Improving Topical Skin Delivery of Monocrotaline Via Liposome Gel-based Nanosystems

Author(s): Jiandong Yu, Zhi Chen, Yan-zhi Yin, Chaoyuan Tang, Enying Hu, Shuang Zheng, Qi Liu, Yang Xiong*.

Journal Name: Current Drug Delivery

Volume 16 , Issue 10 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: In this study, a liposomal gel based on a pH-gradient method was used to increase the skin-layer retention of monocrotaline (MCT) for topical administration.

Methods: Using the Box-Behnken design, different formulations were designed to form liposome suspensions with optimal encapsulation efficiency (EE%) and stability factor (KE). In order to keep MCT in liposomes and accumulate in skin slowly and selectively, MCT liposome suspensions were engineered into gels.

Results: A pH-gradient method was used to prepare liposome suspensions. The optimal formulation of liposome suspensions (encapsulation efficiency: 83.10 ± 0.21%) was as follows: MCT 12 mg, soybean phosphatidyl choline (sbPC) 200 mg, cholesterol (CH) 41 mg, vitamin E (VE) 5 mg, and citric acid buffer solution (CBS) 4.0 10 mL (pH 7.0). The final formulation of liposomal gels consisted of 32 mL liposome suspensions, 4.76 mL deionized water, 0.40 g Carbopol-940, 1.6 g glycerol, 0.04 g methylparaben, and a suitable amount of triethanolamine for pH value adjustment. The results of in vitro drug release showed that MCT in liposomal gels could be released in 12 h constantly in physiological saline as a Ritger-Peppas model. Compared with plain MCT in gel form, liposomal MCT in gel had higher skin retention in vitro.

Conclusion: In this study, liposomal gels were formed for greater skin retention of MCT. It is potentially beneficial for reducing toxicities of MCT by topical administration with liposomal gel.

Keywords: Monocrotaline (MCT), liposomal gel, topical skin delivery, Box-Behnken design, skin permeation, skin retention.

[1]
Migden, M.R.; Chang, A.L.S.; Dirix, L.; Stratigos, A.J.; Lear, J.T. Emerging trends in the treatment of advanced basal cell carcinoma. Cancer Treat. Rev., 2018, 64, 1-10.
[http://dx.doi.org/10.1016/j.ctrv.2017.12.009] [PMID: 29407368]
[2]
Goodman, A.M.; Kato, S.; Cohen, P.R.; Boichard, A.; Frampton, G.; Miller, V.; Stephens, P.J.; Daniels, G.A.; Kurzrock, R. Genomic landscape of advanced basal cell carcinoma: Implications for precision treatment with targeted and immune therapies. OncoImmunology, 2017, 7(3)e1404217
[http://dx.doi.org/ 10.1080/2162402X.2017.1404217] [PMID: 29399405]
[3]
Kedilioglu, M.A.; Bos, P.G.; De Jong, K.; Noordzij, N.A.; Kibbelaar, R.E.; Lapid, O.; Moues, C.M. Whole specimen intraoperative frozen section analysis. Experience with 1082 basal cell carcinomas. Eur. J. Surg. Oncol., 2018, 44(1), 157-162.
[http://dx.doi.org/10.1016/j.ejso.2017.11.004] [PMID: 29198817]
[4]
Rishi, A.; Hui, Huang. S.; O’Sullivan, B.; Goldstein, D.P.; Lu, L.; Ringash, J.; Waldron, J.; Wells, W.; Sun, A.; Hope, A.; Chung, P.; Giuliani, M.; Spreafico, A.; Tong, L.; Xu, W.; Bayley, A. Outcome following radiotherapy for head and neck basal cell carcinoma with ‘aggressive’ features. Oral Oncol., 2017, 72, 157-164.
[http://dx.doi.org/10.1016/j.oraloncology.2017.07.018] [PMID: 28797452]
[5]
Lucena, S.R.; Salazar, N.; Gracia-Cazaña, T.; Zamarrón, A.; González, S.; Juarranz, Á.; Gilaberte, Y. Combined treatments with photodynamic therapy for non-melanoma skin cancer. Int. J. Mol. Sci., 2015, 16(10), 25912-25933.
[http://dx.doi.org/10.3390/ijms161025912] [PMID: 26516853]
[6]
Campian, M.E.; Hardziyenka, M.; Michel, M.C.; Tan, H.L. How valid are animal models to evaluate treatments for pulmonary hypertension? Naunyn Schmiedebergs Arch. Pharmacol., 2006, 373, 391-400.
[7]
Umar, S.; Steendijk, P.; Ypey, D.L.; Atsma, D.E.; van der Wall, E.E.; Schalij, M.J.; van der Laarse, A. Novel approaches to treat experimental pulmonary arterial hypertension: A review. J. Biomed. Biotechnol., 2010, 2010702836
[http://dx.doi.org/10.1155/2010/702836] [PMID: 20339474]
[8]
Huang, L.; Wu, K.M.; Xue, Z.; Cheng, J.C.; Xu, L.Z.; Xu, S.P.; Xi, Y.G. The isolation of antitumor active principle of Crotalaria sessiliflora and synthesis of its derivatives (author’s transl). Yao Xue Xue Bao, 1980, 15, 278-283.
[PMID: 6779502]
[9]
Zhang, W.; Huai, W.; Zhang, Y.; Shen, J.; Tang, X.; Xie, X.; Wang, K.; Fan, H. Ultra-performance liquid chromatography hyphenated with quadrupole-orbitrap mass spectrometry for simultaneous determination of necine-core-structure pyrrolizidine alkaloids in crotalaria sessiliflora L. without all Corresponding Standards. Phytochem. Analy.: PCA, 2017, 28, 365-373.
[10]
Yoo, H.S.; Lee, J.S.; Kim, C.Y.; Kim, J. Flavonoids of crotalaria sessiliflora. Arch. Pharm. Res., 2004, 27(5), 544-546.
[PMID: 15202561]
[11]
Patel, V.; Sharma, O.P.; Mehta, T. Nanocrystal: A novel approach to overcome skin barriers for improved topical drug delivery. Expert Opin. Drug Deliv., 2018, 15(4), 351-368.
[http://dx.doi.org/10.1080/17425247.2018.1444025] [PMID: 29465253]
[12]
Raminelli, A.C.P.; Romero, V.; Semreen, M.H.; Leonardi, G.R. Nanotechnological advances for cutaneous release of tretinoin: An approach to minimize side effects and improve therapeutic efficacy. Curr. Med. Chem., 2018, 25(31), 3703-3718.
[http://dx.doi.org/10.2174/0929867325666180313110917] [PMID: 29532749]
[13]
Namdar, R.; Nafisi, S. Nanodiamond applications in skin preparations. Drug Discov. Today, 2018, 23(5), 1152-1158.
[http://dx.doi.org/10.1016/j.drudis.2018.04.006] [PMID: 29660479]
[14]
Chinembiri, T.N.; Gerber, M.; Du Plessis, L.H.; Du Preez, J.L.; Hamman, J.H.; Du Plessis, J. Topical delivery of withania somniferacrude extracts in niosomes and solid lipid nanoparticles. Pharmacogn. Mag., 2017, 13(Suppl. 3), S663-S671.
[15]
T, Barradas. T.N.; Senna, J.P.; Cardoso, S.A.; de Holanda, E.; Silva, K.G.; Elias Mansur, C.R. Formulation characterization and in vitro drug release of hydrogel-thickened nanoemulsions for topical delivery of 8-methoxypsoralen. Mater. Sci. Eng. C Mater. Biol. Appl, 2018, 92, 245-253.
[http://dx.doi.org/10.1016/j.msec.2018.06.049] [PMID: 30184748]
[16]
Zhang, R.; Li, X.; Li, M.; Liu, X.; Shen, S.; Chen, J.G.; Hu, D.; Parikh, A.; Zhou, Y. One-step assembly of TiO2-liposomes based on interfacial sol-gel process within lipid bilayer. Langmuir, 2019, 35(21), 7018-7025.
[http://dx.doi.org/10.1021/acs.langmuir.9b00240] [PMID: 31066285]
[17]
Mayer, L.D.; Tardi, P.; Louie, A.C. CPX-351: A nanoscale liposomal co-formulation of daunorubicin and cytarabine with unique biodistribution and tumor cell uptake properties. Int. J. Nanomedicine, 2019, 14, 3819-3830.
[18]
Changsan, N.; Chan, H.K.; Separovic, F.; Srichana, T. Physicochemical characterization and stability of rifampicin liposome dry powder formulations for inhalation. J. Pharm. Sci., 2009, 98(2), 628-639.
[http://dx.doi.org/10.1002/jps.21441] [PMID: 18484099]
[19]
Ghanbarzadeh, S.; Khorrami, A.; Arami, S. Preparation of optimized Naproxen nano liposomes using response surface methodology. J. Pharm. Investig., 2014, 44, 33-39.
[20]
Almeida, K.B.; Ramos, A.S.; Nunes, J.B.B.; Silva, B.O.; Ferraz, E.R.A.; Fernandes, A.S.; Felzenszwalb, I.; Amaral, A.C.F.; Roullin, V.G.; Falcão, D.Q. PLGA nanoparticles optimized by Box-Behnken for efficient encapsulation of therapeutic Cymbopogon citratus essential oil. Colloids Surf. B Biointerfaces, 2019, 181, 935-942.
[http://dx.doi.org/10.1016/j.colsurfb.2019.06.010] [PMID: 31382343]
[21]
Maleki Dizaj, S.; Lotfipour, F.; Barzegar-Jalali, M.; Zarrintan, M.H.; Adibkia, K. Application of Box-Behnken design to prepare gentamicin-loaded calcium carbonate nanoparticles., 2016, 44(6), 1475-1481.
[22]
Patil, A.; Lakhani, P.; Taskar, P.; Wu, K.W.; Sweeney, C.; Avula, B.; Wang, Y.H.; Khan, I.A.; Majumdar, S. Formulation development, optimization, and in vitro-in vivo characterization of natamycin-loaded PEGylated nano-lipid carriers for ocular applications. J. Pharm. Sci., 2018, 107(8), 2160-2171.
[http://dx.doi.org/10.1016/j.xphs.2018.04.014] [PMID: 29698725]
[23]
Shah, V.M.; Nguyen, D.X.; Al Fatease, A.; Patel, P.; Cote, B.; Woo, Y.; Gheewala, R.; Pham, Y.; Huynh, M.G.; Gannett, C.; Rao, D.A.; Alani, A.W.G. Liposomal formulation of hypoxia activated prodrug for the treatment of ovarian cancer. J. Control. Release, 2018, 291, 169-183.
[http://dx.doi.org/10.1016/j.jconrel.2018.10.021] [PMID: 30339904]
[24]
Xiong, Y.; Zhang, D.J.; Xue, Q.F.; Huang S.W, Huang. [Study on determination method for components in monocrotalinum liposomes and their entrapment efficiency. Zhongguo Zhong Yao Za Zhi: China J. Chinese Mater. Med, 2013, 38(20), 3489-3492.
[PMID: 24490559]
[25]
Wang, W.X.; Feng, S.S.; Zheng, C.H. A comparison between conventional liposome and drug-cyclodextrin complex in liposome system. Int. J. Pharm., 2016, 513(1-2), 387-392.
[http://dx.doi.org/10.1016/j.ijpharm.2016.09.043] [PMID: 27640244]
[26]
Yang, S. Preparation, in vitro characterization and pharmacokinetic study of coenzyme Q10 long-circulating liposomes. Drug Res. (Stuttg.), 2018, 68(5), 270-279.
[http://dx.doi.org/10.1055/s-0043-121876] [PMID: 29190857]
[27]
Xiong, Y.; Zhao, Y.; Miao, L.; Lin, C.M.; Huang, L. Co-delivery of polymeric metformin and cisplatin by self-assembled core-membrane nanoparticles to treat non-small cell lung cancer. J. Control. Release, 2016, 244, 63-73.
[http://dx.doi.org/10.1016/j.jconrel.2016.11.005] [PMID: 27840166]
[28]
Bag, B.G.; Dash, S.S. Self-assembly of sodium and potassium betulinates into hydro- and organo-gels: entrapment and removal studies of fluorophores and synthesis of gel-gold nanoparticle hybrid materials. RSC Advances, 2016, 6, 17290-17296.
[http://dx.doi.org/10.1039/C5RA25167B]
[29]
Li, R.; Liu, Q.; Wu, H.; Wang, K.; Li, L.; Zhou, C.; Ao, N. Preparation and characterization of in-situ formable liposome/chitosan composite hydrogels. Mater. Lett., 2018, 220, 289-292.
[http://dx.doi.org/10.1016/j.matlet.2018.03.052]
[30]
Xiong, Y.; Zhang, D.J.; Xue, Q.F.; Huang, S.W. [Study on determination method for components in monocrotalinum liposomes and their entrapment efficiency Zhongguo Zhong Yao Za Zhi: China J. Chinese Mater. Med, 2013, 38, 3489-3492.
[31]
Gao, W.; Zhang, Y.; Zhang, Q.; Zhang, L. Zhang, Nanoparticle-hydrogel: A hybrid biomaterial system for localized drug delivery. Ann. Biomed. Eng., 2016, 44, 2049-2061.
[http://dx.doi.org/10.1007/s10439-016-1583-9] [PMID: 26951462]
[32]
Phan, V.H.; Thambi, T.; Duong, H.T.; Lee, D.S. Poly(amino carbonate urethane)-based biodegradable, temperature and pH-sensitive injectable hydrogels for sustained human growth hormone delivery. Sci. Rep., 2016, 6, 29978.
[http://dx.doi.org/10.1038/srep29978] [PMID: 27436576]
[33]
Liu, H.; Zhang, D.; Huang, S.; Xiong, Y.; Pharmacy, S.O. Quality assessment and preliminary study on stability of monocrotaline gel. J. Shanxi Coll. Trad. Chinese Medicine, 2014.
[34]
Bhatia, A.; Kumar, R.; Katare, O.P. Tamoxifen in topical liposomes: Development, characterization and in-vitro evaluation. J. Pharm. Pharm. Sci., 2004, 7, 252-259.
[PMID: 15367383]
[35]
Fan, C.M.; Chou, G.X.; Zhu, E.Y. [Chemical constituents from Crotalaria sessiliflora L. Yao Xue Xue Bao. Acta Pharm. Sin, 2016, 51(5), 775-779.
[PMID: 29877686]
[36]
Yuan, L.B.; Hua, C.Y.; Gao, S.; Yin, Y.L.; Dai, M.; Meng, H.Y.; Li, P.P.; Yang, Z.X.; Hu, Q.H. Astragalus polysaccharides attenuate monocrotaline-induced pulmonary arterial hypertension in rats. Am. J. Chin. Med., 2017, 45(4), 773-789.
[http://dx.doi.org/10.1142/S0192415X17500410] [PMID: 28521513]
[37]
Nogueira-Ferreira, R.; Vitorino, R.; Ferreira, R.; Henriques-Coelho, T. Exploring the monocrotaline animal model for the study of pulmonary arterial hypertension: A network approach. Pulm. Pharmacol. Ther., 2015, 35, 8-16.
[http://dx.doi.org/10.1016/j.pupt.2015.09.007] [PMID: 26403584]
[38]
Zidan, A.S.; Kamal, N.; Alayoubi, A.; Seggel, M.; Ibrahim, S.; Rahman, Z.; Cruz, C.N.; Ashraf, M. Effect of isopropyl myristate on transdermal permeation of testosterone from carbopol gel. J. Pharm. Sci., 2017, 106(7), 1805-1813.
[http://dx.doi.org/10.1016/j.xphs.2017.03.016] [PMID: 28341597]
[39]
Hu, X.; Yang, F.F.; Wei, X.L.; Yao, G.Y.; Liu, C.Y.; Zheng, Y.; Liao, Y.H. Curcumin acetate nanocrystals for sustained pulmonary delivery: Preparation, characterization and in vivo evaluation. J. Biomed. Nanotechnol., 2017, 13, 99-109.
[http://dx.doi.org/10.1166/jbn.2017.2326] [PMID: 29373003]
[40]
Schmid-Wendtner, M.H.; Korting, H.C. The pH of the skin surface and its impact on the barrier function. Skin Pharmacol. Physiol., 2006, 19(6), 296-302.
[http://dx.doi.org/10.1159/000094670] [PMID: 16864974]
[41]
Dragicevic, N.; Krajisnik, D.; Milic, J.; Fahr, A.; Maibach, H. Development of hydrophilic gels containing coenzyme Q10-loaded liposomes: Characterization, stability and rheology measurements. Drug Dev. Ind. Pharm., 2019, 45(1), 43-54.
[http://dx.doi.org/10.1080/03639045.2018.1515220] [PMID: 30132719]
[42]
Carradori, D.; Dos Santos, A.G.; Masquelier, J.; Paquot, A.; Saulnier, P.; Eyer, J.; Préat, V.; Muccioli, G.G.; Mingeot-Leclercq, M.P.; des Rieux, A. The origin of neural stem cells impacts their interactions with targeted-lipid nanocapsules: Potential role of plasma membrane lipid composition and fluidity. J. Control. Release, 2018, 292, 248-255.
[http://dx.doi.org/10.1016/j.jconrel.2018.11.005] [PMID: 30408552]
[43]
Barreiro-Iglesias, R.; Alvarez-Lorenzo, C.; Concheiro, A. Concheiro, Incorporation of small quantities of surfactants as a way to improve the rheological and diffusional behavior of carbopol gels. J. Control. Release, 2001, 77, 59-75.
[http://dx.doi.org/10.1016/s0168-3659(01)00458-8] [PMID: 11689260]
[44]
Kim, S.; Nishimoto, S.K.; Bumgardner, J.D.; Haggard, W.O.; Gaber, M.W.; Yang, Y. A chitosan/beta-glycerophosphate thermo-sensitive gel for the delivery of ellagic acid for the treatment of brain cancer. Biomaterials, 2010, 31(14), 4157-4166.
[http://dx.doi.org/10.1016/j.biomaterials.2010.01.139] [PMID: 20185170]
[45]
Islam, M.T.; Rodríguez-Hornedo, N.; Ciotti, S.; Ackermann, C. Rheological characterization of topical carbomer gels neutralized to different pH. Pharm. Res., 2004, 21(7), 1192-1199.
[http://dx.doi.org/10.1023/b:pham.0000033006.11619.07] [PMID: 15290859]
[46]
Liu, W.; Teng, L.; Yu, K.; Sun, X.; Fan, C.; Long, C.; Liu, N.; Li, S.; Wu, B.; Xu, Q.; Sun, F.; Li, Y. Design of hydrogels of 5-hydroxymethyl tolterodine and their studies on pharmacokinetics, pharmacodynamics and transdermal mechanism. Eur. J. Pharm. Sci., 2017, 96, 530-541.
[http://dx.doi.org/10.1016/j.ejps.2016.10.024] [PMID: 27789373]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 10
Year: 2019
Page: [940 - 950]
Pages: 11
DOI: 10.2174/1567201816666191029125300
Price: $65

Article Metrics

PDF: 19

Special-new-year-discount