Recent Advances in the Utility of Glycerol as a Benign and Biodegradable Medium in Heterocyclic Synthesis

Author(s): Mohamed Abd-Elmonem, Ramadan A. Mekheimer, Alaa M. Hayallah, Fatma A. Abo Elsoud, Kamal U. Sadek*.

Journal Name: Current Organic Chemistry

Volume 23 , Issue 28 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Glycerol is a non-toxic, recyclable and biodegradable organic waste produced as a byproduct in the production of biodiesel fuel. Currently, glycerol is considered a green solvent and catalyst for a large variety of applications. This work discusses the significance of glycerol for heterocyclic synthesis. All the reported studies consider glycerol as an efficient and sustainable benign medium.

Keywords: Glycerol, benign medium, synthetic heterocycles, green synthesis, biodegradable, recyclable.

[1]
Deligeorgiev, T.; Gadjev, N.; Vasilev, A.; Kaloyanove, St.; Vaquero, J.J.; Alvarez-Builla, J. Green chemistry in organic synthesis. Mini Rev. Org. Chem., 2010, 7, 44-53.
[2]
Reichardt; C.. Solvents and Solvent Effects in Organic Chemistry; Verlag Chimie, Wienheim, 1979.
[3]
Constable, D.J.C.; Jimenez-Gonzalez, C.; Henderson, R.K. Perspective on solvent use in the pharmaceutical industry. Org. Process Res. Dev., 2007, 11, 133-137.
[http://dx.doi.org/10.1021/op060170h]
[4]
Li, C-J.; Chen, L. Organic chemistry in water. Chem. Soc. Rev., 2006, 35(1), 68-82.
[http://dx.doi.org/10.1039/B507207G] [PMID: 16365643]
[5]
Cantone, S.; Hanefeld, U.; Basso, A. Biocatalysis in non-conventional media-ionic liquids, supercritical fluids and the gas phase. Green Chem., 2007, 9, 954-971.
[http://dx.doi.org/10.1039/b618893a]
[6]
Chen, J.; Spear, S.K.; Huddleston, J.G.; Rogers, R.D. Polyethylene glycol and solutions of polyethylene glycol as green reaction media. Green Chem., 2005, 7, 64-82.
[http://dx.doi.org/10.1039/b413546f]
[7]
van Rantwijk, F.; Sheldon, R.A. Biocatalysis in ionic liquids. Chem. Rev., 2007, 107(6), 2757-2785.
[http://dx.doi.org/10.1021/cr050946x] [PMID: 17564484]
[8]
Hobbs, H.R.; Thomas, N.R. Biocatalysis in supercritical fluids, in fluorous solvents, and under solvent-free conditions. Chem. Rev., 2007, 107(6), 2786-2820.
[http://dx.doi.org/10.1021/cr0683820] [PMID: 17564485]
[9]
Horváth, I.T. Fluorous biphase chemistry. Acc. Chem. Res., 1998, 31, 641-650.
[http://dx.doi.org/10.1021/ar970342i]
[10]
DeSimone, M.J.; Tumas, W. Green chemistry using liquid and supercritical carbon dioxide; Oxford University Press: Oxford, 2003.
[11]
Coleman, D.; Gathergood, N. Biodegradation studies of ionic liquids. Chem. Soc. Rev., 2010, 39(2), 600-637.
[http://dx.doi.org/10.1039/b817717c] [PMID: 20111784]
[12]
Pigaleva, M.A.; Elmanovich, I.V.; Kononevich, Y.N.; Gallyamov, M.O.; Muzafarov, A.M. A biphase H2O/CO2 system as a versatile reaction medium for organic synthesis. RSC Advances, 2015, 5, 103573-103608.
[http://dx.doi.org/10.1039/C5RA18469J]
[13]
Nelson, W.M. Green solvents for chemistry: Perspectives and practice; Oxford University Press: Oxford, 2003.
[14]
Clark, J.H.; Tavener, S.J. Alternative solvents: shades of green. Org. Process Res. Dev., 2007, 11, 149-155.
[http://dx.doi.org/10.1021/op060160g]
[15]
Jessop, P.G. Searching for green solvents. Green Chem., 2011, 13, 1391-1398.
[http://dx.doi.org/10.1039/c0gc00797h]
[16]
Laird, T. Green chemistry is good process chemistry. Org. Process Res. Dev., 2012, 16, 1-2.
[http://dx.doi.org/10.1021/op200366y]
[17]
Johnson, D.T.; Taconi, K.A. The glycerin glut: options for the value-added conversion of crude glycerol resulting from biodiesel production. Environ. Prog., 2007, 26, 338-348.
[http://dx.doi.org/10.1002/ep.10225]
[18]
Wolfson, A.; Dlugy, C.; Shotland, Y. Glycerol as a green solvent for high product yields and selectivities. Environ. Chem. Lett., 2007, 5, 67-71.
[http://dx.doi.org/10.1007/s10311-006-0080-z]
[19]
Elnagdi, M.H.; Sadek, K.U.; Moustafa, M.S.; Al-Mousawi, S.M. Modern chemistry of aromatic heterocycles; Their synthesis and bio-synthesis and their role in Life; Austin Macauley Publishers: London, 2015.
[20]
Diaz-Alvarez, A.E.; Francos, J.; Croche, P.; Cadierno, V. Recent advances in the use of glycerol as green solvent for synthetic organic chemistry. Curr. Green Chem., 2014, 1, 51-65.
[http://dx.doi.org/10.2174/221334610101131218094907]
[21]
(a)Díaz-Álvarez, A.E.; Francos, J.; Lastra-Barreira, B.; Crochet, P.; Cadierno, V. Glycerol and derived solvents: new sustainable reaction media for organic synthesis. Chem. Commun. (Camb.), 2011, 47(22), 6208-6227.
[http://dx.doi.org/10.1039/c1cc10620a] [PMID: 21451852]
(b)Ravichandiran, P.; Gu, Y. Glycerol as eco-efficient solvent for organic transformationsBiobased Solvents; Jerome and Luque Ed.; Wiley & Sons: New York, 2017, pp. 1-28.
[22]
Arlene, G.C.; Márcio, W.P.; Ricardo, S. Application of bio-based solvents in catalysis. Curr. Org. Synth., 2015, 12, 675-695.
[http://dx.doi.org/10.2174/157017941206150828102108]
[23]
Cintas, P.; Tagliapietra, S.; Calcio Gaudino, E.; Palmisano, G.; Cravotto, G. Glycerol: a solvent and a building block of choice for microwave and ultrasound irradiation procedures. Green Chem., 2014, 16, 1056-1065.
[http://dx.doi.org/10.1039/c3gc41955j]
[24]
(a)Gu, Y.; Jérôme, F. Glycerol as a sustainable solvent for green chemistry. Green Chem., 2010, 12, 1127-1138.
[http://dx.doi.org/10.1039/c001628d]
(b)Diaz-Alvarez, A.E.; Cadierno, V. Glycerol: a promising green solvent and reducing agent for metal-catalyzed transfer hydrogenation reactions and nanoparticles formation. Appl. Sci. (Basel), 2013, 3, 55-69.
[http://dx.doi.org/10.3390/app3010055]
(c)Grica, J.I.; Grica-Marian, H.; Mayoral, J.A.; Perez, P. Green solvents from glycerol. Synthesis and physic-chemical properties of alkyl glycerol ethers. Green Chem., 2010, 12, 426-434.
[http://dx.doi.org/10.1039/b923631g]
[25]
Patil, N.T.; Yamamoto, Y. Coinage metal-assisted synthesis of heterocycles. Chem. Rev., 2008, 108(8), 3395-3442.
[http://dx.doi.org/10.1021/cr050041j] [PMID: 18611054]
[26]
Estévez, V.; Villacampa, M.; Menéndez, J.C. Recent advances in the synthesis of pyrroles by multicomponent reactions. Chem. Soc. Rev., 2014, 43(13), 4633-4657.
[http://dx.doi.org/10.1039/C3CS60015G] [PMID: 24676061]
[27]
Gulevich, A.V.; Dudnik, A.S.; Chernyak, N.; Gevorgyan, V. Transition metal-mediated synthesis of monocyclic aromatic heterocycles. Chem. Rev., 2013, 113(5), 3084-3213.
[http://dx.doi.org/10.1021/cr300333u] [PMID: 23305185]
[28]
Estévez, V.; Villacampa, M.; Menéndez, J.C. Multicomponent reactions for the synthesis of pyrroles. Chem. Soc. Rev., 2010, 39(11), 4402-4421.
[http://dx.doi.org/10.1039/b917644f] [PMID: 20601998]
[29]
Hwang, Y.; Rhodes, D.; Bushman, F. Rapid microtiter assays for poxvirus topoisomerase, mammalian type IB topoisomerase and HIV-1 integrase: application to inhibitor isolation. Nucleic Acids Res., 2000, 28(24), 4884-4892.
[http://dx.doi.org/10.1093/nar/28.24.4884] [PMID: 11121479]
[30]
Loya, S.; Rudi, A.; Kashman, Y.; Hizi, A. Polycitone A, a novel and potent general inhibitor of retroviral reverse transcriptases and cellular DNA polymerases. Biochem. J., 1999, 344(Pt 1), 85-92.
[http://dx.doi.org/10.1042/bj3440085] [PMID: 10548537]
[31]
Williamson, N.R.; Simonsen, H.T.; Ahmed, R.A.A.; Goldet, G.; Slater, H.; Woodley, L.; Leeper, F.J.; Salmond, G.P.C. Biosynthesis of the red antibiotic, prodigiosin, in Serratia: identification of a novel 2-methyl-3-n-amyl-pyrrole (MAP) assembly pathway, definition of the terminal condensing enzyme, and implications for undecylprodigiosin biosynthesis in Streptomyces. Mol. Microbiol., 2005, 56(4), 971-989.
[http://dx.doi.org/10.1111/j.1365-2958.2005.04602.x] [PMID: 15853884]
[32]
Tafi, A.; Costi, R.; Botta, M.; Di Santo, R.; Corelli, F.; Massa, S.; Ciacci, A.; Manetti, F.; Artico, M. Antifungal agents. 10. New derivatives of 1-[(aryl)[4-aryl-1H-pyrrol-3-yl] methyl]-1H-imidazole, synthesis, anti-candida activity, and quantitative structure-analysis relationship studies. J. Med. Chem., 2002, 45(13), 2720-2732.
[http://dx.doi.org/10.1021/jm011087h] [PMID: 12061875]
[33]
Reddy, S.M.; Srinivasulu, M.; Satyanarayana, N.; Kondapi, A.K.; Venkateswarlu, Y. New potent cytotoxic lamellarin alkaloids from Indian ascidian Didemnum obscurum. Tetrahedron, 2005, 61, 9242-9247.
[http://dx.doi.org/10.1016/j.tet.2005.07.067]
[34]
Prakash, R.; Theivendren, P.; Raja, S. Indolin-2-ones in clinical trials as potential kinase inhibitors: a review. Pharmacol. Pharm., 2012, 3, 62-71.
[http://dx.doi.org/10.4236/pp.2012.31010]
[35]
Hantzsch, A. Neue bildungsweise von pyrrolderivaten. Ber. Dtsch. Chem. Ges., 1890, 23, 1474-1476.
[http://dx.doi.org/10.1002/cber.189002301243]
[36]
Knorr, L. Synthese von pyrrolderivaten. Ber. Dtsch. Chem. Ges., 1884, 17, 1635-1642.
[http://dx.doi.org/10.1002/cber.18840170220]
[37]
Paal, C. Synthese von thiophen- und pyrrolderivaten. Ber. Dtsch. Chem. Ges., 1885, 18, 367-371.
[http://dx.doi.org/10.1002/cber.18850180175]
[38]
Merkul, E.; Boersch, C.; Frank, W.; Müller, T.J.J. Three-component synthesis of N-Boc-4-iodopyrroles and sequential one-pot alkynylation. Org. Lett., 2009, 11(11), 2269-2272.
[http://dx.doi.org/10.1021/ol900581a] [PMID: 19432414]
[39]
Durand, E.; Lecomte, J.; Villeneuve, P. Deep eutectic solvents: synthesis, application, and focus on lipase-catalyzed reactions. Eur. J. Lipid Sci. Technol., 2013, 115, 379-385.
[http://dx.doi.org/10.1002/ejlt.201200416]
[40]
Bakhrou, N.; Lamaty, F.; Martinez, J.; Colacino, E. Ring-closing metathesis in glycerol under microwave activation. Tetrahedron Lett., 2010, 51, 3935-3937.
[http://dx.doi.org/10.1016/j.tetlet.2010.05.101]
[41]
Handy, S.; Lavender, K. Organic synthesis in deep eutectic solvents: Paal–Knorr reactions. Tetrahedron Lett., 2013, 54, 4377-4379.
[http://dx.doi.org/10.1016/j.tetlet.2013.05.122]
[42]
Li, M-Y.; Xu, H-W.; Fan, W.; Ye, Q.; Wang, X.; Jiang, B.; Wang, S-L.; Tu, S-J. New formal (3+3) cycloaddition of enaminones for forming tetracyclic indolo[2,3-b]-quinolines under microwave irradiation. Tetrahedron, 2014, 70, 1004-1010.
[http://dx.doi.org/10.1016/j.tet.2013.11.022]
[43]
Alizadeh, A.; Mokhtari, J. Novel four-component route to the synthesis of spiro[indoline-3,4′-pyridine]-3′-carboxylate derivatives. Tetrahedron, 2011, 67, 3519-3523.
[http://dx.doi.org/10.1016/j.tet.2011.03.032]
[44]
Vivekanand, T.; Vinoth, P.; Agieshkumar, B.; Sampath, N.; Sudalai, A.; Menéndez, J.C.; Sridharan, V. Highly efficient regioselective synthesis of pyrroles via a tandem enamine formation-Michael addition-cyclization sequence under catalyst- and solvent-free conditions. Green Chem., 2015, 17, 3415-3423.
[http://dx.doi.org/10.1039/C5GC00365B]
[45]
Lobo, H.R.; Singh, B.S.; Shankarling, G.S. Deep eutectic solvents and glycerol: a simple, environmentally benign and efficient catalyst/reaction media for synthesis of N-aryl phthalimide derivatives. Green Chem. Lett. Rev., 2012, 5, 487-533.
[http://dx.doi.org/10.1080/17518253.2012.669500]
[46]
Francos, J.; Cadierno, V. Palladium-catalyzed cycloisomerization of (Z)-enynols into furans using green solvents: glycerol vs. water. Green Chem., 2010, 12, 1552-1555.
[http://dx.doi.org/10.1039/c0gc00169d]
[47]
Carriazo, D.; Serrano, M.C.; Gutiérrez, M.C.; Ferrer, M.L.; del Monte, F. Deep-eutectic solvents playing multiple roles in the synthesis of polymers and related materials. Chem. Soc. Rev., 2012, 41(14), 4996-5014.
[http://dx.doi.org/10.1039/c2cs15353j] [PMID: 22695767]
[48]
Gu, Y.; Jérôme, F. Bio-based solvents: An emerging generation of fluids for the design of eco-efficient processes in catalysis and organic chemistry. Chem. Soc. Rev., 2013, 42(24), 9550-9570.
[http://dx.doi.org/10.1039/c3cs60241a] [PMID: 24056753]
[49]
Smith, E.L.; Abbott, A.P.; Ryder, K.S. Deep Eutectic Solvents (DESs) and their applications. Chem. Rev., 2014, 114(21), 11060-11082.
[http://dx.doi.org/10.1021/cr300162p] [PMID: 25300631]
[50]
Francisco, M.; van den Bruinhorst, A.; Kroon, M.C. Low-Transition-Temperature Mixtures (LTTMs): a new generation of designer solvents. Angew. Chem. Int. Ed. Engl., 2013, 52(11), 3074-3085.
[http://dx.doi.org/10.1002/anie.201207548] [PMID: 23401138]
[51]
Vidal, C.; Merz, L.; García-Álvarez, J. Deep eutectic solvents: biorenewable reaction media for Au(i)-catalysed cycloisomerisations and one-pot tandem cycloisomerisation/Diels-Alder reactions. Green Chem., 2015, 17, 3870-3878.
[http://dx.doi.org/10.1039/C5GC00656B]
[52]
Jagrut, V.B.; Lingampalle, D.L.; Netankar, P.D.; Jadhav, W.N. Glycerol mediated safer synthetic route of pyrazoles bearing quinoline and benzene sulfonamido pharmacophores. Pharma Chem., 2013, 5, 8-11.
[53]
Tan, J-N.; Li, M.; Gu, Y. Multicomponent reactions of 1, 3-disubstituted 5-pyrazolones and formaldehyde in environmentally benign solvent systems and their variations with more fundamental substrates. Green Chem., 2010, 12, 908-914.
[http://dx.doi.org/10.1039/b924699a]
[54]
Nascimento, J.E.R.; Oliveira, D.H.D.; Abib, P.B.; Alves, D.; Perin, G.; Jacob, R.G. Synthesis of 4-arylselanylpyrazoles through cyclocondensation reaction using glycerol as solvent. J. Braz. Chem. Soc., 2015, 26, 1533-1541.
[http://dx.doi.org/10.5935/0103-5053.20150127]
[55]
Vanegas, S.; Rodríguez, D.; Ochoa-Puentes, C. An efficient and eco-friendly one-pot synthesis of pyrazolopyridines mediated by choline chloride/urea eutectic mixture. ChemistrySelect, 2019, 4, 3131-3134.
[http://dx.doi.org/10.1002/slct.201900314]
[56]
Sun, N.; Lu, Y-J.; Chan, F-Y.; Du, R-L.; Zheng, Y-Y.; Zhang, K.; So, L-Y.; Abagyan, R.; Zhuo, C.; Leung, Y-C.; Wong, K-Y. A Thiazole orange oerivative targeting the bacterial protein FtsZ shows potent antibacterial activity. Front. Microbiol., 2017, 8, 855.
[57]
Rao, N.K.; Babu, M.S.; Rao, T.N.; Rao, M.V.B.; Rao, K.A.; Mastan, J. J. Chem. Pharm. Res., 2017, 9, 140-144.
[58]
Tay, F.; Erkan, C.; Sariozlu, N.Y.; Ergene, E.; Demirayak, S. Synthesis, antimicrobial and anticancer activities of some naphthylthiazolylamine derivatives. Biomed. Res. (Aligarh), 2017, 28, 2696-2703.
[59]
Deligeorgiev, T.; Kaloyanova, S.; Lesev, N.; Alajarín, R.; Vaquero, J.J.; Álvarez-Builla, J. An environmentally benign synthesis of 2-cyanomethyl-4-phenylthiazoles under focused microwave irradiation. Green Sustainable Chem., 2011, 1, 170-175.
[http://dx.doi.org/10.4236/gsc.2011.14026]
[60]
Narsaiah, A.V.; Ghogare, R.S.; Biradar, D.O. Glycerin as alternative solvent for the synthesis of thiazoles. Org. Commun., 2011, 4, 75-81.
[61]
Tiwari, J.; Singh, S.; Tufail, F.; Jaiswal, D.; Singh, J.; Singh, J. Glycerol micellar catalysis: an efficient multicomponent-tandem green synthetic approach to biologically important 2, 4-disubstituted thiazole derivatives. ChemistrySelect, 2018, 3, 11634-11642.
[http://dx.doi.org/10.1002/slct.201802511]
[62]
Kavitha, K.; Srikrishna, D.; Dubey, P.K.; Aparna, P. An expedient one-pot tandem method for the synthesis of 3-(2-(phenylamino)thiazol-4-yl)-2H-chromen-2-ones under green conditions. J. Iran. Chem. Soc., 2019, 16, 1913-1921.
[http://dx.doi.org/10.1007/s13738-019-01661-y]
[63]
Carmona, R.C.; Schevciw, E.P.; de Albuquerque, J.L.P.; Wendler, E.P.; Dos Santos, A.A. Joint use of microwave and glycerol-zinc (II) acetate catalytic system in the synthesis of 2-pyridyl-2-oxazolines. Green Proc. Synth., 2013, 2, 35-42.
[http://dx.doi.org/10.1515/gps-2012-0085]
[64]
Shi, X-H.; Wang, Z.; Xia, Y.; Ye, T-H.; Deng, M.; Xu, Y-Z.; Wei, Y-Q.; Yu, L-T. Synthesis and biological evaluation of novel benzothiazole-2-thiol derivatives as potential anticancer agents. Molecules, 2012, 17(4), 3933-3944.
[http://dx.doi.org/10.3390/molecules17043933] [PMID: 22466853]
[65]
Saeed, S.; Rashid, N.; Jones, P.G.; Ali, M.; Hussain, R. Synthesis, characterization and biological evaluation of some thiourea derivatives bearing benzothiazole moiety as potential antimicrobial and anticancer agents. Eur. J. Med. Chem., 2010, 45(4), 1323-1331.
[http://dx.doi.org/10.1016/j.ejmech.2009.12.016] [PMID: 20056520]
[66]
Soliman, F.S.; Rida, S.M. Badawy el-S.A.; Kappe, T. Synthesis of substituted 3-hydroxy-1H,5H-pyrido[1,2-a]benzimidazol-1-ones as possible antimicrobial and antineoplastic agents. Arch. Pharm. (Weinheim), 1984, 317(11), 951-958.
[http://dx.doi.org/10.1002/ardp.19843171110] [PMID: 6517676]
[67]
Navarrete-Vázquez, G.; Cedillo, R.; Hernández-Campos, A.; Yépez, L.; Hernädez-Luis, F.; Valdez, J.; Morales, R.; Cortés, R.; Hernández, M.; Castillo, R. Synthesis and antiparasitic activity of 2-(trifluoromethyl)-benzimidazole derivatives. Bioorg. Med. Chem. Lett., 2001, 11(2), 187-190.
[http://dx.doi.org/10.1016/S0960-894X(00)00619-3] [PMID: 11206455]
[68]
Sadek, K.U.; Mekheimer, R.A.; Hameed, A.M.A.; Elnahas, F.; Elnagdi, M.H. Green and highly efficient synthesis of 2-arylbenzothiazoles using glycerol without catalyst at ambient temperature. Molecules, 2012, 17(5), 6011-6019.
[http://dx.doi.org/10.3390/molecules17056011] [PMID: 22609790]
[69]
Deligeorgiev, T.G.; Kaloyanova, S.S.; Lesev, N.Y.; Vaquero, J.J. An environmentally benign procedure for the synthesis of substituted 2-thiobenzothiazoles, 2-thiobenzoxazoles, 2-thiobenzimidazoles, and 1,3-oxazolopyridine-2-thiols. Monatsh. Chem., 2011, 142, 895-899.
[http://dx.doi.org/10.1007/s00706-011-0551-1]
[70]
Racané, L.; Tralić-Kulenović, V.; Kraljević Pavelić, S.; Ratkaj, I.; Peixoto, P.; Nhili, R.; Depauw, S.; Hildebrand, M-P.; David-Cordonnier, M-H.; Pavelić, K.; Karminski-Zamola, G. Novel diamidino-substituted derivatives of phenyl benzothiazolyl and dibenzothiazolyl furans and thiophenes: synthesis, antiproliferative and DNA binding properties. J. Med. Chem., 2010, 53(6), 2418-2432.
[http://dx.doi.org/10.1021/jm901441b] [PMID: 20170096]
[71]
Racané, L.; Pavelić, S.K.; Nhili, R.; Depauw, S.; Paul-Constant, C.; Ratkaj, I.; David-Cordonnier, M-H.; Pavelić, K.; Tralić-Kulenović, V.; Karminski-Zamola, G. New anticancer active and selective phenylene-bisbenzothiazoles: synthesis, antiproliferative evaluation and DNA binding. Eur. J. Med. Chem., 2013, 63, 882-891.
[http://dx.doi.org/10.1016/j.ejmech.2013.02.026] [PMID: 23603616]
[72]
Racané, L.; Stojković, R.; Tralić-Kulenović, V.; Cerić, H.; Đaković, M.; Ester, K.; Krpan, A.M.; Stojković, M.R. Interactions with polynucleotides and antitumor activity of amidino and imidazolinyl substituted 2-phenylbenzothiazole mesylates. Eur. J. Med. Chem., 2014, 86, 406-419.
[http://dx.doi.org/10.1016/j.ejmech.2014.08.072] [PMID: 25194933]
[73]
Racané, L.; Ptiček, L.; Sedić, M.; Grbčić, P.; Kraljević Pavelić, S.; Bertoša, B.; Sović, I.; Karminski-Zamola, G. Eco-friendly synthesis, in vitro anti-proliferative evaluation, and 3D-QSAR analysis of a novel series of monocationic 2-aryl/heteroaryl-substituted 6-(2-imidazolinyl)benzothiazole mesylates. Mol. Divers., 2018, 22(3), 723-741.
[http://dx.doi.org/10.1007/s11030-018-9827-2] [PMID: 29667008]
[74]
Radatz, C.S.; Silva, R.B.; Perin, G.; Lenardão, E.J.; Jacob, R.G.; Alves, D. Catalyst-free synthesis of benzodiazepines and benzimidazoles using glycerol as recyclable solvent. Tetrahedron Lett., 2011, 52, 4132-4136.
[http://dx.doi.org/10.1016/j.tetlet.2011.05.142]
[75]
Taduri, A.K.; Babu, P.N.K.; Devi, B.R. Glycerol containing triacetylborate mediated syntheses of novel 2-heterostyryl benzimidazole derivatives: a green approach. Org. Chem. Int., 2014, 2014, 1-9.
[http://dx.doi.org/10.1155/2014/260726]
[76]
Lindberg, P.; Nordberg, P.; Alminger, T.; Braendstroem, A.; Wallmark, B. The mechanism of action of the antisecretory agent omeprazole. J. Med. Chem., 1986, 29, 1327-1329.
[http://dx.doi.org/10.1021/jm00158a001] [PMID: 3016260]
[77]
Beggs, W.H.; Andrews, F.A.; Sarosi, G.A. Action of imidazole-containing antifungal drugs. Life Sci., 1981, 28(2), 111-118.
[http://dx.doi.org/10.1016/0024-3205(81)90542-7] [PMID: 7019609]
[78]
Wasserscheid, P.; Keim, W. Ionic liquids-new “solutions” for transition metal catalysis. Angew. Chem. Int. Ed. Engl., 2000, 39(21), 3772-3789.
[http://dx.doi.org/10.1002/1521-3773(20001103)39:21<3772:AID-ANIE3772>3.0.CO;2-5] [PMID: 11091453]
[79]
Herrmann, W.A.; Köcher, C. N-Heterocyclic carbenes. Angew. Chem. Int. Ed. Engl., 1997, 36, 2162-2187.
[http://dx.doi.org/10.1002/anie.199721621] [PMID: 19750753]
[80]
Nemati, F.; Hosseini, M.M.; Kiani, H. Glycerol as a green solvent for efficient, one-pot and catalyst free synthesis of 2,4,5-triaryl and 1,2,4,5-tetraaryl imidazole derivatives. J. Saudi Chem. Soc., 2016, 20, S503-S508.
[http://dx.doi.org/10.1016/j.jscs.2013.02.004]
[81]
Hantzsch, A. Ueber die synthese pyridinartiger verbindungen aus acetessigäther und aldehydammoniak. Justus Liebigs Ann. Chem., 1882, 215, 1-82.
[http://dx.doi.org/10.1002/jlac.18822150102]
[82]
Sohal, H.S.; Goyal, A.; Sharma, R.; Khare, R. One-pot, multicomponent synthesis of symmetrical Hantzsch 1,4-dihydropyridine derivatives using glycerol as clean and green solvent. Eur. J. Chem., 2014, 5, 171-175.
[http://dx.doi.org/10.5155/eurjchem.5.1.171-175.943]
[83]
Venkat Narsaiah, A. Nagaiah; B. Glycerine-CeCl3·7H2O: An efficient recyclable reaction medium for the synthesis of Hantzsch pyridines. Asian J. Chem., 2010, 22, 8099-8106.
[84]
Seyedi, N. Glycerin and [Iron(III)(salen)] Cl as an efficient catalytic medium for multicomponent reactions. Transition Met. Chem., 2013, 38, 93-103.
[http://dx.doi.org/10.1007/s11243-012-9665-5]
[85]
van Vliet, L.A.; Rodenhuis, N.; Dijkstra, D.; Wikström, H.; Pugsley, T.A.; Serpa, K.A.; Meltzer, L.T.; Heffner, T.G.; Wise, L.D.; Lajiness, M.E.; Huff, R.M.; Svensson, K.; Sundell, S.; Lundmark, M. Synthesis and pharmacological evaluation of thiopyran analogues of the dopamine D3 receptor-selective agonist (4aR,10bR)-(+)-trans-3,4,4a,10b-tetrahydro-4-n-propyl-2H,5H [1]b enzopyrano[4,3-b]-1,4-oxazin-9-ol (PD 128907). J. Med. Chem., 2000, 43(15), 2871-2882.
[http://dx.doi.org/10.1021/jm0000113] [PMID: 10956195]
[86]
Quaglia, W.; Pigini, M.; Piergentili, A.; Giannella, M.; Gentili, F.; Marucci, G.; Carrieri, A.; Carotti, A.; Poggesi, E.; Leonardi, A.; Melchiorre, C. Structure-activity relationships in 1,4-benzodioxan-related compounds. 7. Selectivity of 4-phenylchroman analogues for α(1)-adrenoreceptor subtypes. J. Med. Chem., 2002, 45(8), 1633-1643.
[http://dx.doi.org/10.1021/jm011066n] [PMID: 11931617]
[87]
Radier, J. Glycosidase inhibitors and thereof preparation. Word pat. WO2001049674 2004.
[88]
Mitra, B.; Pariyar, G.C.; Ghosh, P. Glycerol: a Benign solvent-assisted metal-free one-pot multi-component synthesis of 4H-thiopyran and thioamides from easily accessible precursors. ChemistrySelect, 2019, 4, 5476-5483.
[http://dx.doi.org/10.1002/slct.201900982]
[89]
Safaei, H.R.; Shekouhy, M.; Rahmanpur, S.; Shirinfeshan, A. Glycerol as a biodegradable and reusable promoting medium for the catalyst-free one-pot three component synthesis of 4H-pyrans. Green Chem., 2012, 14, 1696-1704.
[http://dx.doi.org/10.1039/c2gc35135h]
[90]
He, F.; Li, P.; Gu, Y.; Li, G. Glycerol as a promoting medium for electrophilic activation of aldehydes: catalyst-free synthesis of di (indolyl)methanes, xanthene-1,8 (2H)-diones and 1-oxo-hexahydroxanthenes. Green Chem., 2009, 11, 1767-1773.
[http://dx.doi.org/10.1039/b916015a]
[91]
Li, M.; Chen, C.; He, F.; Gu, Y. Multicomponent reactions of 1, 3‐cyclohexanediones and formaldehyde in glycerol: stabilization of paraformaldehyde in glycerol resulted from using dimedone as substrate. Adv. Synth. Catal., 2010, 352, 519-530.
[http://dx.doi.org/10.1002/adsc.200900770]
[92]
He, F.; Li, P.; Gu, Y.; Li, G. Glycerol as a promoting medium for electrophilic activation of aldehydes: catalyst-free synthesis of di(indolyl)methanes, xanthene-1,8(2H)-diones and 1-oxo-hexahydroxanthenes. Green Chem., 2009, 11, 1767-1773.
[http://dx.doi.org/10.1039/b916015a]
[93]
Migliorero, M.B.C.; Palermo, V.; Durango, E.A.A.; Holguin, A.L.V.; Vazquez, P.G.; Sathicq, A.G.; Romanelli, G.P. Green and efficient synthesis of flavones and chromones using hetero-polyacids as catalyst in glycerol. Lett. Org. Chem., 2018, 15, 826-832.
[http://dx.doi.org/10.2174/1570178615666180509150014]
[94]
Shan, R.; Velazquez, C.; Knaus, E.E. Syntheses, calcium channel agonist-antagonist modulation activities, and nitric oxide release studies of nitrooxyalkyl 1,4-dihydro-2,6-dimethyl-3-nitro-4-(2,1,3-benzoxadiazol-4-yl)pyridine-5-carboxylate racemates, enantiomers, and diastereomers. J. Med. Chem., 2004, 47(1), 254-261.
[http://dx.doi.org/10.1021/jm030333h] [PMID: 14695839]
[95]
Kumar, A.; Sharma, S.; Tripathi, V.D.; Maurya, R.A.; Srivastava, S.P.; Bhatia, G.; Tamrakar, A.K.; Srivastava, A.K. Design and synthesis of 2,4-disubstituted polyhydroquinolines as prospective antihyperglycemic and lipid modulating agents. Bioorg. Med. Chem., 2010, 18(11), 4138-4148.
[http://dx.doi.org/10.1016/j.bmc.2009.11.061] [PMID: 20471838]
[96]
Liu, X-H.; Cui, P.; Song, B-A.; Bhadury, P.S.; Zhu, H-L.; Wang, S-F. Synthesis, structure and antibacterial activity of novel 1-(5-substituted-3-substituted-4,5-dihydropyrazol-1-yl)ethanone oxime ester derivatives. Bioorg. Med. Chem., 2008, 16(7), 4075-4082.
[http://dx.doi.org/10.1016/j.bmc.2008.01.035] [PMID: 18262793]
[97]
Pathak, R.B.; Chovatia, P.T.; Parekh, H.H. Synthesis, antitubercular and antimicrobial evaluation of 3-(4-chlorophenyl)-4-substituted pyrazole derivatives. Bioorg. Med. Chem. Lett., 2012, 22(15), 5129-5133.
[http://dx.doi.org/10.1016/j.bmcl.2012.05.063] [PMID: 22695129]
[98]
Jamale, D.K.; Undare, S.S.; Valekar, N.J.; Sarkate, A.P.; Kolekar, G.B.; Anbhule, P.V. Glycerol mediated synthesis, biological evaluation, and molecular docking study of 4-(1H-pyrazol-4-yl)polyhydroquinolines as potent antitubercular agents. J. Heterocycl. Chem., 2019, 56, 608-618.
[99]
Xiong, X.; Yi, C.; Liao, X.; Lai, S. An effective one-pot access to 2-amino-4H-benzo[b]pyrans and 1,4-dihydropyridines via γ-cyclodextrin-catalyzed multi-component tandem reactions in deep eutectic solvent. Catal. Lett., 2019, 149, 1690-1700.
[http://dx.doi.org/10.1007/s10562-019-02767-x]
[100]
Chahdoura, F.; Mallet-Ladeira, S.; Gómez, M. Palladium nanoparticles in glycerol: A clear-cut catalyst for one-pot multi-step processes applied in the synthesis of heterocyclic compounds. Org. Chem. Front., 2015, 2, 312-318.
[http://dx.doi.org/10.1039/C4QO00338A]
[101]
AlMarzouq, D.S.; Elnagdi, N.M.H. Glycerol and Q-tubes: green catalyst and technique for synthesis of polyfunctionally substituted hetero aromatics and anilines. Molecules, 2019, 24(9), 1806-1819.
[http://dx.doi.org/10.3390/molecules24091806] [PMID: 31083287]
[102]
Quan, Z-J.; Ren, R-G.; Da, Y-X.; Zhang, Z.; Wang, X-C. Glycerol as an alternative green reaction medium for multicomponent reactions using PS-PEG-OSO3H as catalyst. Synth. Commun., 2011, 41, 3106-3116.
[http://dx.doi.org/10.1080/00397911.2010.517373]
[103]
Ramesh, R.; Nagasundaram, N.; Meignanasundar, D.; Vadivel, P.; Lalitha, A. Glycerol assisted eco-friendly strategy for the facile synthesis of 4,4′-(arylmethylene)bis(3-methyl-1H-pyrazol-5-ols) and 2-aryl-2,3-dihydro-quinazolin-4(1H)-ones under catalyst-free conditions. Res. Chem. Intermed., 2017, 43, 1767-1782.
[http://dx.doi.org/10.1007/s11164-016-2728-z]
[104]
Narsaiah, A.V.; Kumar, J.K. Glycerin and CeCl3.7H2O: A new and efficient recyclable reaction medium for the synthesis of quinoxalines. Synth. Commun., 2012, 42, 883-892.
[http://dx.doi.org/10.1080/00397911.2010.533050]
[105]
Shekouhy, M.; Sarvestani, A.M.; Khajeh, S.; Khalafi-Nezhad, A. Glycerol: A more benign and biodegradable promoting medium for catalyst-free one-pot multi-component synthesis of triazolo[1,2-a]indazole-triones. RSC Advances, 2015, 5, 63705-63710.
[http://dx.doi.org/10.1039/C5RA13805A]
[106]
Sanger, D.J.; Zivkovic, B. Discriminative stimulus effects of alpidem, a new imidazopyridine anxiolytic. Psychopharmacology (Berl.), 1994, 113(3-4), 395-403.
[http://dx.doi.org/10.1007/BF02245215] [PMID: 7862851]
[107]
Mizushige, K.; Ueda, T.; Yukiiri, K.; Suzuki, H. Olprinone: A phosphodiesterase III inhibitor with positive inotropic and vasodilator effects. Cardiovasc. Drug Rev., 2002, 20(3), 163-174.
[http://dx.doi.org/10.1111/j.1527-3466.2002.tb00085.x] [PMID: 12397365]
[108]
Ermolat’ev, D.S.; Savaliya, B.; Shah, A.; Van der Eycken, E. One-pot microwave-assisted protocol for the synthesis of substituted 2-amino-1H-imidazoles. Mol. Divers., 2011, 15(2), 491-496.
[http://dx.doi.org/10.1007/s11030-010-9270-5] [PMID: 20740313]
[109]
Myadaraboina, S.; Alla, M.; Saddanapu, V.; Bommena, V.R.; Addlagatta, A. Structure activity relationship studies of imidazo[1,2-a]pyrazine derivatives against cancer cell lines. Eur. J. Med. Chem., 2010, 45(11), 5208-5216.
[http://dx.doi.org/10.1016/j.ejmech.2010.08.035] [PMID: 20832916]
[110]
Zhu, D-J.; Chen, J-X.; Liu, M-C.; Ding, J-C.; Wu, H-Y. Catalyst: and solvent-free synthesis of imidazo[1,2-a]pyridines. J. Braz. Chem. Soc., 2009, 20, 482-487.
[http://dx.doi.org/10.1590/S0103-50532009000300012]
[111]
Tufail, F.; Singh, S.; Saquib, M.; Tiwari, J.; Singh, J.; Singh, J. Catalyst-free, glycerol-assisted facile approach to imidazole-fused nitrogen-bridgehead heterocycles. ChemistrySelect, 2017, 2, 6082-6089.
[http://dx.doi.org/10.1002/slct.201700557]
[112]
Yadav, V.B.; Rai, P.; Sagir, H.; Kumar, A.; Siddiqui, I.R. Catalyst-free synthesis for pyrazole-fused isocoumarins in recyclable and biodegradable reaction medium. ChemistrySelect, 2017, 2, 8320-8325.
[http://dx.doi.org/10.1002/slct.201700976]
[113]
Mukherjee, S.; Kundu, A.; Pramanik, A. A new and efficient synthesis of pyrazole-fused isocoumarins on the solid surface of magnetically separable Fe3O4-SiO2-SO3H nanoparticles. Tetrahedron Lett., 2016, 57, 2103-2108.
[http://dx.doi.org/10.1016/j.tetlet.2016.04.002]
[114]
Pathak, S.; Das, D.; Kundu, A.; Maity, S.; Guchhait, N.; Pramanik, A. Synthesis of 4-hydroxyindole fused isocoumarin derivatives and their fluorescence “Turn-off” sensing of Cu(ii) and Fe(iii) ions. RSC Advances, 2015, 5, 17308-17318.
[http://dx.doi.org/10.1039/C5RA01060H]
[115]
Parmar, N.J.; Barad, H.A.; Labana, B.M.; Kant, R.; Gupta, V.K. A glycerol mediated domino reaction: an efficient, green synthesis of polyheterocycles incorporating a new thiochromeno[2, 3-b]quinoline unit. RSC Advances, 2013, 3, 20719-20725.
[http://dx.doi.org/10.1039/c3ra43205j]
[116]
Elinson, M.N.; Dorofeev, A.S.; Feducovich, S.K.; Gorbunov, S.V.; Nasybullin, R.F.; Stepanov, N.O.; Nikishin, G.I. Electrochemically induced chain transformation of salicylaldehydes and alkyl cyanoacetates into substituted 4H-chromenes. Tetrahedron Lett., 2006, 47, 7629-7633.
[http://dx.doi.org/10.1016/j.tetlet.2006.08.053]
[117]
Sun, W.; Cama, L.D.; Birzin, E.T.; Warrier, S.; Locco, L.; Mosley, R.
Hammond, M.L.; Rohrer, S.P. 6H-Benzo[c]chromen-6-one derivatives as se-lective ERbeta agonists. Bioorg. Med. Chem. Lett., 2006, 16(6), 1468-1472.
[http://dx.doi.org/10.1016/j.bmcl.2005.12.057] [PMID: 16412638]
[118]
Patil, S.B. Biological and medicinal significance of pyrimidines. Int. J. Pharm. Sci. Res., 2018, 9, 44-52.
[119]
Rai, P.; Sagir, H.; Kumar, A.B.; Yadav, V.R.; Siddiqui, I. Organocatalyzed synthesis of medicinally important chromeno[2, 3-d]pyrimidinetriones in biodegradable reaction medium. ChemistrySelect, 2018, 3, 2565-2570.
[http://dx.doi.org/10.1002/slct.201702483]
[120]
Tan, J-N.; Li, M.; Gu, Y. Multicomponent reactions of 1,3-disubstituted 5-pyrazolones and formaldehyde in environmentally benign solvent systems and their variations with more fundamental substrates. Green Chem., 2010, 12, 908-914.
[http://dx.doi.org/10.1039/b924699a]
[121]
Abdel Hamid, A.; Abd-Elmonem, M.; Hayallah, A.M.; Abo Elsoud, F.A.; Sadek, K.U. Glycerol: a promising benign solvent for catalyst free one-pot multi-component synthesis of pyrano[2,3-c] pyrazoles and tetrahydrobenzo[b]pyrans at ambient temperature. ChemistrySelect, 2017, 2, 10689-10693.
[http://dx.doi.org/10.1002/slct.201702011]
[122]
Shi, F.; Ding, J.; Zhang, S.; Hao, W-J.; Cheng, C.; Tu, S. Substrate-controlled chemoselective synthesis and potent cytotoxic activity of novel 5,6,7-triarylpyrido[2,3-d] pyrimidin-4-one derivatives. Bioorg. Med. Chem. Lett., 2011, 21(5), 1554-1558.
[http://dx.doi.org/10.1016/j.bmcl.2010.09.114] [PMID: 21296573]
[123]
Singh, S.; Saquib, M.; Singh, M.; Tiwari, J.; Tufail, F.; Singh, J.; Singh, J. A catalyst free, multicomponent-tandem, facile synthesis of pyrido[2,3-d] pyrimidines using glycerol as a recyclable promoting medium. New J. Chem., 2016, 40, 63-67.
[http://dx.doi.org/10.1039/C5NJ01938A]
[124]
Morshedi, A.; Shaterian, H.R. Green approach to synthesis of new series of 6,8a-dihydro-pyrido[2,3-d] pyrimidine derivatives. J. Iran. Chem. Soc., 2019, 16, 493-500.
[http://dx.doi.org/10.1007/s13738-018-1528-3]
[125]
Hamid, S.B.A.; Titinchi, S.J.J.; Abbo, H.; Khaligh, N.G. One-pot multicomponent synthesis of pyrazolo[3,4-d] pyrimidine-6-one derivatives. Polycycl. Aromat. Compd., 2018, 38, 189-198.
[http://dx.doi.org/10.1080/10406638.2016.1194298]
[126]
Wang, S.; Jiang, Y.; Wu, S.; Dong, G.; Miao, Z.; Zhang, W.; Sheng, C. Meeting organocatalysis with drug discovery: asymmetric synthesis of 3,3′-spirooxindoles fused with tetrahydrothiopyrans as novel p53-MDM2 inhibitors. Org. Lett., 2016, 18(5), 1028-1031.
[http://dx.doi.org/10.1021/acs.orglett.6b00155] [PMID: 26883465]
[127]
Zhou, X.; Xiao, T.; Iwama, Y.; Qin, Y. Biomimetic total synthesis of (+)-gelsemine. Angew. Chem. Int. Ed. Engl., 2012, 51(20), 4909-4912.
[http://dx.doi.org/10.1002/anie.201201736] [PMID: 22489097]
[128]
Yu, B.; Yu, Z.; Qi, P-P.; Yu, D-Q.; Liu, H-M. Discovery of orally active anticancer candidate CFI-400945 derived from biologically promising spirooxindoles: success and challenges. Eur. J. Med. Chem., 2015, 95, 35-40.
[http://dx.doi.org/10.1016/j.ejmech.2015.03.020] [PMID: 25791677]
[129]
Pavlovska, T.L.; Redkin, R.G.; Lipson, V.V.; Atamanuk, D.V. Molecular diversity of spirooxindoles. Synthesis and biological activity. Mol. Divers., 2016, 20(1), 299-344.
[http://dx.doi.org/10.1007/s11030-015-9629-8] [PMID: 26419598]
[130]
Tiwari, J.; Saquib, M.; Singh, S.; Tufail, F.; Singh, J.; Singh, J. Catalyst-free glycerol-mediated green synthesis of 5′-thioxospiro[indoline-3,3′-[1,2,4]triazolidin]-2-ones/spiro-[indoline-3,3′-[1,2,4]triazolidine]-2,5′-diones. Synth. Commun., 2017, 47, 1999-2006.
[http://dx.doi.org/10.1080/00397911.2017.1359844]


Rights & PermissionsPrintExport Cite as


Article Details

VOLUME: 23
ISSUE: 28
Year: 2019
Page: [3226 - 3246]
Pages: 21
DOI: 10.2174/1385272823666191025150646
Price: $58

Article Metrics

PDF: 18
HTML: 3