V, Ibáñez B, Ottervanger JP, et al. EARLY-BAMI investigators. Early intravenous beta-blockers in patients with ST-Segment elevation myocardial infarction before primary percutaneous coronary intervention. J Am Coll Cardiol 2016; 67(23): 2705-15.
[http://dx.doi.org/10.1016/j.jacc.2016.03.522] [PMID: 27050189]
[80]
Yang XM, Philipp S, Downey JM, Cohen MV. Atrial natriuretic peptide administered just prior to reperfusion limits infarction in rabbit hearts. Basic Res Cardiol 2006; 101(4): 311-8.
[http://dx.doi.org/10.1007/s00395-006-0587-2] [PMID: 16604440]
[81]
Kitakaze M, Asakura M, Kim J, et al. J-WIND investigators. Human atrial natriuretic peptide and nicorandil as adjuncts to reperfusion treatment for acute myocardial infarction (J-WIND): two randomised trials. Lancet 2007; 370(9597): 1483-93.
[http://dx.doi.org/10.1016/S0140-6736(07)61634-1] [PMID: 17964349]
[82]
Kobayashi H, Miura T, Ishida H, et al. Limitation of infarct size by erythropoietin is associated with translocation of Akt to the mitochondria after reperfusion. Clin Exp Pharmacol Physiol 2008; 35(7): 812-9.
[http://dx.doi.org/10.1111/j.1440-1681.2008.04925.x] [PMID: 18346168]
[83]
Calvillo L, Latini R, Kajstura J, et al. Recombinant human erythropoietin protects the myocardium from ischemia-reperfusion injury and promotes beneficial remodeling. Proc Natl Acad Sci USA 2003; 100(8): 4802-6.
[http://dx.doi.org/10.1073/pnas.0630444100] [PMID: 12663857]
[84]
Taniguchi N, Nakamura T, Sawada T, et al. Erythropoietin prevention trial of coronary restenosis and cardiac remodeling after ST-elevated acute myocardial infarction (EPOC-AMI): a pilot, randomized, placebo-controlled study. Circ J 2010; 74(11): 2365-71.
[http://dx.doi.org/10.1253/circj.CJ-10-0267] [PMID: 20834185]
[85]
Ferrario M, Arbustini E, Massa M, et al. High-dose erythropoietin in patients with acute myocardial infarction: a pilot, randomised, placebo-controlled study. Int J Cardiol 2011; 147(1): 124-31.
[http://dx.doi.org/10.1016/j.ijcard.2009.10.028] [PMID: 19906454]
[86]
Ott I, Schulz S, Mehilli J, et al. REVIVAL-3 study investigators. erythropoietin in patients with acute ST-Segment elevation myocardial infarction undergoing primary percutaneous coronary intervention: a randomized, double-blind trial. Circ Cardiovasc Interv 2010; 3(5): 408-13.
[http://dx.doi.org/10.1161/CIRCINTERVENTIONS.109.904425] [PMID: 20736448]
[87]
Najjar SS, Rao SV, Melloni C, et al. REVEAL investigators. Intravenous erythropoietin in patients with ST-Segment elevation myocardial infarction: REVEAL: a randomized controlled trial. JAMA 2011; 305(18): 1863-72.
[http://dx.doi.org/10.1001/jama.2011.592] [PMID: 21558517]
[88]
Heusch G, Skyschally A, Gres P, van Caster P, Schilawa D, Schulz R. Improvement of regional myocardial blood flow and function and reduction of infarct size with ivabradine: protection beyond heart rate reduction. Eur Heart J 2008; 29(18): 2265-75.
[http://dx.doi.org/10.1093/eurheartj/ehn337] [PMID: 18621770]
[89]
Kleinbongard P, Gedik N, Witting P, Freedman B, Klöcker N, Heusch G. Pleiotropic, heart rate-independent cardioprotection by ivabradine. Br J Pharmacol 2015; 172(17): 4380-90.
[http://dx.doi.org/10.1111/bph.13220] [PMID: 26076181]
[90]
Steg P, Lopez-de-Sà E, Schiele F, et al. Safety of intravenous ivabradine in acute ST-Segment elevation myocardial infarction patients treated with primary percutaneous coronary intervention: a randomized, placebo-controlled, double-blind, pilot study. Eur Heart J Acute Cardiovasc Care 2013; 2(3): 270-9.
[http://dx.doi.org/10.1177/2048872613489305] [PMID: 24222839]
[91]
Hale SL, Leeka JA, Kloner RA. Improved left ventricular function and reduced necrosis after myocardial ischemia/reperfusion in rabbits treated with ranolazine, an inhibitor of the late sodium channel. J Pharmacol Exp Ther 2006; 318(1): 418-23.
[http://dx.doi.org/10.1124/jpet.106.103242] [PMID: 16617168]
[92]
Hale SL, Shryock JC, Belardinelli L, Sweeney M, Kloner RA. Late sodium current inhibition as a new cardioprotective approach. J Mol Cell Cardiol 2008; 44(6): 954-67.
[http://dx.doi.org/10.1016/j.yjmcc.2008.03.019] [PMID: 18462746]
[93]
Pelliccia F, Pasceri V, Marazzi G, Rosano G, Greco C, Gaudio C. A pilot randomized study of ranolazine for reduction of myocardial damage during elective percutaneous coronary intervention. Am Heart J 2012; 163(6): 1019-23.
[http://dx.doi.org/10.1016/j.ahj.2012.03.018] [PMID: 22709755]
[94]
Selker HP, Beshansky JR, Sheehan PR, et al. Out-of-hospital administration of intravenous glucose-insulin-potassium in patients with suspected acute coronary syndromes: the IMMEDIATE randomized controlled trial. JAMA 2012; 307(18): 1925-33.
[http://dx.doi.org/10.1001/jama.2012.426] [PMID: 22452807]
[95]
Pell VR, Chouchani ET, Frezza C, Murphy MP, Krieg T. Succinate metabolism: a new therapeutic target for myocardial reperfusion injury. Cardiovasc Res 2016; 111(2): 134-41.
[http://dx.doi.org/10.1093/cvr/cvw100] [PMID: 27194563]
[96]
Valls-Lacalle L, Barba I, Miró-Casas E, et al. Succinate dehydrogenase inhibition with malonate during reperfusion reduces infarct size by preventing mitochondrial permeability transition. Cardiovasc Res 2016; 109(3): 374-84.
[http://dx.doi.org/10.1093/cvr/cvv279] [PMID: 26705364]
[97]
Chouchani ET, Pell VR, Gaude E, et al. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature 2014; 515(7527): 431-5.
[http://dx.doi.org/10.1038/nature13909] [PMID: 25383517]
[98]
Pain T, Yang XM, Critz SD, et al. Opening of mitochondrial K(ATP) channels triggers the preconditioned state by generating free radicals. Circ Res 2000; 87(6): 460-6.
[http://dx.doi.org/10.1161/01.RES.87.6.460] [PMID: 10988237]
[99]
Iliodromitis EK, Cokkinos P, Zoga A, Steliou I, Vrettou AR, Kremastinos DT. Oral nicorandil recaptures the waned protection from preconditioning in vivo. Br J Pharmacol 2003; 138(6): 1101-6.
[http://dx.doi.org/10.1038/sj.bjp.0705149] [PMID: 12684266]
[100]
Yang MJ, Lee HC, Lee HW, et al. Effect of nicorandil on clinical outcomes in patients with ST-segment elevation and non-ST-segment elevation myocardial infarction: based on the korea acute myocardial infarction registry (KAMIR). Int J Cardiol 2013; 168(5): 4868-9.
[http://dx.doi.org/10.1016/j.ijcard.2013.07.055] [PMID: 23899744]
[101]
Kostic J, Djordjevic-Dikic A, Dobric M, et al. The effects of nicorandil on microvascular function in patients with ST-Segment elevation myocardial infarction undergoing primary PCI. Cardiovasc Ultrasound 2015; 13: 26.
[http://dx.doi.org/10.1186/s12947-015-0020-9] [PMID: 26012474]
[102]
Feng C, Liu Y, Wang L, Niu D, Han B. Effects of early intracoronary administration of nicorandil during percutaneous coronary intervention in patients with acute myocardial infarction. Heart Lung Circ 2019; 28(6): 858-65.
[http://dx.doi.org/10.1016/j.hlc.2018.05.097] [PMID: 29891250]
[103]
Qi Q, Niu J, Chen T, Yin H, Wang T, Jiang Z. Intracoronary nicorandil and the prevention of the no-reflow phenomenon during primary percutaneous coronary intervention in patients with acute ST-Segment elevation myocardial infarction. Med Sci Monit 2018; 24: 2767-76.
[http://dx.doi.org/10.12659/MSM.906815] [PMID: 29726480]
[104]
Chan W, Taylor AJ, Ellims AH, et al. Effect of iron chelation on myocardial infarct size and oxidative stress in ST-elevation-myocardial infarction. Circ Cardiovasc Interv 2012; 5(2): 270-8.
[http://dx.doi.org/10.1161/CIRCINTERVENTIONS.111.966226] [PMID: 22496085]
[105]
Lincoff AM, Roe M, Aylward P, et al. PROTECTION AMI investigators. Inhibition of delta-protein kinase C by delcasertib as an adjunct to primary percutaneous coronary intervention for acute anterior ST-Segment elevation myocardial infarction: results of the PROTECTION AMI randomized controlled trial. Eur Heart J 2014; 35(37): 2516-23.
[http://dx.doi.org/10.1093/eurheartj/ehu177] [PMID: 24796339]
[106]
Gibson CM, Giugliano RP, Kloner RA, et al. EMBRACE STEMI study: a Phase 2a trial to evaluate the safety, tolerability, and efficacy of intravenous MTP-131 on reperfusion injury in patients undergoing primary percutaneous coronary intervention. Eur Heart J 2016; 37(16): 1296-303.
[http://dx.doi.org/10.1093/eurheartj/ehv597] [PMID: 26586786]
[107]
Atar D, Arheden H, Berdeaux A, et al. Effect of intravenous TRO40303 as an adjunct to primary percutaneous coronary intervention for acute ST-elevation myocardial infarction: MITOCARE study results. Eur Heart J 2015; 36(2): 112-9.
[http://dx.doi.org/10.1093/eurheartj/ehu331] [PMID: 25179768]
[108]
Janssens SP, Bogaert J, Zalewski J, et al. NOMI investigators. Nitric oxide for inhalation in ST-elevation myocardial infarction (NOMI): a multicentre, double-blind, randomized controlled trial. Eur Heart J 2018; 39(29): 2717-25.
[http://dx.doi.org/10.1093/eurheartj/ehy232] [PMID: 29800130]
[109]
Gwag HB, Kim EK, Park TK, et al. Cardioprotective effects of intracoronary morphine in ST-Segment elevation myocardial infarction patients undergoing primary percutaneous coronary intervention: a prospective, randomized trial. J Am Heart Assoc 2017; 6(4)e005426
[http://dx.doi.org/10.1161/JAHA.116.005426] [PMID: 28373244]
[110]
Bauer T, Böhm M, Zahn R, et al. Acute coronary syndromes registry investigators. Effect of chronic statin pretreatment on hospital outcome in patients with acute non-ST-elevation myocardial infarction. J Cardiovasc Pharmacol 2009; 53(2): 132-6.
[http://dx.doi.org/10.1097/FJC.0b013e3181976a3c] [PMID: 19188836]
[111]
Yang XM, Liu Y, Cui L, et al. Platelet P2Y12 blockers confer direct postconditioning-like protection in reperfused rabbit hearts. J Cardiovasc Pharmacol Ther 2013; 18(3): 251-62.
[http://dx.doi.org/10.1177/1074248412467692] [PMID: 23233653]
[112]
Vilahur G, Casaní L, Peña E, et al. Silybum marianum provides cardioprotection and limits adverse remodeling post-myocardial infarction by mitigating oxidative stress and reactive fibrosis. Int J Cardiol 2018; 270: 28-35.
[http://dx.doi.org/10.1016/j.ijcard.2018.06.030] [PMID: 29936043]
[113]
Yang X, Liu Y, Yang XM, et al. Cardioprotection by mild hypothermia during ischemia involves preservation of ERK activity. Basic Res Cardiol 2011; 106(3): 421-30.
[http://dx.doi.org/10.1007/s00395-011-0165-0] [PMID: 21399968]
[114]
Götberg M, Olivecrona GK, Koul S, et al. A pilot study of rapid cooling by cold saline and endovascular cooling before reperfusion in patients with ST-elevation myocardial infarction. Circ Cardiovasc Interv 2010; 3(5): 400-7.
[http://dx.doi.org/10.1161/CIRCINTERVENTIONS.110.957902] [PMID: 20736446]
[115]
Erlinge D, Götberg M, Lang I, et al. Rapid endovascular catheter core cooling combined with cold saline as an adjunct to percutaneous coronary intervention for the treatment of acute myocardial infarction. The CHILL-MI trial: a randomized controlled study of the use of central venous catheter core cooling combined with cold saline as an adjunct to percutaneous coronary intervention for the treatment of acute myocardial infarction. J Am Coll Cardiol 2014; 63(18): 1857-65.
[http://dx.doi.org/10.1016/j.jacc.2013.12.027] [PMID: 24509284]
[116]
Nichol G, Strickland W, Shavelle D, et al. VELOCITY Investigators. Prospective, multicenter, randomized, controlled pilot trial of peritoneal hypothermia in patients with ST-Segment- elevation myocardial infarction. Circ Cardiovasc Interv 2015; 8(3)e001965
[http://dx.doi.org/10.1161/CIRCINTERVENTIONS.114.001965] [PMID: 25699687]
[117]
Noc M, Erlinge D, Neskovic AN, et al. COOL AMI EU pilot trial: a multicentre, prospective, randomised controlled trial to assess cooling as an adjunctive therapy to percutaneous intervention in patients with acute myocardial infarction. EuroIntervention 2017; 13(5): e531-9.
[http://dx.doi.org/10.4244/EIJ-D-17-00279] [PMID: 28506940]
[118]
Dash R, Mitsutake Y, Pyun WB, et al. Dose-dependent cardioprotection of moderate (32°C) versus mild (35°C) therapeutic hypothermia in porcine acute myocardial infarction. JACC Cardiovasc Interv 2018; 11(2): 195-205.
[http://dx.doi.org/10.1016/j.jcin.2017.08.056] [PMID: 29348013]
[119]
Wang R. Physiological implications of hydrogen sulfide: a whiff exploration that blossomed. Physiol Rev 2012; 92(2): 791-896.
[http://dx.doi.org/10.1152/physrev.00017.2011] [PMID: 22535897]
[120]
Polhemus D, Kondo K, Bhushan S, et al. Hydrogen sulfide attenuates cardiac dysfunction after heart failure via induction of angiogenesis. Circ Heart Fail 2013; 6(5): 1077-86.
[http://dx.doi.org/10.1161/CIRCHEARTFAILURE.113.000299] [PMID: 23811964]
[121]
Osipov RM, Robich MP, Feng J, et al. Effect of hydrogen sulfide in a porcine model of myocardial ischemia-reperfusion: comparison of different administration regimens and characterization of the cellular mechanisms of protection. J Cardiovasc Pharmacol 2009; 54(4): 287-97.
[http://dx.doi.org/10.1097/FJC.0b013e3181b2b72b] [PMID: 19620880]
[122]
Elrod JW, Calvert JW, Morrison J, et al. Hydrogen sulfide attenuates myocardial ischemia-reperfusion injury by preservation of mitochondrial function. Proc Natl Acad Sci USA 2007; 104(39): 15560-5.
[http://dx.doi.org/10.1073/pnas.0705891104] [PMID: 17878306]
[123]
Zhuo Y, Chen PF, Zhang AZ, Zhong H, Chen CQ, Zhu YZ. Cardioprotective effect of hydrogen sulfide in ischemic reperfusion experimental rats and its influence on expression of survivin gene. Biol Pharm Bull 2009; 32(8): 1406-10.
[http://dx.doi.org/10.1248/bpb.32.1406] [PMID: 19652381]
[124]
Luan HF, Zhao ZB, Zhao QH, Zhu P, Xiu MY, Ji Y. Hydrogen sulfide postconditioning protects isolated rat hearts against ischemia and reperfusion injury mediated by the JAK2/STAT3 survival pathway. Braz J Med Biol Res 2012; 45(10): 898-905.
[http://dx.doi.org/10.1590/S0100-879X2012007500090] [PMID: 22948409]
[125]
Bradley JM, Organ CL, Lefer DJ. Garlic-derived organic polysulfides and myocardial protection. J Nutr 2016; 146(2): 403S-9S.
[http://dx.doi.org/10.3945/jn.114.208066] [PMID: 26764335]
[126]
Karwi QG, Bice JS, Baxter GF. Pre- and postconditioning the heart with hydrogen sulfide (H2S) against ischemia/reperfusion injury in vivo: a systematic review and meta-analysis. Basic Res Cardiol 2017; 113(1): 6.
[http://dx.doi.org/10.1007/s00395-017-0664-8] [PMID: 29242986]
[127]
Ong SB, Katwadi K, Kwek XY, et al. Non-coding RNAs as therapeutic targets for preventing myocardial ischemia-reperfusion injury. Expert Opin Ther Targets 2018; 22(3): 247-61.
[http://dx.doi.org/10.1080/14728222.2018.1439015] [PMID: 29417868]
[128]
Cheng Y, Zhu P, Yang J, et al. Ischaemic preconditioning-regulated miR-21 protects heart against ischaemia/reperfusion injury via anti-apoptosis through its target PDCD4. Cardiovasc Res 2010; 87(3): 431-9.
[http://dx.doi.org/10.1093/cvr/cvq082] [PMID: 20219857]
[129]
Duan X, Ji B, Wang X, et al. Expression of microRNA-1 and microRNA-21 in different protocols of ischemic conditioning in an isolated rat heart model. Cardiology 2012; 122(1): 36-43.
[http://dx.doi.org/10.1159/000338149] [PMID: 22699357]
[130]
Tu Y, Wan L, Fan Y, et al. Ischemic postconditioning-mediated miRNA-21 protects against cardiac ischemia/reperfusion injury via PTEN/Akt pathway. PLoS One 2013; 8(10)e75872
[http://dx.doi.org/10.1371/journal.pone.0075872] [PMID: 24098402]
[131]
He B, Xiao J, Ren AJ, et al. Role of miR-1 and miR-133a in myocardial ischemic postconditioning. J Biomed Sci 2011; 18: 22.
[http://dx.doi.org/10.1186/1423-0127-18-22] [PMID: 21406115]
[132]
Slagsvold KH, Rognmo O, Høydal M, Wisløff U, Wahba A. Remote ischemic preconditioning preserves mitochondrial function and influences myocardial microRNA expression in atrial myocardium during coronary bypass surgery. Circ Res 2014; 114(5): 851-9.
[http://dx.doi.org/10.1161/CIRCRESAHA.114.302751] [PMID: 24371264]
[133]
Wang X, Zhu H, Zhang X, et al. Loss of the miR-144/451 cluster impairs ischaemic preconditioning-mediated cardioprotection by targeting Rac-1. Cardiovasc Res 2012; 94(2): 379-90.
[http://dx.doi.org/10.1093/cvr/cvs096] [PMID: 22354898]
[134]
Li J, Rohailla S, Gelber N, et al. MicroRNA-144 is a circulating effector of remote ischemic preconditioning. Basic Res Cardiol 2014; 109(5): 423.
[http://dx.doi.org/10.1007/s00395-014-0423-z] [PMID: 25060662]
[135]
Varga ZV, Zvara A, Faragó N, et al. MicroRNAs associated with ischemia-reperfusion injury and cardioprotection by ischemic pre- and postconditioning: protectomiRs. Am J Physiol Heart Circ Physiol 2014; 307(2): H216-27.
[http://dx.doi.org/10.1152/ajpheart.00812.2013] [PMID: 24858849]
[136]
Eckle T, Hartmann K, Bonney S, et al. Adora2b-elicited Per2 stabilization promotes a HIF-dependent metabolic switch crucial for myocardial adaptation to ischemia. Nat Med 2012; 18(5): 774-82.
[http://dx.doi.org/10.1038/nm.2728] [PMID: 22504483]
[137]
Bayoumi AS, Sayed A, Broskova Z, et al. Crosstalk between Long Noncoding RNAs and MicroRNAs in Health and Disease. Int J Mol Sci 2016; 17(3): 356.
[http://dx.doi.org/10.3390/ijms17030356] [PMID: 26978351]
[138]
Zhai H, Li XM, Liu F, et al. Expression pattern of genome-scale long noncoding RNA following acute myocardial infarction in chinese uyghur patients. Oncotarget 2017; 8(19): 31449-64.
[http://dx.doi.org/10.18632/oncotarget.16355] [PMID: 28418905]
[139]
Vausort M, Wagner DR, Devaux Y. Long noncoding RNAs in patients with acute myocardial infarction. Circ Res 2014; 115(7): 668-77.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.303836] [PMID: 25035150]
[140]
Wang JX, Zhang XJ, Li Q, et al. MicroRNA-103/107 regulate programmed necrosis and myocardial ischemia/reperfusion injury through targeting FADD. Circ Res 2015; 117(4): 352-63.
[http://dx.doi.org/10.1161/CIRCRESAHA.117.305781] [PMID: 26038570]
[141]
Wang K, Liu F, Liu CY, et al. The long noncoding RNA NRF regulates programmed necrosis and myocardial injury during ischemia and reperfusion by targeting miR-873. Cell Death Differ 2016; 23(8): 1394-405.
[http://dx.doi.org/10.1038/cdd.2016.28] [PMID: 27258785]
[142]
Wang K, Liu CY, Zhou LY, et al. APF lncRNA regulates autophagy and myocardial infarction by targeting miR-188-3p. Nat Commun 2015; 6: 6779.
[http://dx.doi.org/10.1038/ncomms7779] [PMID: 25858075]
[143]
Qu X, Du Y, Shu Y, et al. MIAT is a pro-fibrotic long non-coding RNA governing cardiac fibrosis in post-infarct myocardium. Sci Rep 2017; 7: 42657.
[http://dx.doi.org/10.1038/srep42657] [PMID: 28198439]
[144]
Wang K, Long B, Zhou LY, et al. CARL lncRNA inhibits anoxia-induced mitochondrial fission and apoptosis in cardiomyocytes by impairing miR-539-dependent PHB2 downregulation. Nat Commun 2014; 5: 3596.
[http://dx.doi.org/10.1038/ncomms4596] [PMID: 24710105]
[145]
Zhang J, Gao C, Meng M, Tang H. Long noncoding RNA MHRT protects cardiomyocytes against H2O2-induced apoptosis. Biomol Ther (Seoul) 2016; 24(1): 19-24.
[http://dx.doi.org/10.4062/biomolther.2015.066] [PMID: 26759697]
[146]
Garcia-Dorado D, Inserte J, Ruiz-Meana M, et al. Gap junction uncoupler heptanol prevents cell-to-cell progression of hypercontracture and limits necrosis during myocardial reperfusion. Circulation 1997; 96(10): 3579-86.
[http://dx.doi.org/10.1161/01.CIR.96.10.3579] [PMID: 9396458]
[147]
Miro-Casas E, Ruiz-Meana M, Agullo E, et al. Connexin43 in cardiomyocyte mitochondria contributes to mitochondrial potassium uptake. Cardiovasc Res 2009; 83(4): 747-56.
[http://dx.doi.org/10.1093/cvr/cvp157] [PMID: 19460776]
[148]
Boengler K, Ruiz-Meana M, Gent S, et al. Mitochondrial connexin 43 impacts on respiratory complex I activity and mitochondrial oxygen consumption. J Cell Mol Med 2012; 16(8): 1649-55.
[http://dx.doi.org/10.1111/j.1582-4934.2011.01516.x] [PMID: 22212640]
[149]
Rodriguez-Sinovas A, Boengler K, Cabestrero A, et al. Translocation of connexin 43 to the inner mitochondrial membrane of cardiomyocytes through the heat shock protein 90-dependent TOM pathway and its importance for cardioprotection. Circ Res 2006; 99(1): 93-101.
[http://dx.doi.org/10.1161/01.RES.0000230315.56904.de] [PMID: 16741159]
[150]
Boengler K, Konietzka I, Buechert A, et al. Loss of ischemic preconditioning’s cardioprotection in aged mouse hearts is associated with reduced gap junctional and mitochondrial levels of connexin 43. Am J Physiol Heart Circ Physiol 2007; 292(4): H1764-9.
[http://dx.doi.org/10.1152/ajpheart.01071.2006] [PMID: 17142336]
[151]
Schwanke U, Konietzka I, Duschin A, Li X, Schulz R, Heusch G. No ischemic preconditioning in heterozygous connexin43-deficient mice. Am J Physiol Heart Circ Physiol 2002; 283(4): H1740-2.
[http://dx.doi.org/10.1152/ajpheart.00442.2002] [PMID: 12234831]
[152]
Heusch G, Büchert A, Feldhaus S, Schulz R. No loss of cardioprotection by postconditioning in connexin 43-deficient mice. Basic Res Cardiol 2006; 101(4): 354-6.
[http://dx.doi.org/10.1007/s00395-006-0589-0] [PMID: 16568250]
[153]
Sciarretta S, Yee D, Shenoy V, Nagarajan N, Sadoshima J. The importance of autophagy in cardioprotection. High Blood Press Cardiovasc Prev 2014; 21(1): 21-8.
[http://dx.doi.org/10.1007/s40292-013-0029-9] [PMID: 24235024]
[154]
Ma S, Wang Y, Chen Y, Cao F. The role of the autophagy in myocardial ischemia/reperfusion injury. Biochim Biophys Acta 2015; 1852(2): 271-6.
[http://dx.doi.org/10.1016/j.bbadis.2014.05.010] [PMID: 24859226]
[155]
Huang C, Liu W, Perry CN, et al. Autophagy and protein kinase C are required for cardioprotection by sulfaphenazole. Am J Physiol Heart Circ Physiol 2010; 298(2): H570-9.
[http://dx.doi.org/10.1152/ajpheart.00716.2009] [PMID: 20008275]
[156]
Shiomi M, Miyamae M, Takemura G, et al. Induction of autophagy restores the loss of sevoflurane cardiac preconditioning seen with prolonged ischemic insult. Eur J Pharmacol 2014; 724: 58-66.
[http://dx.doi.org/10.1016/j.ejphar.2013.12.027] [PMID: 24374197]
[157]
Yitzhaki S, Huang C, Liu W, et al. Autophagy is required for preconditioning by the adenosine A1 receptor-selective agonist CCPA. Basic Res Cardiol 2009; 104(2): 157-67.
[http://dx.doi.org/10.1007/s00395-009-0006-6] [PMID: 19242639]
[158]
Rohailla S, Clarizia N, Sourour M, et al. Acute, delayed and chronic remote ischemic conditioning is associated with downregulation of mTOR and enhanced autophagy signaling. PLoS One 2014; 9(10)e111291
[http://dx.doi.org/10.1371/journal.pone.0111291] [PMID: 25347774]
[159]
Shiomi M, Miyamae M, Takemura G, et al. Sevoflurane induces cardioprotection through reactive oxygen species-mediated upregulation of autophagy in isolated guinea pig hearts. J Anesth 2014; 28(4): 593-600.
[http://dx.doi.org/10.1007/s00540-013-1755-9] [PMID: 24337890]
[160]
Zhou B, Lei S, Xue R, Leng Y, Xia Z, Xia ZY. DJ-1 overexpression restores ischaemic post-conditioning-mediated cardioprotection in diabetic rats: role of autophagy. Clin Sci (Lond) 2017; 131(11): 1161-78.
[http://dx.doi.org/10.1042/CS20170052] [PMID: 28404768]
[161]
Chen J, Gao J, Sun W, et al. Involvement of exogenous H2S in recovery of cardioprotection from ischemic post-conditioning via increase of autophagy in the aged hearts. Int J Cardiol 2016; 220: 681-92.
[http://dx.doi.org/10.1016/j.ijcard.2016.06.200] [PMID: 27393850]
[162]
Hang P, Zhao J, Su Z, et al. Choline inhibits ischemia-reperfusion-induced cardiomyocyte autophagy in rat myocardium by activating Akt/mTOR signaling. Cell Physiol Biochem 2018; 45(5): 2136-44.
[http://dx.doi.org/10.1159/000488049] [PMID: 29533930]
[163]
Shibata R, Sato K, Pimentel DR, et al. Adiponectin protects against myocardial ischemia-reperfusion injury through AMPK- and COX-2-dependent mechanisms. Nat Med 2005; 11(10): 1096-103.
[http://dx.doi.org/10.1038/nm1295] [PMID: 16155579]
[164]
Wang H, Wu W, Duan J, et al. Cardioprotection of ischemic preconditioning in rats involves upregulating adiponectin. J Mol Endocrinol 2017; 58(4): 155-65.
[http://dx.doi.org/10.1530/JME-16-0163] [PMID: 28219936]
[165]
Li H, Yao W, Liu Z, et al. Hyperglycemia abrogates ischemic postconditioning cardioprotection by impairing AdipoR1/Caveolin-3/STAT3 signaling in diabetic rats. Diabetes 2016; 65(4): 942-55.
[http://dx.doi.org/10.2337/db15-0782] [PMID: 26718505]
[166]
Xia Y, Zhang F, Zhao S, et al. Adiponectin determines farnesoid X receptor agonism-mediated cardioprotection against post-infarction remodelling and dysfunction. Cardiovasc Res 2018; 114(10): 1335-49.
[http://dx.doi.org/10.1093/cvr/cvy093] [PMID: 29668847]
[167]
Sun Y, Zhao D, Yang Y, et al. Adiponectin exerts cardioprotection against ischemia/reperfusion injury partially via calreticulin mediated anti-apoptotic and anti-oxidative actions. Apoptosis 2017; 22(1): 108-17.
[http://dx.doi.org/10.1007/s10495-016-1304-8] [PMID: 27757734]
[168]
Barile L, Moccetti T, Marbán E, Vassalli G. Roles of exosomes in cardioprotection. Eur Heart J 2017; 38(18): 1372-9.
[http://dx.doi.org/10.1093/eurheartj/ehw304] [PMID: 27443883]
[169]
Vicencio JM, Yellon DM, Sivaraman V, et al. Plasma exosomes protect the myocardium from ischemia-reperfusion injury. J Am Coll Cardiol 2015; 65(15): 1525-36.
[http://dx.doi.org/10.1016/j.jacc.2015.02.026] [PMID: 25881934]
[170]
Davidson SM, Riquelme JA, Takov K, et al. Cardioprotection mediated by exosomes is impaired in the setting of type II diabetes but can be rescued by the use of non-diabetic exosomes in vitro. J Cell Mol Med 2018; 22(1): 141-51.
[http://dx.doi.org/10.1111/jcmm.13302] [PMID: 28840975]
[171]
Minghua W, Zhijian G, Chahua H, et al. Plasma exosomes induced by remote ischaemic preconditioning attenuate myocardial ischaemia/reperfusion injury by transferring miR-24. Cell Death Dis 2018; 9(3): 320.
[http://dx.doi.org/10.1038/s41419-018-0274-x] [PMID: 29476052]
[172]
Wang Y, Zhang L, Li Y, et al. Exosomes/microvesicles from induced pluripotent stem cells deliver cardioprotective miRNAs and prevent cardiomyocyte apoptosis in the ischemic myocardium. Int J Cardiol 2015; 192: 61-9.
[http://dx.doi.org/10.1016/j.ijcard.2015.05.020] [PMID: 26000464]
[173]
Shi B, Wang Y, Zhao R, Long X, Deng W, Wang Z. Bone marrow mesenchymal stem cell-derived exosomal miR-21 protects C-kit+ cardiac stem cells from oxidative injury through the PTEN/PI3K/Akt axis. PLoS One 2018; 13(2)e0191616
[http://dx.doi.org/10.1371/journal.pone.0191616] [PMID: 29444190]
[174]
Xiao J, Pan Y, Li XH, et al. Cardiac progenitor cell-derived exosomes prevent cardiomyocytes apoptosis through exosomal miR-21 by targeting PDCD4. Cell Death Dis 2016; 7(6)e2277
[http://dx.doi.org/10.1038/cddis.2016.181] [PMID: 27336721]
[175]
de Couto G, Gallet R, Cambier L, et al. Exosomal MicroRNA transfer into macrophages mediates cellular postconditioning. Circulation 2017; 136(2): 200-14.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.116.024590] [PMID: 28411247]
[176]
Luther KM, Haar L, McGuinness M, et al. Exosomal miR-21a-5p mediates cardioprotection by mesenchymal stem cells. J Mol Cell Cardiol 2018; 119: 125-37.
[http://dx.doi.org/10.1016/j.yjmcc.2018.04.012] [PMID: 29698635]
[177]
Potere N, Del Buono MG, Mauro AG, Abbate A, Toldo S. Low density lipoprotein receptor-related protein-1 in cardiac inflammation and infarct healing. Front Cardiovasc Med 2019; 6: 51.
[http://dx.doi.org/10.3389/fcvm.2019.00051] [PMID: 31080804]
[178]
Potere N, Del Buono MG, Niccoli G, Crea F, Toldo S, Abbate A. Developing LRP1 agonists into a therapeutic strategy in acute myocardial infarction. Int J Mol Sci 2019; 20(3)e544
[http://dx.doi.org/10.3390/ijms20030544] [PMID: 30696029]
[179]
Abbate A, Van Tassell BW, Christopher S, et al. Effects of Prolastin C (Plasma-Derived Alpha-1 Antitrypsin) on the acute inflammatory response in patients with ST-Segment elevation myocardial infarction (from the VCU-alpha 1-RT pilot study). Am J Cardiol 2015; 115(1): 8-12.
[http://dx.doi.org/10.1016/j.amjcard.2014.09.043] [PMID: 25456867]
[180]
Abouzaki NA, Christopher S, Trankle C, et al. Inhibiting the inflammatory injury after myocardial ischemia reperfusion with plasma-derived alpha-1 antitrypsin: a post Hoc analysis of the VCU-α1RT Study. J Cardiovasc Pharmacol 2018; 71(6): 375-9.
[http://dx.doi.org/10.1097/FJC.0000000000000583] [PMID: 29634656]
[181]
Spath NB, Mills NL, Cruden NL. Novel cardioprotective and regenerative therapies in acute myocardial infarction: a review of recent and ongoing clinical trials. Future Cardiol 2016; 12(6): 655-72.
[http://dx.doi.org/10.2217/fca-2016-0044] [PMID: 27791385]
[182]
de Jong R, Houtgraaf JH, Samiei S, Boersma E, Duckers HJ. Intracoronary stem cell infusion after acute myocardial infarction: a meta-analysis and update on clinical trials. Circ Cardiovasc Interv 2014; 7(2): 156-67.
[http://dx.doi.org/10.1161/CIRCINTERVENTIONS.113.001009] [PMID: 24668227]
[183]
Bell RM, Yellon DM. Conditioning the whole heart--not just the cardiomyocyte. J Mol Cell Cardiol 2012; 53(1): 24-32.
[http://dx.doi.org/10.1016/j.yjmcc.2012.04.001] [PMID: 22521304]
[184]
Sluijter JP, Condorelli G, Davidson SM, et al. Novel therapeutic strategies for cardioprotection. Pharmacol Ther 2014; 144(1): 60-70.
[http://dx.doi.org/10.1016/j.pharmthera.2014.05.005] [PMID: 24837132]
[185]
Heusch G. The coronary circulation as a target of cardioprotection. Circ Res 2016; 118(10): 1643-58.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.308640] [PMID: 27174955]
[186]
Zhang R, Hess DT, Reynolds JD, Stamler JS. Hemoglobin S-nitrosylation plays an essential role in cardioprotection. J Clin Invest 2016; 126(12): 4654-8.
[http://dx.doi.org/10.1172/JCI90425] [PMID: 27841756]
[187]
Huang C, Liu Y, Beenken A, et al. A novel fibroblast growth factor-1 ligand with reduced heparin binding protects the heart against ischemia-reperfusion injury in the presence of heparin co-administration. Cardiovasc Res 2017; 113(13): 1585-602.
[http://dx.doi.org/10.1093/cvr/cvx165] [PMID: 29016740]
[188]
Davidson SM, Andreadou I, Barile L, et al. Circulating blood cells and extracellular vesicles in acute cardioprotection. Cardiovasc Res 2019; 115(7): 1156-66.
[http://dx.doi.org/10.1093/cvr/cvy314] [PMID: 30590395]
[189]
Hooshdaran B, Kolpakov MA, Guo X, et al. Dual inhibition of cathepsin G and chymase reduces myocyte death and improves cardiac remodeling after myocardial ischemia reperfusion injury. Basic Res Cardiol 2017; 112(6): 62.
[http://dx.doi.org/10.1007/s00395-017-0652-z] [PMID: 28913553]
[190]
Ha T, Liu L, Kelley J, Kao R, Williams D, Li C. Toll-like receptors: new players in myocardial ischemia/reperfusion injury. Antioxid Redox Signal 2011; 15(7): 1875-93.
[http://dx.doi.org/10.1089/ars.2010.3723] [PMID: 21091074]
[191]
Bencsik P, Kupai K, Görbe A, et al. Development of matrix metalloproteinase-2 inhibitors for cardioprotection. Front Pharmacol 2018; 9: 296.
[http://dx.doi.org/10.3389/fphar.2018.00296] [PMID: 29674965]
[192]
Gerczuk PZ, Kloner RA. An update on cardioprotection: a review of the latest adjunctive therapies to limit myocardial infarction size in clinical trials. J Am Coll Cardiol 2012; 59(11): 969-78.
[http://dx.doi.org/10.1016/j.jacc.2011.07.054] [PMID: 22402067]
[193]
Song YJ, Zhong CB, Wang XB. Heat shock protein 70: a promising therapeutic target for myocardial ischemia-reperfusion injury. J Cell Physiol 2019; 234(2): 1190-207.
[http://dx.doi.org/10.1002/jcp.27110] [PMID: 30132875]
[194]
Hausenloy DJ, Bøtker HE, Ferdinandy P, et al. Cardiac innervation in acute myocardial ischaemia/reperfusion injury and cardioprotection. Cardiovasc Res 2019; 115(7): 1167-77.
[http://dx.doi.org/10.1093/cvr/cvz053] [PMID: 30796814]
[195]
Andreadou I, Cabrera-Fuentes HA, Devaux Y, et al. Immune cells as targets for cardioprotection: new players and novel therapeutic opportunities. Cardiovasc Res 2019; 115(7): 1117-30.
[http://dx.doi.org/10.1093/cvr/cvz050] [PMID: 30825305]
[196]
Hausenloy DJ, Chilian W, Crea F, et al. The coronary circulation in acute myocardial ischaemia/reperfusion injury: a target for cardioprotection. Cardiovasc Res 2019; 115(7): 1143-55.
[http://dx.doi.org/10.1093/cvr/cvy286] [PMID: 30428011]
[197]
Yu Z, Chen R, Li M, et al. Mitochondrial calcium uniporter inhibition provides cardioprotection in pressure overload-induced heart failure through autophagy enhancement. Int J Cardiol 2018; 271: 161-8.
[http://dx.doi.org/10.1016/j.ijcard.2018.05.054] [PMID: 29803339]
[198]
Brown DA, Sabbah HN, Shaikh SR. Mitochondrial inner membrane lipids and proteins as targets for decreasing cardiac ischemia/reperfusion injury. Pharmacol Ther 2013; 140(3): 258-66.
[http://dx.doi.org/10.1016/j.pharmthera.2013.07.005] [PMID: 23867906]
[199]
Alburquerque-Béjar JJ, Barba I, Inserte J, et al. Combination therapy with remote ischaemic conditioning and insulin or exenatide enhances infarct size limitation in pigs. Cardiovasc Res 2015; 107(2): 246-54.
[http://dx.doi.org/10.1093/cvr/cvv171] [PMID: 26045476]
[200]
Prunier F, Angoulvant D, Saint Etienne C, et al. The RIPOST-MI study, assessing remote ischemic perconditioning alone or in combination with local ischemic postconditioning in ST-segment elevation myocardial infarction. Basic Res Cardiol 2014; 109(2): 400.
[http://dx.doi.org/10.1007/s00395-013-0400-y] [PMID: 24407359]
[201]
Eitel I, Stiermaier T, Rommel KP, et al. Cardioprotection by combined intrahospital remote ischaemic perconditioning and postconditioning in ST-elevation myocardial infarction: the randomized LIPSIA CONDITIONING trial. Eur Heart J 2015; 36(44): 3049-57.
[http://dx.doi.org/10.1093/eurheartj/ehv463] [PMID: 26385956]
[202]
Pasupathy S, Tavella R, Grover S, et al. Early use of n-acetylcysteine with nitrate therapy in patients undergoing primary percutaneous coronary intervention for ST-Segment-elevation myocardial infarction reduces myocardial infarct size (the NACIAM Trial [N-acetylcysteine in Acute Myocardial Infarction]). Circulation 2017; 136(10): 894-903.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.117.027575] [PMID: 28634219]
[203]
Davidson SM, Ferdinandy P, Andreadou I, et al. Multitarget strategies to reduce myocardial ischemia/reperfusion injury: JACC review topic of the week. J Am Coll Cardiol 2019; 73(1): 89-99.
[http://dx.doi.org/10.1016/j.jacc.2018.09.086] [PMID: 30621955]
[204]
Koshinuma S, Miyamae M, Kaneda K, Kotani J, Figueredo VM. Combination of necroptosis and apoptosis inhibition enhances cardioprotection against myocardial ischemia-reperfusion injury. J Anesth 2014; 28(2): 235-41.
[http://dx.doi.org/10.1007/s00540-013-1716-3] [PMID: 24113863]
[205]
Ferdinandy P, Hausenloy DJ, Heusch G, Baxter GF, Schulz R. Interaction of risk factors, comorbidities, and comedications with ischemia/reperfusion injury and cardioprotection by preconditioning, postconditioning, and remote conditioning. Pharmacol Rev 2014; 66(4): 1142-74.
[http://dx.doi.org/10.1124/pr.113.008300] [PMID: 25261534]
[206]
Miki T, Itoh T, Sunaga D, Miura T. Effects of diabetes on myocardial infarct size and cardioprotection by preconditioning and postconditioning. Cardiovasc Diabetol 2012; 11: 67.
[http://dx.doi.org/10.1186/1475-2840-11-67] [PMID: 22694800]
[207]
Ostadal B, Ostadal P. Sex-based differences in cardiac ischaemic injury and protection: therapeutic implications. Br J Pharmacol 2014; 171(3): 541-54.
[http://dx.doi.org/10.1111/bph.12270] [PMID: 23750471]
[208]
Randhawa PK, Bali A, Virdi JK, Jaggi AS. Conditioning-induced cardioprotection: aging as a confounding factor. Korean J Physiol Pharmacol 2018; 22(5): 467-79.
[http://dx.doi.org/10.4196/kjpp.2018.22.5.467] [PMID: 30181694]
[209]
Hunter JC, Korzick DH. Age- and sex-dependent alterations in protein kinase C (PKC) and extracellular regulated kinase 1/2 (ERK1/2) in rat myocardium. Mech Ageing Dev 2005; 126(5): 535-50.
[http://dx.doi.org/10.1016/j.mad.2004.11.003] [PMID: 15811423]
[210]
Badimon L, Mendieta G, Ben-Aicha S, Vilahur G. Post-genomic methodologies and preclinical animal models: chances for the translation of cardioprotection to the clinic. Int J Mol Sci 2019; 20(3)e514
[http://dx.doi.org/10.3390/ijms20030514] [PMID: 30691061]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 25
ISSUE: 35
Year: 2019
Page: [3726 - 3739]
Pages: 14
DOI: 10.2174/1381612825666191105103417
Price: $65

Article Metrics

PDF: 17
HTML: 3
EPUB: 1