A Concise Account on Eco-friendly Synthetic Strategies for Pyrazole Heterocycles

Author(s): Pargat Singh, Mahendra Nath*.

Journal Name: Current Green Chemistry

Volume 6 , Issue 3 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Five membered nitrogen heterocycles are historically known to exhibit diverse therapeutic properties. In particular, the pyrazole analogues have shown a wide range of pharmacological profiles and a number of drugs containing this scaffold approved for the treatment of various ailments and disorders. Hence, a lot of efforts have been made to develop efficient synthetic strategies for the preparation of a variety of pyrazoles in the past several decades. However, this review describes the environmentally benign protocols for the synthesis of substituted and fused pyrazole molecules.

Keywords: Aromaticity, biological activity, eco-friendly methods, ionic liquids, pyrazoles, pyrano[2, 3-c]pyrazoles.

[1]
Kumar, V.; Kaur, K.; Gupta, G.K.; Sharma, A.K. Pyrazole containing natural products: Synthetic preview and biological significance. Eur. J. Med. Chem., 2013, 69, 735-753.
[http://dx.doi.org/10.1016/j.ejmech.2013.08.053] [PMID: 24099993]
[2]
Ragavan, R.V.; Vijayakumar, V.; Kumari, N.S. Synthesis and antimicrobial activities of novel 1,5-diaryl pyrazoles. Eur. J. Med. Chem., 2010, 45(3), 1173-1180.
[http://dx.doi.org/10.1016/j.ejmech.2009.12.042] [PMID: 20053480]
[3]
Keter, F.K.; Darkwa, J. Perspective: The potential of pyrazole-based compounds in medicine. Biometals, 2012, 25(1), 9-21.
[http://dx.doi.org/10.1007/s10534-011-9496-4] [PMID: 22002344]
[4]
Sánchez-Moreno, M.; Gómez-Contreras, F.; Navarro, P.; Marín, C.; Ramírez-Macías, I.; Olmo, F.; Sanz, A.M.; Campayo, L.; Cano, C.; Yunta, M.J. In vitro leishmanicidal activity of imidazole- or pyrazole-based benzo[g]phthalazine derivatives against Leishmania infantum and Leishmania braziliensis species. J. Antimicrob. Chemother., 2012, 67(2), 387-397.
[http://dx.doi.org/10.1093/jac/dkr480] [PMID: 22127582]
[5]
Jorda, R.; Sacerdoti-Sierra, N.; Voller, J.; Havlíček, L.; Kráčalíková, K.; Nowicki, M.W.; Nasereddin, A.; Kryštof, V.; Strnad, M.; Walkinshaw, M.D.; Jaffe, C.L. Anti-leishmanial activity of disubstituted purines and related pyrazolo[4,3-d]pyrimidines. Bioorg. Med. Chem. Lett., 2011, 21(14), 4233-4237.
[http://dx.doi.org/10.1016/j.bmcl.2011.05.076] [PMID: 21683592]
[6]
Fustero, S.; Román, R.; Sanz-Cervera, J.F.; Simón-Fuentes, A.; Bueno, J.; Villanova, S. Synthesis of new fluorinated Tebufenpyrad analogs with acaricidal activity through regioselective pyrazole formation. J. Org. Chem., 2008, 73(21), 8545-8552.
[http://dx.doi.org/10.1021/jo801729p] [PMID: 18855479]
[7]
Sharon, A.; Pratap, R.; Tiwari, P.; Srivastava, A.; Maulik, P.R.; Ram, V.J. Synthesis and in vivo antihyperglycemic activity of 5-(1H-pyrazol-3-yl)methyl-1H-tetrazoles. Bioorg. Med. Chem. Lett., 2005, 15(8), 2115-2117.
[http://dx.doi.org/10.1016/j.bmcl.2005.02.060] [PMID: 15808480]
[8]
Lin, R.; Chiu, G.; Yu, Y.; Connolly, P.J.; Li, S.; Lu, Y.; Adams, M.; Fuentes-Pesquera, A.R.; Emanuel, S.L.; Greenberger, L.M. Design, synthesis, and evaluation of 3,4-disubstituted pyrazole analogues as anti-tumor CDK inhibitors. Bioorg. Med. Chem. Lett., 2007, 17(16), 4557-4561.
[http://dx.doi.org/10.1016/j.bmcl.2007.05.092] [PMID: 17574416]
[9]
Chen, H.; Li, Z.; Han, Y. Synthesis and fungicidal activity against Rhizoctonia solani of 2-alkyl (Alkylthio)-5-pyrazolyl-1,3,4-oxadiazoles (Thiadiazoles). J. Agric. Food Chem., 2000, 48(11), 5312-5315.
[http://dx.doi.org/10.1021/jf991065s] [PMID: 11087478]
[10]
Vicentini, C.B.; Romagnoli, C.; Andreotti, E.; Mares, D. Synthetic pyrazole derivatives as growth inhibitors of some phytopathogenic fungi. J. Agric. Food Chem., 2007, 55(25), 10331-10338.
[http://dx.doi.org/10.1021/jf072077d] [PMID: 18001038]
[11]
Storer, R.; Ashton, C.J.; Baxter, A.D.; Hann, M.M.; Marr, C.L.P.; Mason, A.M.; Mo, C.L.; Myers, P.L.; Noble, S.A.; Penn, C.R.; Weir, N.G.; Woods, J.M.; Coe, P.L. The synthesis and antiviral activity of 4-fluoro-1-beta-D-ribofuranosyl-1H-pyrazole-3-carboxa- mide. Nucleosides Nucleotides, 1999, 18(2), 203-216.
[http://dx.doi.org/10.1080/15257779908043068] [PMID: 10067273]
[12]
Mert, S.; Kasımoğulları, R.; İça, T.; Çolak, F.; Altun, A.; Ok, S. Synthesis, structure-activity relationships, and in vitro antibacterial and antifungal activity evaluations of novel pyrazole carboxylic and dicarboxylic acid derivatives. Eur. J. Med. Chem., 2014, 78, 86-96.
[http://dx.doi.org/10.1016/j.ejmech.2014.03.033] [PMID: 24681068]
[13]
Karrouchi, K.; Radi, S.; Ramli, Y.; Taoufik, J.; Mabkhot, Y.N.; Al-Aizari, F.A.; Ansar, M. Synthesis and pharmacological activities of pyrazole derivatives: A review. Molecules, 2018, 23(1), 134-220.
[http://dx.doi.org/10.3390/molecules23010134] [PMID: 29329257]
[14]
Wen, J.; Fu, Y.; Zhang, R-Y.; Chen, S-Y.; Yu, X-Q. A simple and efficient synthesis of pyrazoles in water. Tetrahedron, 2011, 67, 9618-9621.
[http://dx.doi.org/10.1016/j.tet.2011.09.074]
[15]
Girish, Y.R.; Kumar, K.S.S.; Manasa, H.S.; Shashikanth, S. ZnO: An ecofriendly, green nano-catalyst for the synthesis of pyrazole derivatives under aqueous media. J. Chin. Chem. Soc. (Taipei), 2014, 61, 1175-1179.
[http://dx.doi.org/10.1002/jccs.201400170]
[16]
Zhang, X.; Kang, J.; Niu, P.; Wu, J.; Yu, W.; Chang, J. I2-mediated oxidative C-N bond formation for metal-free one-pot synthesis of di-, tri-, and tetrasubstituted pyrazoles from α,β-unsaturated aldehydes/ketones and hydrazines. J. Org. Chem., 2014, 79(21), 10170-10178.
[http://dx.doi.org/10.1021/jo501844x] [PMID: 25279429]
[17]
Rosa, F.A.; Machado, P.; Vargas, P.S.; Bonacorso, H.G.; Zanatta, N.; Martins, M.A.P. Straightforward and regiospecific synthesis of pyrazole-5-carboxylates from unsymmetrical enaminodiketones. Synlett, 2008, 1673-1678.
[18]
Markovic, V.; Joksovic, M.D. “On water” synthesis of N-unsubstituted pyrazoles: Semicarbazide hydrochloride as an alternative to hydrazine for preparation of pyrazole-3-corboxylate derivatives and 3,5-disbstituted pyrazoles. Green Chem., 2015, 17, 842-847.
[http://dx.doi.org/10.1039/C4GC02028F]
[19]
Toche, R.B.; Patil, V.M.; Chaudhari, S.A.; Chavan, S.M.; Sabnis, R.W. Green synthesis of pyrazole and oxazole derivatives. J. Heterocycl. Chem., 2019, 56, 38-43.
[http://dx.doi.org/10.1002/jhet.3360]
[20]
Beyzaei, H.; Motraghi, Z.; Aryan, R.; Zahedi, M.M.; Samzadeh-Kermani, A. Green one-pot synthesis of novel polysubstituted pyrazole derivatives as potential antimicrobial agents. Acta Chim. Slov., 2017, 64(4), 911-918.
[http://dx.doi.org/10.17344/acsi.2017.3609] [PMID: 29318288]
[21]
Motamedi, A.; Sattari, E.; Mirzaei, P.; Armaghan, M.; Bazgir, A. An efficient and green synthesis of phthalide-fused pyrazole and pyrimidine derivatives. Tetrahedron Lett., 2014, 55, 2366-2368.
[http://dx.doi.org/10.1016/j.tetlet.2014.02.101]
[22]
Mandour, A.H.; El-Sawy, E.R.; Ebaid, M.S.; Hassan, S.M. Synthesis and potential biological activity of some novel 3-[(N-substituted indol-3-yl)methyleneamino]-6-amino-4-aryl-pyrano(2,3-c)pyrazole -5-carbonitriles and 3,6-diamino-4-(N-substituted indol-3-yl)pyrano (2,3-c)pyrazole-5-carbonitriles. Acta Pharm., 2012, 62(1), 15-30.
[http://dx.doi.org/10.2478/v10007-012-0007-0] [PMID: 22472446]
[23]
Wang, J.L.; Liu, D.; Zhang, Z.J.; Shan, S.; Han, X.; Srinivasula, S.M.; Croce, C.M.; Alnemri, E.S.; Huang, Z. Structure-based discovery of an organic compound that binds Bcl-2 protein and induces apoptosis of tumor cells. Proc. Natl. Acad. Sci. USA, 2000, 97(13), 7124-7129.
[http://dx.doi.org/10.1073/pnas.97.13.7124] [PMID: 10860979]
[24]
Mandha, S.R.; Siliveri, S.; Alla, M.; Bommena, V.R.; Bommineni, M.R.; Balasubramanian, S. Eco-friendly synthesis and biological evaluation of substituted pyrano[2,3-c]pyrazoles. Bioorg. Med. Chem. Lett., 2012, 22(16), 5272-5278.
[http://dx.doi.org/10.1016/j.bmcl.2012.06.055] [PMID: 22818081]
[25]
Zaki, M.E.A.; Soliman, H.A.; Hiekal, O.A.; Rashad, A.E. Pyrazolopyranopyrimidines as a class of anti-inflammatory agents. Z. Natforsch. C J. Biosci., 2006, 61(1-2), 1-5.
[http://dx.doi.org/10.1515/znc-2006-1-201] [PMID: 16610208]
[26]
Ramiz, M.M.M.; Abdel Hafiz, I.S.; Abdel Reheim, M.A.M.; Gaber, H.M. Pyrazolones as building blocks in heterocyclic synthesis: Synthesis of new pyrazolopyran, pyrazolopyridazine and pyrazole derivatives of expected antifungicidal activity. J. Chin. Chem. Soc. (Taipei), 2012, 59, 72-80.
[http://dx.doi.org/10.1002/jccs.201100194]
[27]
Kiyani, H. samimi, H. A.; Ghorbani, F.; Esmaieli, S. One-pot, four-component synthesis of pyrano[2,3-c]pyrazoles catalyzed by sodium benzoate in aqueous medium. Current. Chem. Lett., 2013, 2, 197-206.
[28]
Bhaskaruni, S.V.H.S.; Maddila, S.; Van Zyl, W.E.; Jonnalagadda, S.B. An efficient and green approach for the synthesis of 2,4-dihydropyrano[2,3-c]pyrazole-3-carboxylates using Bi2O3/ZrO2 as a reusable catalyst. RSC Advances, 2018, 8, 16336-16343.
[http://dx.doi.org/10.1039/C8RA01994K]
[29]
Vulga, D.; Legros, J.; Crousse, B.; Bonnet-Delpon, D. Synthesis of pyrazoles through catalyst-free cycloaddition of diazo compounds to alkynes. Green Chem., 2009, 11, 156-159.
[http://dx.doi.org/10.1039/B812242C]
[30]
Soltanzadeh, Z.; Imanzadeh, G.; Noroozi-Pesyan, N.; Sahin, E. Green synthesis of pyrazole systems under solvent-free conditions. Green Chem. Lett. Rev., 2017, 10, 148-153.
[http://dx.doi.org/10.1080/17518253.2017.1330428]
[31]
Chen, X.; She, J.; Shang, Z.C.; Wu, J.; Zhang, P. Room-temperature synthesis of pyrazoles, diazepines, β-enaminones, and β-enamino esters using silica-supported sulfuric acid as a reusable catalyst under solvent-free conditions. Synth. Commun., 2009, 39, 947-957.
[http://dx.doi.org/10.1080/00397910802441551]
[32]
Kangani, M.; Hazeri, N.; Mghsoodlou, M.T.; Habibi-Khorasani, S.M.; Salahi, S. Green synthesis of 1,4-dihydropyrano[2,3-c]pyrazole derivatives using maltose as biodegradable catalyst. Res. Chem. Intermed., 2015, 41, 2513-2519.
[http://dx.doi.org/10.1007/s11164-013-1365-z]
[33]
Guo, S-B.; Wang, S-X.; Li, J-T. D,L-proline catalyzed one-pot synthesis of pyrans and pyrano[2,3-c]pyrazole derivatives by a grinding method under solvent-free conditions. Synth. Commun., 2007, 37, 2111-2120.
[http://dx.doi.org/10.1080/00397910701396906]
[34]
Martins, M.A.P.; Frizzo, C.P.; Moreira, D.N.; Buriol, L.; Machado, P. Solvent-free heterocyclic synthesis. Chem. Rev., 2009, 109(9), 4140-4182.
[http://dx.doi.org/10.1021/cr9001098] [PMID: 19737022]
[35]
Bougrin, K.; Loupy, A.; Soufiaoui, M. Microwave-assisted solvent-free heterocyclic synthesis. J. Photochem. Photobiol. Chem., 2005, 6, 139-167.
[http://dx.doi.org/10.1016/j.jphotochemrev.2005.07.001]
[36]
Corradi, A.; Leonelli, C.; Rizzuti, A.; Rosa, R.; Veronesi, P.; Grandi, R.; Baldassari, S.; Villa, C. New “green” approaches to the synthesis of pyrazole derivatives. Molecules, 2007, 12(7), 1482-1495.
[http://dx.doi.org/10.3390/12071482] [PMID: 17909503]
[37]
Mishra, A.D. Microwave-induced synthesis of some novel fungicidal pyrazole derivatives. J. Nepal Chem. Soc, 2012, 30, 138-142.
[http://dx.doi.org/10.3126/jncs.v30i0.9385]
[38]
Polshettiwar, V.; Baruwati, B.; Varma, R.S. Magnetic nanoparticle-supported glutathione: A conceptually sustainable organocatalyst. Chem. Commun. (Camb.), 2009, (14), 1837-1839.
[http://dx.doi.org/10.1039/b900784a] [PMID: 19319418]
[39]
Polshettiwar, V.; Varma, R.S. Nano-organocatalyst: magnetically retrievable ferrite-anchored glutathione for microwave-assisted Paal-Knorr reaction, aza-Michael addition, and pyrazole synthesis. Tetrahedron, 2010, 66, 1091-1097.
[http://dx.doi.org/10.1016/j.tet.2009.11.015]
[40]
Buriol, L.; Frizzo, C.P.; Marzari, M.R.B.; Moreira, D.N.; Prola, L.D.T.; Zanatta, N.; Bonacorso, H.G.; Martins, M.A.P. Pyrazole synthesis under microwave irradiation and solvent-free conditions. J. Braz. Chem. Soc., 2010, 21, 1037-1044.
[http://dx.doi.org/10.1590/S0103-50532010000600012]
[41]
Rupnar, B.D.; Pagore, V.P.; Tekale, S.U.; Shisodia, S.U.; Pawar, R.P. L-tyrosine catalyzed mild and efficient synthesis of dihydropyrano[2,3-c]pyrazole under microwave irradiation. Der Chemica Sinica, 2017, 8, 229-234.
[42]
Cole, A.C.; Jensen, J.L.; Ntai, I.; Tran, K.L.T.; Weaver, K.J.; Forbes, D.C.; Davis, J.H. Jr Novel Brønsted acidic ionic liquids and their use as dual solvent-catalysts. J. Am. Chem. Soc., 2002, 124(21), 5962-5963.
[http://dx.doi.org/10.1021/ja026290w] [PMID: 12022828]
[43]
Zhu, H.P.; Yang, F.; Tang, J.; He, M-Y. Brønsted acidic ionic liquid 1-methylimidazolium tetrafluoroborate: a green catalyst and recyclable medium for esterification. Green Chem., 2003, 5, 38-39.
[http://dx.doi.org/10.1039/b209248b]
[44]
Zhao, G.; Jiang, T.; Gao, H.; Han, B.; Huang, J.; Sun, D. Mannich reaction using acidic ionic liquids as catalysts and solvents. Green Chem., 2004, 6, 75-77.
[http://dx.doi.org/10.1039/b309700p]
[45]
Srivastava, M.; Rai, P.; Singh, J.; Singh, J. An environmentally friendlier approach-ionic liquid catalysed, water promoted and grinding induced synthesis of highly functionalised pyrazole derivatives. RSC Advances, 2013, 3, 16994-16998.
[http://dx.doi.org/10.1039/c3ra42493f]
[46]
Safaei, S.; Baltork, I.M.; Khosropour, A.R.; Moghadam, M.; Tangestaninejad, S.; Mirkhani, V. Copper(II) ionic liquid catalyzed cyclization-aromatization of hydrazones with dimethyl acetylenedicarboxylate: A green synthesis of fully substituted pyrazoles. New J. Chem., 2013, 37, 2037-2042.
[http://dx.doi.org/10.1039/c3nj40756j]
[47]
Ebrahimi, J.; Mohammadi, A.; Pakjoo, V.; Bahramzade, E.; Habibi, A. Highly efficient solvent-free synthesis of pyranopyrazoles by a Bronsted-acidic ionic liquid as a green and reusable catalyst. J. Chem. Sci., 2012, 124, 1013-1017.
[http://dx.doi.org/10.1007/s12039-012-0310-9]
[48]
Nimbalkar, U.D.; Seijas, J.A.; Vazquez-Tato, M.P.; Damale, M.G.; Sangshetti, J.N.; Nikalje, A.P.G. Ionic liquid-catalyzed green protocol for multi-component synthesis of dihydropyrano[2,3-c]pyrazoles as potential anticancer scaffolds. Molecules, 2017, 22(10), 1628.
[http://dx.doi.org/10.3390/molecules22101628] [PMID: 28956863]
[49]
Khurana, J.M.; Chaudhary, A. Efficient and green synthesis of 4H-pyrans and 4H-pyrano[2,3-c]pyrazoles catalyzed by task-specific ionic liquid [bmim]OH under solvent-free conditions. Green Chem. Lett. Rev., 2012, 5, 633-638.
[http://dx.doi.org/10.1080/17518253.2012.691183]
[50]
Ding, Y.; Zhang, T.; Chen, Q-Y.; Zhu, C. Visible-light photocatalytic aerobic annulation for the green synthesis of pyrazoles. Org. Lett., 2016, 18(17), 4206-4209.
[http://dx.doi.org/10.1021/acs.orglett.6b01867] [PMID: 27529570]
[51]
Fan, X-W.; Lei, T.; Zhou, C.; Meng, Q-Y.; Chen, B.; Tung, C-H.; Wu, L-Z. Radical addition of hydrazones by α-bromoketones to prepare 1,3,5-trisubstituted pyrazoles via visible light catalysis. J. Org. Chem., 2016, 81(16), 7127-7133.
[http://dx.doi.org/10.1021/acs.joc.6b00992] [PMID: 27362866]
[52]
Paveglio, G.C.; Longhi, K.; Moreira, D.N.; Munchen, T.S.; Tier, A.Z.; Gindri, I.M.; Bender, C.R.; Frizzo, C.P.; Zanatta, N.; Bonacorso, H.G.; Martins, M.A.P. How mechanical and chemical features affect the green synthesis of 1H-pyrazoles in a ball mill. ACS Sustain. Chem.& Eng., 2014, 2, 1895-1901.
[http://dx.doi.org/10.1021/sc5002353]
[53]
Zhang, Z.; Tan, Y-J.; Wang, C-S.; Wu, H-H. One-pot synthesis of 3,5-diphenyl-1H-pyrazoles from chalcones and hydrazine under mechanochemical ball milling. Heterocycles, 2014, 89, 103-112.
[http://dx.doi.org/10.3987/COM-13-12867]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 6
ISSUE: 3
Year: 2019
Page: [198 - 209]
Pages: 12
DOI: 10.2174/2213346106666191026094131

Article Metrics

PDF: 20
HTML: 1

Special-new-year-discount