Integrating Autism Spectrum Disorder Pathophysiology: Mitochondria, Vitamin A, CD38, Oxytocin, Serotonin and Melatonergic Alterations in the Placenta and Gut

Author(s): Michael Maes*, George Anderson, Susana R. Betancort Medina, Moonsang Seo, Johanna O. Ojala.

Journal Name: Current Pharmaceutical Design

Volume 25 , Issue 41 , 2019

Become EABM
Become Reviewer

Abstract:

Background: A diverse array of data has been associated with autism spectrum disorder (ASD), reflecting the complexity of its pathophysiology as well as its heterogeneity. Two important hubs have emerged, the placenta/prenatal period and the postnatal gut, with alterations in mitochondria functioning crucial in both.

Methods: Factors acting to regulate mitochondria functioning in ASD across development are reviewed in this article.

Results: Decreased vitamin A, and its retinoic acid metabolites, lead to a decrease in CD38 and associated changes that underpin a wide array of data on the biological underpinnings of ASD, including decreased oxytocin, with relevance both prenatally and in the gut. Decreased sirtuins, poly-ADP ribose polymerase-driven decreases in nicotinamide adenine dinucleotide (NAD+), hyperserotonemia, decreased monoamine oxidase, alterations in 14-3-3 proteins, microRNA alterations, dysregulated aryl hydrocarbon receptor activity, suboptimal mitochondria functioning, and decreases in the melatonergic pathways are intimately linked to this. Many of the above processes may be modulating, or mediated by, alterations in mitochondria functioning. Other bodies of data associated with ASD may also be incorporated within these basic processes, including how ASD risk factors such as maternal obesity and preeclampsia, as well as more general prenatal stressors, modulate the likelihood of offspring ASD.

Conclusion: Such a mitochondria-focussed integrated model of the pathophysiology of ASD has important preventative and treatment implications.

Keywords: Autism, mitochondria, melatonin, microRNAs, gut microbiome, aryl hydrocarbon receptor.

[1]
Kim Y, Vadodaria KC, Lenkei Z, et al. Mitochondria, metabolism, and redox mechanisms in psychiatric disorders. Antioxid Redox Signal 2019; 31(4): 275-317.
[http://dx.doi.org/10.1089/ars.2018.7606] [PMID: 30585734]
[2]
Wang Y, Xu E, Musich PR, Lin F. Mitochondrial dysfunction in neurodegenerative diseases and the potential countermeasure. CNS Neurosci Ther 2019; 25(7): 816-24.
[http://dx.doi.org/10.1111/cns.13116] [PMID: 30889315]
[3]
Roushandeh AM, Kuwahara Y, Roudkenar MH. Mitochondrial transplantation as a potential and novel master key for treatment of various incurable diseases. Cytotechnology 2019; 71(2): 647-63.
[http://dx.doi.org/10.1007/s10616-019-00302-9] [PMID: 30706303]
[4]
Weinhouse C. Mitochondrial-epigenetic crosstalk in environmental toxicology. Toxicology 2017; 391: 5-17.
[http://dx.doi.org/10.1016/j.tox.2017.08.008] [PMID: 28855114]
[5]
Polyakova VO, Kvetnoy IM, Anderson G, Rosati J, Mazzoccoli G, Linkova NS. Reciprocal interactions of mitochondria and the neuroimmunoendocrine system in neurodegenerative disorders: an important role for melatonin regulation. Front Physiol 2018; 9: 199.
[http://dx.doi.org/10.3389/fphys.2018.00199] [PMID: 29593561]
[6]
Anderson G. Gut dysbiosis dysregulates central and systemic homeostasis via decreased melatonin and suboptimal mitochondria functioning: pathoetiological and pathophysiological implications. Melatonin Res 2019; 2(2): 70-85.
[http://dx.doi.org/10.32794/mr11250022]
[7]
Anderson GM, Horne WC, Chatterjee D, Cohen DJ. The hyperserotonemia of autism. Ann N Y Acad Sci 1990; 600: 331-40.
[http://dx.doi.org/10.1111/j.1749-6632.1990.tb16893.x] [PMID: 2252319]
[8]
Pagan C, Goubran-Botros H, Delorme R, et al. Disruption of melatonin synthesis is associated with impaired 14-3-3 and miR-451 levels in patients with autism spectrum disorders. Sci Rep 2017; 7(1): 2096.
[http://dx.doi.org/10.1038/s41598-017-02152-x] [PMID: 28522826]
[9]
Seo M, Anderson G. Gut-amygdala interactions in autism spectrum disorder: developmental roles via regulating mitochondria, exosomes, immunity and microRNAs. Curr Pharm Des 2019; 25(41): 4344-56.
[10]
Reiter RJ, Tan DX, Rosales-Corral S, Galano A, Jou MJ, Acuna-Castroviejo D. Melatonin mitigates mitochondrial meltdown: interactions with SIRT3. Int J Mol Sci 2018; 19(8) E2439
[http://dx.doi.org/10.3390/ijms19082439] [PMID: 30126181]
[11]
Carmassi C, Palagini L, Caruso D, et al. Systematic review of sleep disturbances and circadian sleep desynchronization in autism spectrum disorder: toward an integrative model of a self-reinforcing loop. Front Psychiatry 2019; 10: 366.
[http://dx.doi.org/10.3389/fpsyt.2019.00366] [PMID: 31244687]
[12]
Pontes GN, Cardoso EC, Carneiro-Sampaio MM, Markus RP. Pineal melatonin and the innate immune response: the TNF-alpha increase after cesarean section suppresses nocturnal melatonin production. J Pineal Res 2007; 43(4): 365-71.
[http://dx.doi.org/10.1111/j.1600-079X.2007.00487.x] [PMID: 17910605]
[13]
Schroder CM, Malow BA, Maras A, et al. Pediatric prolonged-release melatonin for sleep in children with autism spectrum disorder: impact on child behavior and Caregiver’s quality of life. J Autism Dev Disord 2019; 49(8): 3218-30.
[http://dx.doi.org/10.1007/s10803-019-04046-5] [PMID: 31079275]
[14]
Anderson G, Maes M. Schizophrenia: linking prenatal infection to cytokines, the tryptophan catabolite (TRYCAT) pathway, NMDA receptor hypofunction, neurodevelopment and neuroprogression. Prog Neuropsychopharmacol Biol Psychiatry 2013; 42: 5-19.
[http://dx.doi.org/10.1016/j.pnpbp.2012.06.014] [PMID: 22800757]
[15]
Mor M, Nardone S, Sams DS, Elliott E. Hypomethylation of miR-142 promoter and upregulation of microRNAs that target the oxytocin receptor gene in the autism prefrontal cortex. Mol Autism 2015; 6: 46.
[http://dx.doi.org/10.1186/s13229-015-0040-1] [PMID: 26273428]
[16]
Qiu J, Zhang J, Zhou Y, et al. MicroRNA-7 inhibits melatonin synthesis by acting as a linking molecule between leptin and norepinephrine signaling pathways in pig pineal gland. J Pineal Res 2019; 66(3) e12552
[http://dx.doi.org/10.1111/jpi.12552] [PMID: 30618087]
[17]
Chakraborti B, Verma D, Karmakar A, et al. Genetic variants of MAOB affect serotonin level and specific behavioral attributes to increase autism spectrum disorder (ASD) susceptibility in males. Prog Neuropsychopharmacol Biol Psychiatry 2016; 71: 123-36.
[http://dx.doi.org/10.1016/j.pnpbp.2016.07.001] [PMID: 27381555]
[18]
Wassink TH, Hazlett HC, Davis LK, Reiss AL, Piven J. Testing for association of the monoamine oxidase A promoter polymorphism with brain structure volumes in both autism and the fragile X syndrome. J Neurodev Disord 2014; 6(1): 6.
[http://dx.doi.org/10.1186/1866-1955-6-6] [PMID: 24669826]
[19]
Gu F, Chauhan V, Chauhan A. Monoamine oxidase-A and B activities in the cerebellum and frontal cortex of children and young adults with autism. J Neurosci Res 2017; 95(10): 1965-72.
[http://dx.doi.org/10.1002/jnr.24027] [PMID: 28151561]
[20]
Chaudhuri AD, Yelamanchili SV, Fox HS. MicroRNA-142 reduces monoamine oxidase A expression and activity in neuronal cells by downregulating SIRT1. PLoS One 2013; 8(11) e79579
[http://dx.doi.org/10.1371/journal.pone.0079579] [PMID: 24244526]
[21]
Fowlie G, Cohen N, Ming X. The perturbance of microbiome and gut-brain axis in autism spectrum disorders. Int J Mol Sci 2018; 19(8) E2251
[http://dx.doi.org/10.3390/ijms19082251] [PMID: 30071612]
[22]
Rizzetto L, Fava F, Tuohy KM, Selmi C. Connecting the immune system, systemic chronic inflammation and the gut microbiome: the role of sex. J Autoimmun 2018; 92: 12-34.
[http://dx.doi.org/10.1016/j.jaut.2018.05.008] [PMID: 29861127]
[23]
Kopec AM, Fiorentino MR, Bilbo SD. Gut-immune-brain dysfunction in Autism: Importance of sex. Brain Res 2018; 1693: 214-7.
[http://dx.doi.org/10.1016/j.brainres.2018.01.009] [PMID: 29360468]
[24]
Gao W, Salzwedel AP, Carlson AL, et al. Gut microbiome and brain functional connectivity in infants-a preliminary study focusing on the amygdala. Psychopharmacology (Berl) 2019; 236(5): 1641-51.
[http://dx.doi.org/10.1007/s00213-018-5161-8] [PMID: 30604186]
[25]
VanRyzin JW, Marquardt AE, Argue KJ, et al. Microglial phagocytosis of newborn cells is induced by endocannabinoids and sculpts sex differences in juvenile rat social play. Neuron 2019; 102(2): 435-49.e6.
[http://dx.doi.org/10.1016/j.neuron.2019.02.006] [PMID: 30827729]
[26]
VanRyzin JW, Pickett LA, McCarthy MM. Microglia: driving critical periods and sexual differentiation of the brain. Dev Neurobiol 2018; 78(6): 580-92.
[http://dx.doi.org/10.1002/dneu.22569] [PMID: 29243403]
[27]
Liu S, Li E, Sun Z, et al. Altered gut microbiota and short chain fatty acids in Chinese children with autism spectrum disorder. Sci Rep 2019; 9(1): 287.
[http://dx.doi.org/10.1038/s41598-018-36430-z] [PMID: 30670726]
[28]
Coretti L, Paparo L, Riccio MP, et al. Gut microbiota features in young children with autism spectrum disorders. Front Microbiol 2018; 9: 3146.
[http://dx.doi.org/10.3389/fmicb.2018.03146] [PMID: 30619212]
[29]
Wang P, Zhang Y, Gong Y, et al. Sodium butyrate triggers a functional elongation of microglial process via Akt-small RhoGTPase activation and HDACs inhibition. Neurobiol Dis 2018; 111: 12-25.
[http://dx.doi.org/10.1016/j.nbd.2017.12.006] [PMID: 29248540]
[30]
Park J, Min JS, Kim B, et al. Mitochondrial ROS govern the LPS-induced pro-inflammatory response in microglia cells by regulating MAPK and NF-κB pathways. Neurosci Lett 2015; 584: 191-6.
[http://dx.doi.org/10.1016/j.neulet.2014.10.016] [PMID: 25459294]
[31]
Ohtake F, Fujii-Kuriyama Y, Kato S. AhR acts as an E3 ubiquitin ligase to modulate steroid receptor functions. Biochem Pharmacol 2009; 77(4): 474-84.
[http://dx.doi.org/10.1016/j.bcp.2008.08.034] [PMID: 18838062]
[32]
Zhang Y, Yu B, Yu J, et al. Butyrate promotes slow-twitch myofiber formation and mitochondrial biogenesis in finishing pigs via inducing specific microRNAs and PGC-1α expression1. J Anim Sci 2019; 97(8): 3180-92.
[http://dx.doi.org/10.1093/jas/skz187] [PMID: 31228349]
[33]
Chien YL, Chou MC, Chou WJ, et al. Prenatal and perinatal risk factors and the clinical implications on autism spectrum disorder. Autism 2019; 23(3): 783-91.
[http://dx.doi.org/10.1177/1362361318772813] [PMID: 29950101]
[34]
Pelch KE, Bolden AL, Kwiatkowski CF. Environmental chemicals and autism: a scoping review of the human and animal research. Environ Health Perspect 2019; 127(4): 46001.
[http://dx.doi.org/10.1289/EHP4386] [PMID: 30942615]
[35]
Dickerson AS, Rahbar MH, Bakian AV, et al. Autism spectrum disorder prevalence and associations with air concentrations of lead, mercury, and arsenic. Environ Monit Assess 2016; 188(7): 407.
[http://dx.doi.org/10.1007/s10661-016-5405-1] [PMID: 27301968]
[36]
Parada Venegas D, De la Fuente MK, Landskron G, et al. Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front Immunol 2019; 10: 277.
[http://dx.doi.org/10.3389/fimmu.2019.00277] [PMID: 30915065]
[37]
Kumar P, Thirkill TL, Ji J, Monte LH, Douglas GC. Differential effects of sodium butyrate and lithium chloride on rhesus monkey trophoblast differentiation. PLoS One 2015; 10(8) e0135089
[http://dx.doi.org/10.1371/journal.pone.0135089] [PMID: 26266541]
[38]
Knöfler M, Pollheimer J. Human placental trophoblast invasion and differentiation: a particular focus on Wnt signaling. Front Genet 2013; 4: 190.
[http://dx.doi.org/10.3389/fgene.2013.00190] [PMID: 24133501]
[39]
Zhou W, Li S. Decreased levels of serum retinoic acid in Chinese children with autism spectrum disorder. Psychiatry Res 2018; 269: 469-73.
[http://dx.doi.org/10.1016/j.psychres.2018.08.091] [PMID: 30195740]
[40]
Sweetman DU, O’Donnell SM, Lalor A, Grant T, Greaney H. Zinc and vitamin A deficiency in a cohort of children with autism spectrum disorder. Child Care Health Dev 2019; 45(3): 380-6.
[http://dx.doi.org/10.1111/cch.12655] [PMID: 30821006]
[41]
Guo M, Zhu J, Yang T, et al. Vitamin A and vitamin D deficiencies exacerbate symptoms in children with autism spectrum disorders. Nutr Neurosci 2018; 22(9): 1-11.
[http://dx.doi.org/10.1080/1028415X.2018.1558762] [PMID: 29338670]
[42]
García-Serna AM, Morales E. Neurodevelopmental effects of prenatal vitamin D in humans: systematic review and meta-analysis. Mol Psychiatry 2019 In Press
[http://dx.doi.org/10.1038/s41380-019-0357-9] [PMID: 30696940]
[43]
Alzghoul L, Al-Eitan LN, Aladawi M, Odeh M, Abu Hantash O. The association between serum vitamin d3 levels and autism among Jordanian boys. J Autism Dev Disord 2019 In Press
[http://dx.doi.org/10.1007/s10803-019-04017-w] [PMID: 30993503]
[44]
Lai X, Wu X, Hou N, et al. Vitamin A deficiency induces autistic-like behaviors in rats by regulating the RARβ-CD38-oxytocin axis in the hypothalamus. Mol Nutr Food Res 2018; 62(5)
[http://dx.doi.org/10.1002/mnfr.201700754] [PMID: 29266770]
[45]
Gamliel M, Anderson KL, Ebstein RP, Yirmiya N, Mankuta D. The oxytocin-CD38-vitamin A axis in pregnant women involves both hypothalamic and placental regulation. J Matern Fetal Neonatal Med 2016; 29(16): 2685-90.
[http://dx.doi.org/10.3109/14767058.2015.1101446] [PMID: 26513158]
[46]
Zhong J, Amina S, Liang M, et al. Cyclic ADP-ribose and heat regulate oxytocin release via CD38 and TRPM2 in the hypothalamus during social or psychological stress in mice. Front Neurosci 2016; 10: 304.
[http://dx.doi.org/10.3389/fnins.2016.00304] [PMID: 27499729]
[47]
Meguro Y, Miyano K, Hirayama S, et al. Neuropeptide oxytocin enhances μ opioid receptor signaling as a positive allosteric modulator. J Pharmacol Sci 2018; 137(1): 67-75.
[http://dx.doi.org/10.1016/j.jphs.2018.04.002] [PMID: 29716811]
[48]
Bartz JA, McInnes LA. CD38 regulates oxytocin secretion and complex social behavior. BioEssays 2007; 29(9): 837-41.
[http://dx.doi.org/10.1002/bies.20623] [PMID: 17688286]
[49]
Higashida H, Yokoyama S, Huang JJ, et al. Social memory, amnesia, and autism: brain oxytocin secretion is regulated by NAD+ metabolites and single nucleotide polymorphisms of CD38. Neurochem Int 2012; 61(6): 828-38.
[http://dx.doi.org/10.1016/j.neuint.2012.01.030] [PMID: 22366648]
[50]
Yamasue H, Domes G. Oxytocin and autism spectrum disorders. Curr Top Behav Neurosci 2018; 35: 449-65.
[http://dx.doi.org/10.1007/7854_2017_24] [PMID: 28766270]
[51]
Grahnert A, Grahnert A, Klein C, Schilling E, Wehrhahn J, Hauschildt S. Review: NAD +: a modulator of immune functions. Innate Immun 2011; 17(2): 212-33.
[http://dx.doi.org/10.1177/1753425910361989] [PMID: 20388721]
[52]
Mangerich A, Bürkle A. Pleiotropic cellular functions of PARP1 in longevity and aging: genome maintenance meets inflammation. Oxid Med Cell Longev 2012; 2012 321653
[http://dx.doi.org/10.1155/2012/321653] [PMID: 23050038]
[53]
Kanner L. Autistic disturbances of affective contact. Nerv Child 1943; 2: 217-50.
[54]
Hawkes N. People with autism die 16 years earlier on average, says charity. BMJ 2016; 352: i1615.
[http://dx.doi.org/10.1136/bmj.i1615] [PMID: 26992414]
[55]
Hirvikoski T, Mittendorfer-Rutz E, Boman M, Larsson H, Lichtenstein P, Bölte S. Premature mortality in autism spectrum disorder. Br J Psychiatry 2016; 208(3): 232-8.
[http://dx.doi.org/10.1192/bjp.bp.114.160192] [PMID: 26541693]
[56]
Fujisawa TX, Nishitani S, Iwanaga R, et al. Association of Aryl hydrocarbon receptor-related gene variants with the severity of autism spectrum disorders. Front Psychiatry 2016; 7: 184.
[http://dx.doi.org/10.3389/fpsyt.2016.00184] [PMID: 27899901]
[57]
Bunaciu RP, Jensen HA, MacDonald RJ, LaTocha DH, Varner JD, Yen A. 6-Formylindolo(3,2-b)carbazole (FICZ) modulates the signalsome responsible for RA-induced differentiation of HL-60 myeloblastic leukemia cells. PLoS One 2015; 10(8) e0135668
[http://dx.doi.org/10.1371/journal.pone.0135668] [PMID: 26287494]
[58]
Anderson G, Maes M. Interactions of tryptophan and its catabolites with melatonin and the alpha 7 nicotinic receptor in central nervous system and psychiatric disorders: role of the aryl hydrocarbon receptor and direct mitochondria regulation. Int J Tryptophan Res 2017; 10 1178646917691738
[http://dx.doi.org/10.1177/1178646917691738] [PMID: 28469467]
[59]
Nguyen RL, Medvedeva YV, Ayyagari TE, Schmunk G, Gargus JJ. Intracellular calcium dysregulation in autism spectrum disorder: an analysis of converging organelle signaling pathways. Biochim Biophys Acta Mol Cell Res 2018; 1865(11 Pt B): 1718-32.
[http://dx.doi.org/10.1016/j.bbamcr.2018.08.003] [PMID: 30992134]
[60]
Patel J, Lukkes JL, Shekhar A. Overview of genetic models of autism spectrum disorders Prog Brain Res 2018; 241: 1-36
[http://dx.doi.org/10.1016/bs.pbr.2018.10.002] [PMID: 30447752]
[61]
Janecka M, Sandin S, Reichenberg A. Autism risk and serotonin reuptake inhibitors-reply. JAMA Psychiatry 2019; 76(5): 548-9.
[http://dx.doi.org/10.1001/jamapsychiatry.2019.0081] [PMID: 30840039]
[62]
Marler S, Ferguson BJ, Lee EB, et al. Brief report: whole blood serotonin levels and gastrointestinal symptoms in autism spectrum disorder. J Autism Dev Disord 2016; 46(3): 1124-30.
[http://dx.doi.org/10.1007/s10803-015-2646-8] [PMID: 26527110]
[63]
Lim JS, Lim MY, Choi Y, Ko G. Modeling environmental risk factors of autism in mice induces IBD-related gut microbial dysbiosis and hyperserotonemia. Mol Brain 2017; 10(1): 14.
[http://dx.doi.org/10.1186/s13041-017-0292-0] [PMID: 28427452]
[64]
Anderson G. Neuronal-immune interactions in mediating stress effects in the etiology and course of schizophrenia: role of the amygdala in developmental co-ordination. Med Hypotheses 2011; 76(1): 54-60.
[http://dx.doi.org/10.1016/j.mehy.2010.08.029] [PMID: 20843610]
[65]
El-Ansary A, Bjørklund G, Tinkov AA, Skalny AV, Al Dera H. Relationship between selenium, lead, and mercury in red blood cells of Saudi autistic children. Metab Brain Dis 2017; 32(4): 1073-80.
[http://dx.doi.org/10.1007/s11011-017-9996-1] [PMID: 28326463]
[66]
Lim CK, Essa MM, de Paula Martins R, et al. Altered kynurenine pathway metabolism in autism: implication for immune-induced glutamatergic activity. Autism Res 2016; 9(6): 621-31.
[http://dx.doi.org/10.1002/aur.1565] [PMID: 26497015]
[67]
Bu X, Wu D, Lu X, et al. Role of SIRT1/PGC-1α in mitochondrial oxidative stress in autistic spectrum disorder. Neuropsychiatr Dis Treat 2017; 13: 1633-45.
[http://dx.doi.org/10.2147/NDT.S129081] [PMID: 28694700]
[68]
El-Ansary A, Bjørklund G, Khemakhem AM, Al-Ayadhi L, Chirumbolo S, Ben Bacha A. Metabolism-associated markers and childhood autism rating scales (CARS) as a measure of autism severity. J Mol Neurosci 2018; 65(3): 265-76.
[http://dx.doi.org/10.1007/s12031-018-1091-5] [PMID: 29931502]
[69]
Anderson G, Maes M. Redox regulation and the autistic spectrum: role of tryptophan catabolites, immuno-inflammation, autoimmunity and the amygdala. Curr Neuropharmacol 2014; 12(2): 148-67.
[http://dx.doi.org/10.2174/1570159X11666131120223757] [PMID: 24669209]
[70]
Ayhan F, Konopka G. Genomics of autism spectrum disorder: approach to therapy. F1000Res 2018; 7: F1000 Faculty Rev-627.
[http://dx.doi.org/10.12688/f1000research.13865.1]
[71]
Hannon E, Schendel D, Ladd-Acosta C, et al. Elevated polygenic burden for autism is associated with differential DNA methylation at birth. Genome Med 2018; 10(1): 19.
[http://dx.doi.org/10.1186/s13073-018-0527-4] [PMID: 29587883]
[72]
Bjorklund G, Saad K, Chirumbolo S, et al. Immune dysfunction and neuroinflammation in autism spectrum disorder. Acta Neurobiol Exp (Warsz) 2016; 76(4): 257-68.
[http://dx.doi.org/10.21307/ane-2017-025] [PMID: 28094817]
[73]
Al-Ayadhi LY, Mostafa GA. Elevated serum levels of macrophage-derived chemokine and thymus and activation-regulated chemokine in autistic children. J Neuroinflammation 2013; 10: 72.
[http://dx.doi.org/10.1186/1742-2094-10-72] [PMID: 23782855]
[74]
Saad K, Zahran AM, Elsayh KI, et al. Frequency of dendritic cells and their expression of costimulatory molecules in children with autism spectrum disorders. J Autism Dev Disord 2017; 47(9): 2671-8.
[http://dx.doi.org/10.1007/s10803-017-3190-5] [PMID: 28589497]
[75]
Furlano RI, Anthony A, Day R, et al. Colonic CD8 and gamma delta T-cell infiltration with epithelial damage in children with autism. J Pediatr 2001; 138(3): 366-72.
[http://dx.doi.org/10.1067/mpd.2001.111323] [PMID: 11241044]
[76]
Theoharides TC, Stewart JM, Panagiotidou S, Melamed I. Mast cells, brain inflammation and autism. Eur J Pharmacol 2016; 778: 96-102.
[http://dx.doi.org/10.1016/j.ejphar.2015.03.086] [PMID: 25941080]
[77]
Lee AS, Azmitia EC, Whitaker-Azmitia PM. Developmental microglial priming in postmortem autism spectrum disorder temporal cortex. Brain Behav Immun 2017; 62: 193-202.
[http://dx.doi.org/10.1016/j.bbi.2017.01.019] [PMID: 28159644]
[78]
Laurence JA, Fatemi SH. Glial fibrillary acidic protein is elevated in superior frontal, parietal and cerebellar cortices of autistic subjects. Cerebellum 2005; 4(3): 206-10.
[http://dx.doi.org/10.1080/14734220500208846] [PMID: 16147953]
[79]
Griffiths KK, Levy RJ. Evidence of mitochondrial dysfunction in autism: biochemical links, genetic-based associations, and non-energy-related mechanisms. Oxid Med Cell Longev 2017; 2017 4314025
[http://dx.doi.org/10.1155/2017/4314025] [PMID: 28630658]
[80]
Anderson G. Linking the biological underpinnings of depression: role of mitochondria interactions with melatonin, inflammation, sirtuins, tryptophan catabolites, DNA repair and oxidative and nitrosative stress, with consequences for classification and cognition. Prog Neuropsychopharmacol Biol Psychiatry 2018; 80(Pt C): 255-66.
[http://dx.doi.org/10.1016/j.pnpbp.2017.04.022] [PMID: 28433458]
[81]
Tang G, Gutierrez Rios P, Kuo SH, et al. Mitochondrial abnormalities in temporal lobe of autistic brain. Neurobiol Dis 2013; 54: 349-61.
[http://dx.doi.org/10.1016/j.nbd.2013.01.006] [PMID: 23333625]
[82]
Schwede M, Nagpal S, Gandal MJ, et al. Strong correlation of downregulated genes related to synaptic transmission and mitochondria in post-mortem autism cerebral cortex. J Neurodev Disord 2018; 10(1): 18.
[http://dx.doi.org/10.1186/s11689-018-9237-x] [PMID: 29859039]
[83]
St-Pierre J, Drori S, Uldry M, et al. Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell 2006; 127(2): 397-408.
[http://dx.doi.org/10.1016/j.cell.2006.09.024] [PMID: 17055439]
[84]
Kwon S, Seok S, Yau P, Li X, Kemper B, Kemper JK. Obesity and aging diminish sirtuin 1 (SIRT1)-mediated deacetylation of SIRT3, leading to hyperacetylation and decreased activity and stability of SIRT3. J Biol Chem 2017; 292(42): 17312-23.
[http://dx.doi.org/10.1074/jbc.M117.778720] [PMID: 28808064]
[85]
Bonomini F, Favero G, Rodella LF, Moghadasian MH, Rezzani R. Melatonin modulation of sirtuin-1 attenuates liver injury in a hypercholesterolemic mouse model. BioMed Res Int 2018; 2018 7968452
[http://dx.doi.org/10.1155/2018/7968452] [PMID: 29516009]
[86]
Song C, Zhao J, Fu B, et al. Melatonin-mediated upregulation of Sirt3 attenuates sodium fluoride-induced hepatotoxicity by activating the MT1-PI3K/AKT-PGC-1α signaling pathway. Free Radic Biol Med 2017; 112: 616-30.
[http://dx.doi.org/10.1016/j.freeradbiomed.2017.09.005] [PMID: 28912098]
[87]
Sun Q, Hu H, Wang W, Jin H, Feng G, Jia N. Taurine attenuates amyloid β 1-42-induced mitochondrial dysfunction by activating of SIRT1 in SK-N-SH cells. Biochem Biophys Res Commun 2014; 447(3): 485-9.
[http://dx.doi.org/10.1016/j.bbrc.2014.04.019] [PMID: 24735533]
[88]
Naviaux RK, Curtis B, Li K, et al. Low-dose suramin in autism spectrum disorder: a small, phase I/II, randomized clinical trial. Ann Clin Transl Neurol 2017; 4(7): 491-505.
[http://dx.doi.org/10.1002/acn3.424] [PMID: 28695149]
[89]
Naviaux RK. Antipurinergic therapy for autism-An in-depth review Mitochondrion 2017; pii: S1567-7249(17)30262.
[90]
Perruzza L, Gargari G, Proietti M, et al. T follicular helper cells promote a beneficial gut ecosystem for host metabolic homeostasis by sensing microbiota-derived extracellular ATP. Cell Rep 2017; 18(11): 2566-75.
[http://dx.doi.org/10.1016/j.celrep.2017.02.061] [PMID: 28297661]
[91]
Zhou J, He F, Yang F, et al. Increased stool immunoglobulin A level in children with autism spectrum disorders. Res Dev Disabil 2018; 82: 90-4.
[http://dx.doi.org/10.1016/j.ridd.2017.10.009] [PMID: 29102384]
[92]
Tan DX, Manchester LC, Liu X, Rosales-Corral SA, Acuna-Castroviejo D, Reiter RJ. Mitochondria and chloroplasts as the original sites of melatonin synthesis: a hypothesis related to melatonin’s primary function and evolution in eukaryotes. J Pineal Res 2013; 54(2): 127-38.
[http://dx.doi.org/10.1111/jpi.12026] [PMID: 23137057]
[93]
Wellman AS, Metukuri MR, Kazgan N, et al. Intestinal epithelial sirtuin 1 regulates intestinal inflammation during aging in mice by altering the intestinal microbiota. Gastroenterology 2017; 153(3): 772-86.
[http://dx.doi.org/10.1053/j.gastro.2017.05.022] [PMID: 28552621]
[94]
Wang A, Keita ÅV, Phan V, et al. Targeting mitochondria-derived reactive oxygen species to reduce epithelial barrier dysfunction and colitis. Am J Pathol 2014; 184(9): 2516-27.
[http://dx.doi.org/10.1016/j.ajpath.2014.05.019] [PMID: 25034594]
[95]
Tian Y, Nichols RG, Cai J, Patterson AD, Cantorna MT. Vitamin A deficiency in mice alters host and gut microbial metabolism leading to altered energy homeostasis. J Nutr Biochem 2018; 54: 28-34.
[http://dx.doi.org/10.1016/j.jnutbio.2017.10.011] [PMID: 29227833]
[96]
Huda MN, Ahmad SM, Kalanetra KM, et al. Neonatal vitamin A supplementation and vitamin A status are associated with gut microbiome composition in Bangladeshi infants in early infancy and at 2 years of age. J Nutr 2019; 149(6): 1075-88.
[http://dx.doi.org/10.1093/jn/nxz034] [PMID: 31006815]
[97]
Kojima M, Costantini TW, Eliceiri BP, Chan TW, Baird A, Coimbra R. Gut epithelial cell-derived exosomes trigger posttrauma immune dysfunction. J Trauma Acute Care Surg 2018; 84(2): 257-64.
[http://dx.doi.org/10.1097/TA.0000000000001748] [PMID: 29194317]
[98]
Bock KW. Aryl hydrocarbon receptor (AHR) functions in NAD+ metabolism, myelopoiesis and obesity. Biochem Pharmacol 2019; 163: 128-32.
[http://dx.doi.org/10.1016/j.bcp.2019.02.021] [PMID: 30779909]
[99]
Beischlag TV, Anderson G, Mazzoccoli G. Glioma: tryptophan catabolite and melatoninergic pathways link microRNA, 14-3- 3, chromosome 4q35, epigenetic processes and other glioma biochemical changes. Curr Pharm Des 2016; 22(8): 1033-48.
[http://dx.doi.org/10.2174/1381612822666151214104941] [PMID: 26654773]
[100]
Helmig S, Seelinger JU, Döhrel J, Schneider J. RNA expressions of AHR, ARNT and CYP1B1 are influenced by AHR Arg554Lys polymorphism. Mol Genet Metab 2011; 104(1-2): 180-4.
[http://dx.doi.org/10.1016/j.ymgme.2011.06.009] [PMID: 21742528]
[101]
Hwang HJ, Dornbos P, Steidemann M, Dunivin TK, Rizzo M, LaPres JJ. Mitochondrial-targeted aryl hydrocarbon receptor and the impact of 2,3,7,8-tetrachlorodibenzo-p-dioxin on cellular respiration and the mitochondrial proteome. Toxicol Appl Pharmacol 2016; 304: 121-32.
[http://dx.doi.org/10.1016/j.taap.2016.04.005] [PMID: 27105554]
[102]
Guo M, Zhu J, Yang T, et al. Vitamin A improves the symptoms of autism spectrum disorders and decreases 5-hydroxytryptamine (5-HT): a pilot study. Brain Res Bull 2018; 137: 35-40.
[http://dx.doi.org/10.1016/j.brainresbull.2017.11.001] [PMID: 29122693]
[103]
Wu LN, Wei XW, Fan Y, et al. Altered expression of 14-3-3ζ protein in spinal cords of rat fetuses with spina bifida aperta. PLoS One 2013; 8(8) e70457
[http://dx.doi.org/10.1371/journal.pone.0070457] [PMID: 23936434]
[104]
Walker SE, Spencer GE, Necakov A, Carlone RL. Identification and characterization of microRNAs during retinoic acid-induced regeneration of a molluscan central nervous system. Int J Mol Sci 2018; 19(9) E2741
[http://dx.doi.org/10.3390/ijms19092741] [PMID: 30217012]
[105]
Mu Q, Yu W, Zheng S, et al. RIP140/PGC-1α axis involved in vitamin A-induced neural differentiation by increasing mitochondrial function. Artif Cells Nanomed Biotechnol 2018; 46(sup1): 806-16.
[http://dx.doi.org/10.1080/21691401.2018.1436552]
[106]
Fu Z, Kato H, Kotera N, Sugahara K, Kubo T. Regulation of the expression of serotonin N-acetyltransferase gene in Japanese quail (Coturnix japonica): II. Effect of vitamin A deficiency. J Pineal Res 1999; 27(1): 34-41.
[http://dx.doi.org/10.1111/j.1600-079X.1999.tb00594.x] [PMID: 10451022]
[107]
Tao J, Yang M, Wu H, et al. Effects of AANAT overexpression on the inflammatory responses and autophagy activity in the cellular and transgenic animal levels. Autophagy 2018; 14(11): 1850-69.
[http://dx.doi.org/10.1080/15548627.2018.1490852] [PMID: 29985091]
[108]
de Medeiros PHQS, Pinto DV, de Almeida JZ, et al. Modulation of intestinal immune and barrier functions by vitamin A: implications for current understanding of malnutrition and enteric infections in children. Nutrients 2018; 10(9) E1128
[http://dx.doi.org/10.3390/nu10091128] [PMID: 30134532]
[109]
Liu J, Liu X, Xiong XQ, et al. Effect of vitamin A supplementation on gut microbiota in children with autism spectrum disorders - a pilot study. BMC Microbiol 2017; 17(1): 204.
[http://dx.doi.org/10.1186/s12866-017-1096-1] [PMID: 28938872]
[110]
Li Y, Wang L, Ai W, et al. Regulation of retinoic acid synthetic enzymes by WT1 and HDAC inhibitors in 293 cells. Int J Mol Med 2017; 40(3): 661-72.
[http://dx.doi.org/10.3892/ijmm.2017.3051] [PMID: 28677722]
[111]
Sgritta M, Dooling SW, Buffington SA, et al. Mechanisms underlying microbial-mediated changes in social behavior in mouse models of autism spectrum disorder. Neuron 2019; 101(2): 246-59.e6.
[http://dx.doi.org/10.1016/j.neuron.2018.11.018] [PMID: 30522820]
[112]
Sommansson A, Nylander O, Sjöblom M. Melatonin decreases duodenal epithelial paracellular permeability via a nicotinic receptor-dependent pathway in rats in vivo. J Pineal Res 2013; 54(3): 282-91.
[http://dx.doi.org/10.1111/jpi.12013] [PMID: 23009576]
[113]
Chiu HJ, Fischman DA, Hammerling U. Vitamin A depletion causes oxidative stress, mitochondrial dysfunction, and PARP-1-dependent energy deprivation. FASEB J 2008; 22(11): 3878-87.
[http://dx.doi.org/10.1096/fj.08-112375] [PMID: 18676402]
[114]
Dong D, Zielke HR, Yeh D, Yang P. Cellular stress and apoptosis contribute to the pathogenesis of autism spectrum disorder. Autism Res 2018; 11(7): 1076-90.
[http://dx.doi.org/10.1002/aur.1966] [PMID: 29761862]
[115]
Huebner H, Hartner A, Rascher W, et al. Expression and regulation of retinoic acid receptor responders in the human placenta. Reprod Sci 2018; 25(9): 1357-70.
[http://dx.doi.org/10.1177/1933719117746761] [PMID: 29246089]
[116]
Yang M, Tao J, Wu H, et al. Aanat knockdown and melatonin supplementation in embryo development: involvement of mitochondrial function and DNA methylation. Antioxid Redox Signal 2019; 30(18): 2050-65.
[http://dx.doi.org/10.1089/ars.2018.7555] [PMID: 30343588]
[117]
Willcox CR, Davey MS, Willcox BE. Development and selection of the human Vγ9Vδ2+ T-cell repertoire. Front Immunol 2018; 9: 1501.
[http://dx.doi.org/10.3389/fimmu.2018.01501] [PMID: 30013562]
[118]
Yin W, Tong S, Zhang Q, et al. Functional dichotomy of Vδ2 γδ T cells in chronic hepatitis C virus infections: role in cytotoxicity but not for IFN-γ production. Sci Rep 2016; 6: 26296.
[http://dx.doi.org/10.1038/srep26296] [PMID: 27192960]
[119]
Han A, Newell EW, Glanville J, et al. Dietary gluten triggers concomitant activation of CD4+ and CD8+ αβ T cells and γδ T cells in celiac disease. Proc Natl Acad Sci USA 2013; 110(32): 13073-8.
[http://dx.doi.org/10.1073/pnas.1311861110] [PMID: 23878218]
[120]
Yang Y, Tian J, Yang B. Targeting gut microbiome: A novel and potential therapy for autism. Life Sci 2018; 194: 111-9.
[http://dx.doi.org/10.1016/j.lfs.2017.12.027] [PMID: 29277311]
[121]
Anderson G, Maes M. How immune-inflammatory processes link CNS disorders and psychiatric conditions: classification and treatment implications. CNS Neurol Disord Drug Targets 2017; 16(3): 266-78.
[http://dx.doi.org/10.2174/1871527315666161122144659]
[122]
Chen L, Cencioni MT, Angelini DF, Borsellino G, Battistini L, Brosnan CF. Transcriptional profiling of gamma delta T cells identifies a role for vitamin D in the immunoregulation of the V gamma 9V delta 2 response to phosphate-containing ligands. J Immunol 2005; 174(10): 6144-52.
[http://dx.doi.org/10.4049/jimmunol.174.10.6144] [PMID: 15879110]
[123]
Ehrlich AK, Pennington JM, Bisson WH, Kolluri SK, Kerkvliet NI. TCDD, FICZ, and other high affinity AhR ligands dose-dependently determine the fate of CD4+ T cell differentiation. Toxicol Sci 2018; 161(2): 310-20.
[http://dx.doi.org/10.1093/toxsci/kfx215] [PMID: 29040756]
[124]
Wakx A, Nedder M, Tomkiewicz-Raulet C, et al. Expression, localization, and activity of the aryl hydrocarbon receptor in the human placenta. Int J Mol Sci 2018; 19(12) E3762
[http://dx.doi.org/10.3390/ijms19123762] [PMID: 30486367]
[125]
Kawai M, Chen J, Cheung CY, Chang TK. Transcript profiling of cytochrome P450 genes in HL-60 human leukemic cells: upregulation of CYP1B1 by all-trans-retinoic acid. Mol Cell Biochem 2003; 248(1-2): 57-65.
[http://dx.doi.org/10.1023/A:1024101430363] [PMID: 12870655]
[126]
Yu Z, Tian X, Peng Y, et al. Mitochondrial cytochrome P450 (CYP) 1B1 is responsible for melatonin-induced apoptosis in neural cancer cells. J Pineal Res 2018; 65(1) e12478
[http://dx.doi.org/10.1111/jpi.12478] [PMID: 29453779]
[127]
Chambers D, Wilson L, Maden M, Lumsden A. RALDH-independent generation of retinoic acid during vertebrate embryogenesis by CYP1B1. Development 2007; 134(7): 1369-83.
[http://dx.doi.org/10.1242/dev.02815] [PMID: 17329364]
[128]
Wang L, Li Z, Jin L, et al. Indoor air pollution and neural tube defects: effect modification by maternal genes. Epidemiology 2014; 25(5): 658-65.
[http://dx.doi.org/10.1097/EDE.0000000000000129] [PMID: 25051309]
[129]
Lanoix D, Beghdadi H, Lafond J, Vaillancourt C. Human placental trophoblasts synthesize melatonin and express its receptors. J Pineal Res 2008; 45(1): 50-60.
[http://dx.doi.org/10.1111/j.1600-079X.2008.00555.x] [PMID: 18312298]
[130]
Soliman A, Lacasse AA, Lanoix D, Sagrillo-Fagundes L, Boulard V, Vaillancourt C. Placental melatonin system is present throughout pregnancy and regulates villous trophoblast differentiation. J Pineal Res 2015; 59(1): 38-46.
[http://dx.doi.org/10.1111/jpi.12236] [PMID: 25833399]
[131]
Lanoix D, Ouellette R, Vaillancourt C. Expression of melatoninergic receptors in human placental choriocarcinoma cell lines. Hum Reprod 2006; 21(8): 1981-9.
[http://dx.doi.org/10.1093/humrep/del120] [PMID: 16632463]
[132]
Lanoix D, Guérin P, Vaillancourt C. Placental melatonin production and melatonin receptor expression are altered in preeclampsia: new insights into the role of this hormone in pregnancy. J Pineal Res 2012; 53(4): 417-25.
[http://dx.doi.org/10.1111/j.1600-079X.2012.01012.x] [PMID: 22686298]
[133]
Singh A, Mittal M. Neonatal microbiome - a brief review. J Matern Fetal Neonatal Med 2019; 5: 1-8.
[http://dx.doi.org/10.1080/14767058.2019.1583738] [PMID: 30835585]
[134]
Theis KR, Romero R, Winters AD, et al. Does the human placenta delivered at term have a microbiota? Results of cultivation, quantitative real-time PCR, 16S rRNA gene sequencing, and metagenomics. Am J Obstet Gynecol 2019; 220(3): 267.e1-267.e39.
[http://dx.doi.org/10.1016/j.ajog.2018.10.018] [PMID: 30832984]
[135]
Leiby JS, McCormick K, Sherrill-Mix S, et al. Lack of detection of a human placenta microbiome in samples from preterm and term deliveries. Microbiome 2018; 6(1): 196.
[http://dx.doi.org/10.1186/s40168-018-0575-4] [PMID: 30376898]
[136]
Zhou L, Xiao X. The role of gut microbiota in the effects of maternal obesity during pregnancy on offspring metabolism. Biosci Rep 2018; 38(2) BSR20171234
[http://dx.doi.org/10.1042/BSR20171234] [PMID: 29208770]
[137]
Fricke EM, Elgin TG, Gong H, et al. Lipopolysaccharide-induced maternal inflammation induces direct placental injury without alteration in placental blood flow and induces a secondary fetal intestinal injury that persists into adulthood. Am J Reprod Immunol 2018; 79(5) e12816
[http://dx.doi.org/10.1111/aji.12816] [PMID: 29369434]
[138]
Gomez-Arango LF, Barrett HL, McIntyre HD, Callaway LK, Morrison M, Nitert MD. Contributions of the maternal oral and gut microbiome to placental microbial colonization in overweight and obese pregnant women. Sci Rep 2017; 7(1): 2860.
[http://dx.doi.org/10.1038/s41598-017-03066-4] [PMID: 28588199]
[139]
Togher KL, Kenny LC, O’Keeffe GW. Class-specific histone deacetylase inhibitors promote 11-beta hydroxysteroid dehydrogenase type 2 expression in JEG-3 cells. Int J Cell Biol 2017; 2017 6169310
[http://dx.doi.org/10.1155/2017/6169310] [PMID: 28321257]
[140]
Bronson SL, Bale TL. The placenta as a mediator of stress effects on neurodevelopmental reprogramming. Neuropsychopharmacology 2016; 41(1): 207-18.
[http://dx.doi.org/10.1038/npp.2015.231] [PMID: 26250599]
[141]
Wyrwoll C, Keith M, Noble J, et al. Fetal brain 11β-hydroxysteroid dehydrogenase type 2 selectively determines programming of adult depressive-like behaviors and cognitive function, but not anxiety behaviors in male mice. Psychoneuroendocrinology 2015; 59: 59-70.
[http://dx.doi.org/10.1016/j.psyneuen.2015.05.003] [PMID: 26036451]
[142]
Anderson G, Seo M, Berk M, Carvalho AF, Maes M. Gut permeability and microbiota in Parkinson’s disease: role of depression, tryptophan catabolites, oxidative and nitrosative stress and melatonergic pathways. Curr Pharm Des 2016; 22(40): 6142-51.
[http://dx.doi.org/10.2174/1381612822666160906161513] [PMID: 27604608]
[143]
Jin CJ, Engstler AJ, Sellmann C, et al. Sodium butyrate protects mice from the development of the early signs of non-alcoholic fatty liver disease: role of melatonin and lipid peroxidation. Br J Nutr 2016; 1-12.
[http://dx.doi.org/10.1017/S0007114516004025] [PMID: 27876107]
[144]
Dalmasso G, Nguyen HT, Yan Y, Charrier-Hisamuddin L, Sitaraman SV, Merlin D. Butyrate transcriptionally enhances peptide transporter PepT1 expression and activity. PLoS One 2008; 3(6) e2476
[http://dx.doi.org/10.1371/journal.pone.0002476] [PMID: 18575574]
[145]
Liang R, Fei YJ, Prasad PD, et al. Human intestinal H+/peptide cotransporter. Cloning, functional expression, and chromosomal localization. J Biol Chem 1995; 270(12): 6456-63.
[http://dx.doi.org/10.1074/jbc.270.12.6456] [PMID: 7896779]
[146]
Huo X, Wang C, Yu Z, et al. Human transporters, PEPT1/2, facilitate melatonin transportation into mitochondria of cancer cells: an implication of the therapeutic potential. J Pineal Res 2017; 62(4)
[http://dx.doi.org/10.1111/jpi.12390] [PMID: 28099762]
[147]
Jin UH, Cheng Y, Park H, et al. Short chain fatty acids enhance aryl hydrocarbon (Ah) responsiveness in mouse colonocytes and Caco-2 human colon cancer cells. Sci Rep 2017; 7(1): 10163.
[http://dx.doi.org/10.1038/s41598-017-10824-x] [PMID: 28860561]
[148]
Ashton A, Stoney PN, Ransom J, McCaffery P. Rhythmic diurnal synthesis and signaling of retinoic acid in the rat pineal gland and its action to rapidly downregulate ERK phosphorylation. Mol Neurobiol 2018; 55(11): 8219-35.
[http://dx.doi.org/10.1007/s12035-018-0964-5] [PMID: 29520716]
[149]
Takihara Y, Matsuda Y, Irie K, Matsumoto K, Hara J. 14-3-3 protein family members have a regulatory role in retinoic acid-mediated induction of cytokeratins in F9 cells. Exp Cell Res 2000; 260(1): 96-104.
[http://dx.doi.org/10.1006/excr.2000.4991] [PMID: 11010814]
[150]
Zheng L, Shi L, Zhou Z, et al. Placental expression of AChE, α7nAChR and NF-κB in patients with preeclampsia. Ginekol Pol 2018; 89(5): 249-55.
[http://dx.doi.org/10.5603/GP.a2018.0043] [PMID: 30084476]
[151]
Hisle-Gorman E, Susi A, Stokes T, Gorman G, Erdie-Lalena C, Nylund CM. Prenatal, perinatal, and neonatal risk factors of autism spectrum disorder. Pediatr Res 2018; 84(2): 190-8.
[http://dx.doi.org/10.1038/pr.2018.23]
[152]
Markus RP, Silva CL, Franco DG, Barbosa EM Jr, Ferreira ZS. Is modulation of nicotinic acetylcholine receptors by melatonin relevant for therapy with cholinergic drugs? Pharmacol Ther 2010; 126(3): 251-62.
[http://dx.doi.org/10.1016/j.pharmthera.2010.02.009] [PMID: 20398699]
[153]
Deutsch SI, Burket JA, Urbano MR, Benson AD. The α7 nicotinic acetylcholine receptor: a mediator of pathogenesis and therapeutic target in autism spectrum disorders and down syndrome. Biochem Pharmacol 2015; 97(4): 363-77.
[http://dx.doi.org/10.1016/j.bcp.2015.06.005] [PMID: 26074265]
[154]
Zanetti SR, Ziblat A, Torres NI, Zwirner NW, Bouzat C. Expression and functional role of α7 nicotinic receptor in human cytokine-stimulated natural killer (NK) cells. J Biol Chem 2016; 291(32): 16541-52.
[http://dx.doi.org/10.1074/jbc.M115.710574] [PMID: 27284006]
[155]
Ohira H, Matsunaga M, Osumi T, et al. Vagal nerve activity as a moderator of brain-immune relationships. J Neuroimmunol 2013; 260(1-2): 28-36.
[http://dx.doi.org/10.1016/j.jneuroim.2013.04.011] [PMID: 23684123]
[156]
Wu WL, Adams CE, Stevens KE, Chow KH, Freedman R, Patterson PH. The interaction between maternal immune activation and alpha 7 nicotinic acetylcholine receptor in regulating behaviors in the offspring. Brain Behav Immun 2015; 46: 192-202.
[http://dx.doi.org/10.1016/j.bbi.2015.02.005] [PMID: 25683697]
[157]
Bishop-Fitzpatrick L, Kind AJH. A scoping review of health disparities in autism spectrum disorder. J Autism Dev Disord 2017; 47(11): 3380-91.
[http://dx.doi.org/10.1007/s10803-017-3251-9] [PMID: 28756549]
[158]
Balogh O, Bruckmaier R, Keller S, Reichler IM. Effect of maternal metabolism on fetal supply: glucose, non-esterified fatty acids and beta-hydroxybutyrate concentrations in canine maternal serum and fetal fluids at term pregnancy. Anim Reprod Sci 2018; 193: 209-16.
[http://dx.doi.org/10.1016/j.anireprosci.2018.04.072] [PMID: 29716779]
[159]
Vuillermin PJ, Macia L, Nanan R, Tang ML, Collier F, Brix S. The maternal microbiome during pregnancy and allergic disease in the offspring. Semin Immunopathol 2017; 39(6): 669-75.
[http://dx.doi.org/10.1007/s00281-017-0652-y] [PMID: 29038841]
[160]
Lowe WL Jr, Bain JR, Nodzenski M, et al. Maternal BMI and glycemia impact the fetal metabolome. Diabetes Care 2017; 40(7): 902-10.
[http://dx.doi.org/10.2337/dc16-2452] [PMID: 28637888]
[161]
Becker KG. Autism, immune dysfunction and Vitamin D. Acta Psychiatr Scand 2011; 124(1): 74.
[http://dx.doi.org/10.1111/j.1600-0447.2011.01688.x] [PMID: 21395563]
[162]
Omura Y, Lu D, Jones MK, et al. Early detection of autism (ASD) by a non-invasive quick measurement of markedly reduced acetylcholine & DHEA and increased β-amyloid (1-42), asbestos (chrysotile), titanium dioxide, Al, Hg & often coexisting virus infections (CMV, HPV 16 and 18), bacterial infections etc. in the Brain and Corresponding Safe Individualized Effective Treatment. Acupunct Electrother Res 2015; 40(3): 157-87.
[http://dx.doi.org/10.3727/036012915X14473562232941] [PMID: 26829843]
[163]
Tran TTT, Corsini S, Kellingray L, et al. APOE genotype influences the gut microbiome structure and function in humans and mice: relevance for Alzheimer’s disease pathophysiology. FASEB J 2019; 33(7): 8221-31.
[http://dx.doi.org/10.1096/fj.201900071R] [PMID: 30958695]
[164]
Lin Y, Fang ZF, Che LQ, et al. Use of sodium butyrate as an alternative to dietary fiber: effects on the embryonic development and anti-oxidative capacity of rats. PLoS One 2014; 9(5) e97838
[http://dx.doi.org/10.1371/journal.pone.0097838] [PMID: 24852604]
[165]
Croonenberghs J, Verkerk R, Scharpe S, Deboutte D, Maes M. Serotonergic disturbances in autistic disorder: L-5-hydroxytryptophan administration to autistic youngsters increases the blood concentrations of serotonin in patients but not in controls. Life Sci 2005; 76(19): 2171-83.
[http://dx.doi.org/10.1016/j.lfs.2004.06.032] [PMID: 15733932]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 25
ISSUE: 41
Year: 2019
Page: [4405 - 4420]
Pages: 16
DOI: 10.2174/1381612825666191102165459
Price: $65

Article Metrics

PDF: 19
HTML: 4