2-Aminoethyldiphenyl Borinate: A Multitarget Compound with Potential as a Drug Precursor

Author(s): Melvin N. Rosalez, Elizabeth Estevez-Fregoso, Alberto Alatorre, Antonio Abad-García*, Marvin A. Soriano-Ursúa*.

Journal Name: Current Molecular Pharmacology

Volume 13 , Issue 1 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Boron is considered a trace element that induces various effects in systems of the human body. However, each boron-containing compound exerts different effects.

Objective: To review the effects of 2-Aminoethyldiphenyl borinate (2-APB), an organoboron compound, on the human body, but also, its effects in animal models of human disease.

Methods: In this review, the information to showcase the expansion of these reported effects through interactions with several ion channels and other receptors has been reported. These effects are relevant in the biomedical and chemical fields due to the application of the reported data in developing therapeutic tools to modulate the functions of the immune, cardiovascular, gastrointestinal and nervous systems.

Results: Accordingly, 2-APB acts as a modulator of adaptive and innate immunity, including the production of cytokines and the migration of leukocytes. Additionally, reports show that 2-APB exerts effects on neurons, smooth muscle cells and cardiomyocytes, and it provides a cytoprotective effect by the modulation and attenuation of reactive oxygen species.

Conclusion: The molecular pharmacology of 2-APB supports both its potential to act as a drug and the desirable inclusion of its moieties in new drug development. Research evaluating its efficacy in treating pain and specific maladies, such as immune, cardiovascular, gastrointestinal and neurodegenerative disorders, is scarce but interesting.

Keywords: 2-aminoethyldiphenyl borinate, immune system, nervous system, cardiovascular system, calcium channels.

[1]
Ball, P. Material witness: Why is boron so hard? Nat. Mater., 2010, 9(1), 6.
[PMID: 20019661]
[2]
Sands, D.; Hoard, J.L. Rhombohedral Elemental Boron. J. Am. Chem. Soc., 1957, 79, 5582-5583.
[3]
Woods, W.G. An introduction to boron: history, sources, uses, and chemistry. Environ. Health Perspect., 1994, 102(Suppl. 7), 5-11.
[PMID: 7889881]
[4]
Nielsen, F.H. Is boron nutritionally relevant? Nutr. Rev., 2008, 66(4), 183-191.
[PMID: 18366532]
[5]
Beattie, J.H.; Peace, H.S. The influence of a low-boron diet and boron supplementation on bone, major mineral and sex steroid metabolism in postmenopausal women. Br. J. Nutr., 1993, 69(3), 871-884.
[PMID: 8329361]
[6]
Gorustovich, A.A.; Steimetz, T. Nielsen, F.H.; Guglielmotti M.B. A histomorphometric study of alveolar bone modelling and remodeling in mice fed a boron-deficient diet. Arch. Oral Biol., 2008, 53, 677-682.
[PMID: 18313642]
[7]
Nielsen, F.H.; Stoecker, B.J. Boron and fish oil have different beneficial effects on strength and trabecular microarchitecture of bone. J. Trace Elem. Med. Biol., 2009, 23(3), 195-203.
[PMID: 19486829]
[8]
Benderdour, M.; Van Bui, T.; Hess, K.; Dicko, A.; Belleville, F.; Dousset, B. Effects of boron derivatives on extracellular matrix formation. J. Trace Elem. Med. Biol., 2000, 14(3), 168-173.
[PMID: 11130854]
[9]
Nzietchueng, R.M.; Dousset, B.; Franck, P.; Benderdour, M.; Nabet, P.; Hess, K. Mechanisms implicated in the effects of boron on wound healing. J. Trace Elem. Med. Biol., 2002, 16(4), 239-244.
[PMID: 12530586]
[10]
Naghii, M.R.; Mofid, M.; Asgari, A.R.; Hedayati, M.; Daneshpour, M.S. Comparative effects of daily and weekly boron supplementation on plasma steroid hormones and proinflammatory cytokines. J. Trace Elem. Med. Biol., 2011, 25(1), 54-58.
[PMID: 21129941]
[11]
Bello, M.; Guadarrama-García, C.; Velasco-Silveyra, L.M.; Farfán-García, E.D.; Soriano-Ursúa, M.A. Several effects of boron are induced by uncoupling steroid hormones from their transporters in blood. Med. Hypotheses, 2018, 118, 78-83.
[PMID: 30037620]
[12]
Miljkovic, D.; Scorei, R.I.; Cimpoiaşu, V.M.; Scorei, I.D. Calcium fructoborate: plant-based dietary boron for human nutrition. J. Diet. Suppl., 2009, 6(3), 211-226.
[PMID: 22435474]
[13]
Zofková, I.; Nemcikova, P.; Matucha, P. Trace elements and bone health. Clin. Chem. Lab. Med., 2013, 51(8), 1555-1561.
[PMID: 23509220]
[14]
Scorei, R.I.; Ciofrangeanu, C.; Ion, R.; Cimpean, A.; Galateanu, B.; Mitran, V.; Iordachescu, D. In vitro effects of calcium fructoborate upon production of inflammatory mediators by LPS-stimulated RAW 264.7 macrophages. Biol. Trace Elem. Res., 2010, 135(1-3), 334-344.
[PMID: 19669712]
[15]
Coban, F.K.; Ince, S.; Kucukkurt, I.; Demirel, H.H.; Hazman, O. Boron attenuates malathion-induced oxidative stress and acetylcholinesterase inhibition in rats. Drug Chem. Toxicol., 2015, 38(4), 391-399.
[PMID: 25342379]
[16]
Turkez, H.; Geyikoglu, F.; Tatar, A.; Keles, M.S.; Kaplan, I. The effects of some boron compounds against heavy metal toxicity in human blood. Exp. Toxicol. Pathol., 2012, 64(1-2), 93-101.
[PMID: 20663653]
[17]
Scorei, R.I.; Popa, R., Jr Boron-containing compounds as preventive and chemotherapeutic agents for cancer. Anticancer. Agents Med. Chem., 2010, 10(4), 346-351.
[PMID: 19912103]
[18]
Turkez, H.; Tatar, A.; Hacimuftuoglu, A.; Ozdemir, E. Boric acid as a protector against paclitaxel genotoxicity. Acta Biochim. Pol., 2010, 57(1), 95-97.
[PMID: 20300661]
[19]
López-Cabrera, Y.; Castillo-García, E.L.; Altamirano-Espino, J.A.; Pérez-Capistran, T.; Farfán-García, E.D.; Trujillo-Ferrara, J.G.; Soriano-Ursúa, M.A. Profile of three boron-containing compounds on the body weight, metabolism and inflammatory markers of diabetic rats. J. Trace Elem. Med. Biol., 2018, 50, 424-429.
[PMID: 30262315]
[20]
Romero-Aguilar, K.S.; Arciniega-Martínez, I.M.; Farfán-García, E.D.; Campos-Rodríguez, R.; Reséndiz-Albor, A.A.; Soriano-Ursúa, M.A. Effects of boron-containing compounds on immune responses: review and patenting trends. Expert Opin. Ther. Pat., 2019, 29(5), 339-351.
[PMID: 31064237]
[21]
Donoiu, I.; Militaru, C.; Obleagă, O.; Hunter, J.M.; Neamţu, J.; Biţă, A.; Scorei, I.R.; Rogoveanu, O.C. Effects of boron-containing compounds on cardiovascular disease risk factors - A review. J. Trace Elem. Med. Biol., 2018, 50, 47-56.
[PMID: 30262316]
[22]
Povlock, T.P.; Lippincott, W.T. The Reaction of Trimethoxyboroxine with Aromatic Grignard Reagents. A New Synthesis of Borinic Acids. J. Am. Chem. Soc., 1958, 80, 1.
[23]
Maruyama, T.; Kanaji, T.; Nakade, S.; Kanno, T.; Mikoshiba, K. 2APB, 2-aminoethoxydiphenyl borate, a membrane-penetrable modulator of Ins(1,4,5)P3-induced Ca2+ release. J. Biochem., 1997, 122(3), 498-505.
[PMID: 9348075]
[24]
Keppel Hesselink, J.M. Phenytoin: a step by step insight into its multiple mechanisms of action-80 years of mechanistic studies in neuropharmacology. J. Neurol., 2017, 264(9), 2043-2047.
[PMID: 28349209]
[25]
Kim, Y.S.; Shin, Y.K.; Lee, C.; Song, J. Block of sodium currents in rat dorsal root ganglion neurons by diphenhydramine. Brain Res., 2000, 881(2), 190-198.
[PMID: 11036158]
[26]
Alexander, S.P.H.; Kelly, E.; Marrion, N.V.; Peters, J.A.; Faccenda, E.; Harding, S.D.; Pawson, A.J.; Sharman, J.L.; Southan, C.; Buneman, O.P.; Cidlowski, J.A.; Christopoulos, A.; Davenport, A.P.; Fabbro, D.; Spedding, M.; Striessnig, J.; Davies, J.A. CGTP Collaborators. The Concise Guide to Pharmacology 2017/18. Br. J. Pharmacol., 2017, 174, S1-S446.
[PMID: 29055037]
[27]
National Center for Biotechnology Information. PubChem Database. 2-Aminoethyl diphenylborinate, CID=1598,. https://pubchem.ncbi.nlm.nih.gov/compound/2-Aminoethyl-diphenylborinate diphenylborinate (accessed on June 23, 2019).
[28]
Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The Protein Data Bank. Nucleic Acids Res., 2000, 28(1), 235-242.
[PMID: 10592235]
[29]
Djillani, A.; Nüße, O.; Dellis, O. Characterization of novel store-operated calcium entry effectors. Biochim. Biophys. Acta, 2014, 1843(10), 2341-2347.
[PMID: 24657813]
[30]
Missiaen, L.; Callewaert, G.; De Smedt, H.; Parys, J.B. 2-Aminoethoxydiphenyl borate affects the inositol 1,4,5-trisphosphate receptor, the intracellular Ca2+ pump and the non-specific Ca2+ leak from the non-mitochondrial Ca2+ stores in permeabilized A7r5 cells. Cell Calcium, 2001, 29(2), 111-116.
[PMID: 11162848]
[31]
Morihara, H.; Obana, M.; Tanaka, S.; Kawakatsu, I.; Tsuchiyama, D.; Mori, S.; Suizu, H.; Ishida, A.; Kimura, R.; Tsuchimochi, I.; Maeda, M.; Yoshimitsu, T.; Fujio, Y.; Nakayama, H. 2-aminoethoxydiphenyl borate provides an anti-oxidative effect and mediates cardioprotection during ischemia reperfusion in mice. PLoS One, 2017, 12(12)e0189948
[PMID: 29267336]
[32]
Wu, C.Y.; Hsu, W.L.; Wang, C.H.; Liang, J.L.; Tsai, M.H.; Yen, C.J.; Li, H.W.; Chiu, S.J.; Chang, C.H.; Huang, Y.B.; Lin, M.W.; Yoshioka, T. A Novel Strategy for TNF-Alpha Production by 2-APB Induced Downregulated SOCE and Upregulated HSP70 in O. tsutsugamushi-Infected Human Macrophages. PLoS One, 2016, 11(7)e0159299
[PMID: 27472555]
[33]
Bilmen, J.G.; Wootton, L.L.; Godfrey, R.E.; Smart, O.S.; Michelangeli, F. Inhibition of SERCA Ca2+ pumps by 2-aminoethoxydiphenyl borate (2-APB). 2-APB reduces both Ca2+ binding and phosphoryl transfer from ATP, by interfering with the pathway leading to the Ca2+-binding sites. Eur. J. Biochem., 2002, 269(15), 3678-3687.
[PMID: 12153564]
[34]
DeHaven, W.I.; Smyth, J.T.; Boyles, R.R.; Bird, G.S.; Putney, J.W. Jr Complex actions of 2-aminoethyldiphenyl borate on store-operated calcium entry. J. Biol. Chem., 2008, 283(28), 19265-19273.
[PMID: 18487204]
[35]
Xu, X.; Ali, S.; Li, Y.; Yu, H.; Zhang, M.; Lu, J.; Xu, T. 2-Aminoethoxydiphenyl Borate Potentiates CRAC Current by Directly Dilating the Pore of Open Orai1. Sci. Rep., 2016, 6, 29304.
[PMID: 27373367]
[36]
Pelzl, L.; Hauser, S.; Elsir, B.; Sukkar, B.; Sahu, I.; Singh, Y.; Höflinger, P.; Bissinger, R.; Jemaà, M.; Stournaras, C.; Schöls, L.; Lang, F. Lithium Sensitive ORAI1 Expression, Store Operated Ca2+ Entry and Suicidal Death of Neurons in Chorea-Acanthocytosis. Sci. Rep., 2017, 7(1), 6457.
[PMID: 28743945]
[37]
Wei, D.; Mei, Y.; Xia, J.; Hu, H. Orai1 and Orai3 Mediate Store-Operated Calcium Entry Contributing to Neuronal Excitability in Dorsal Root Ganglion Neurons. Front. Cell. Neurosci., 2017, 11, 400.
[PMID: 29311831]
[38]
Wei, M.; Zhou, Y.; Sun, A.; Ma, G.; He, L.; Zhou, L.; Zhang, S.; Liu, J.; Zhang, S.L.; Gill, D.L.; Wang, Y. Molecular mechanisms underlying inhibition of STIM1-Orai1-mediated Ca2+ entry induced by 2-aminoethoxydiphenyl borate. Pflugers Arch., 2016, 468(11-12), 2061-2074.
[PMID: 27726010]
[39]
Li, J.; Wang, P.; Yu, S.; Zheng, Z.; Xu, X. Calcium entry mediates hyperglycemia-induced apoptosis through Ca(2+)/calmodulin-dependent kinase II in retinal capillary endothelial cells. Mol. Vis., 2012, 18, 2371-2379.
[PMID: 23049237]
[40]
Li, J.; Zhao, S.Z.; Wang, P.P.; Yu, S.P.; Zheng, Z.; Xu, X. Calcium mediates high glucose-induced HIF-1α and VEGF expression in cultured rat retinal Müller cells through CaMKII-CREB pathway. Acta Pharmacol. Sin., 2012, 33(8), 1030-1036.
[PMID: 22796763]
[41]
McCain, J. The MAPK (ERK) Pathway: Investigational Combinations for the Treatment Of BRAF-Mutated Metastatic Melanoma. P&T, 2013, 38(2), 96-108.
[PMID: 23599677]
[42]
Eapen, A.; Ramachandran, A.; Pratap, J.; George, A. Activation of the ERK1/2 mitogen-activated protein kinase cascade by dentin matrix protein 1 promotes osteoblast differentiation. Cells Tissues Organs (Print), 2011, 194(2-4), 255-260.
[PMID: 21546758]
[43]
Liu, M.; Inoue, K.; Leng, T.; Guo, S.; Xiong, Z.G. TRPM7 channels regulate glioma stem cell through STAT3 and Notch signaling pathways. Cell. Signal., 2014, 26(12), 2773-2781.
[PMID: 25192910]
[44]
Schilling, T.; Miralles, F.; Eder, C. TRPM7 regulates proliferation and polarisation of macrophages. J. Cell Sci., 2014, 127(Pt 21), 4561-4566.
[PMID: 25205764]
[45]
Schappe, M.S.; Szteyn, K.; Stremska, M.E.; Mendu, S.K.; Downs, T.K.; Seegren, P.V.; Mahoney, M.A.; Dixit, S.; Krupa, J.K.; Stipes, E.J.; Rogers, J.S.; Adamson, S.E.; Leitinger, N.; Desai, B.N. Chanzyme TRPM7 Mediates the Ca2+ Influx Essential for Lipopolysaccharide-Induced Toll-Like Receptor 4 Endocytosis and Macrophage Activation. Immunity, 2018, 48(1), 59-74.e5.
[PMID: 29343440]
[46]
Huang, B.P.; Lin, C.S.; Wang, C.J.; Kao, S.H. Upregulation of heat shock protein 70 and the differential protein expression induced by tumor necrosis factor-alpha enhances migration and inhibits apoptosis of hepatocellular carcinoma cell HepG2. Int. J. Med. Sci., 2017, 14(3), 284-293.
[PMID: 28367089]
[47]
Stetler, R.A.; Gan, Y.; Zhang, W.; Liou, A.K.; Gao, Y.; Cao, G.; Chen, J. Heat Shock Proteins: Cellular and Molecular Mechanisms in the CNS. Prog. Neurobiol., 92, 184-211.
[PMID: 20685377]
[48]
Meini, A.; Sticozzi, C.; Massai, L.; Palmi, M. A nitric oxide/Ca(2+)/calmodulin/ERK1/2 mitogen-activated protein kinase pathway is involved in the mitogenic effect of IL-1β in human astrocytoma cells. Br. J. Pharmacol., 2008, 153(8), 1706-1717.
[PMID: 18297103]
[49]
Uhl, B.; Vadlau, Y.; Zuchtriegel, G.; Nekolla, K.; Sharaf, K.; Gaertner, F.; Massberg, S.; Krombach, F.; Reichel, C.A. Aged neutrophils contribute to the first line of defense in the acute inflammatory response. Blood, 2016, 128(19), 2327-2337.
[PMID: 27609642]
[50]
Conejeros, I.; Jara, E.; Carretta, M.D.; Alarcón, P.; Hidalgo, M.A.; Burgos, R.A. 2-Aminoethoxydiphenyl borate (2-APB) reduces respiratory burst, MMP-9 release and CD11b expression, and increases l-selectin shedding in bovine neutrophils. Res. Vet. Sci., 2012, 92(1), 103-110.
[PMID: 21071047]
[51]
Selders, G.S.; Fetz, A.E.; Radic, M.Z.; Bowlin, G.L. An overview of the role of neutrophils in innate immunity, inflammation and host-biomaterial integration. Regen. Biomater., 2017, 4(1), 55-68.
[PMID: 28149530]
[52]
Lukácsi, S.; Nagy-Baló, Z.; Erdei, A.; Sándor, N.; Bajtay, Z. The role of CR3 (CD11b/CD18) and CR4 (CD11c/CD18) in complement-mediated phagocytosis and podosome formation by human phagocytes. Immunol. Lett., 2017, 189, 64-72.
[PMID: 28554712]
[53]
Bekes, E.M.; Schweighofer, B.; Kupriyanova, T.A.; Zajac, E.; Ardi, V.C.; Quigley, J.P.; Deryugina, E.I. Tumor-recruited neutrophils and neutrophil TIMP-free MMP-9 regulate coordinately the levels of tumor angiogenesis and efficiency of malignant cell intravasation. Am. J. Pathol., 2011, 179(3), 1455-1470.
[PMID: 21741942]
[54]
Ling, G.S.; Bennett, J.; Woollard, K.J.; Szajna, M.; Fossati-Jimack, L.; Taylor, P.R.; Scott, D.; Franzoso, G.; Cook, H.T.; Botto, M. Integrin CD11b positively regulates TLR4-induced signalling pathways in dendritic cells but not in macrophages. Nat. Commun., 2014, 5, 3039.
[PMID: 24423728]
[55]
Ivetic, A. A head-to-tail view of L-selectin and its impact on neutrophil behaviour. Cell Tissue Res., 2018, 371(3), 437-453.
[PMID: 29353325]
[56]
Naegelen, I.; Beaume, N.; Plançon, S.; Schenten, V.; Tschirhart, E.J.; Bréchard, S. Regulation of Neutrophil Degranulation and Cytokine Secretion: A Novel Model Approach Based on Linear Fitting. J. Immunol. Res., 2015.2015817038
[PMID: 26579547]
[57]
Conejeros, I.; Velásquez, Z.D.; Carretta, M.D.; Alarcón, P.; Hidalgo, M.A.; Burgos, R.A. 2-Aminoethoxydiphenyl borate (2-APB) reduces alkaline phosphatase release, CD63 expression, F-actin polymerization and chemotaxis without affecting the phagocytosis activity in bovine neutrophils. Vet. Immunol. Immunopathol., 2012, 145(1-2), 540-545.
[PMID: 22226550]
[58]
Krystel-Whittemore, M.; Dileepan, K.N.; Wood, J.G. Mast Cell: A Multi-Functional Mast Cell. Front. Immunol., 2015, 1-12.
[PMID: 26779180]
[59]
Bulfone-Paus, S.; Bahri, R. Mast Cells as Regulators of T Cell Responses. Front. Immunol., 2015, 6, 394.
[PMID: 26300882]
[60]
da Silva, E.Z.M.; Jamur, M.C.; Oliver, C. Mast cell function: a new vision of an old cell. J. Histochem. Cytochem., 2014, 62(10), 698-738.
[PMID: 25062998]
[61]
Ng, N.M.; Jiang, S.P.; Zhang, W. 2-Aminoethoxydiphenyl borate reduces degranulation and release of cytokines in a rat mast cell line. Eur. Rev. Med. Pharmacol. Sci., 2012, 16(8), 1017-1021.
[PMID: 22913150]
[62]
Singh, M.; Jadhav, H.R. Histamine H3 receptor function and ligands: recent developments. Mini Rev. Med. Chem., 2013, 13(1), 47-57.
[PMID: 22931528]
[63]
Thurmond, R.L. The histamine H4 receptor: from orphan to the clinic. Front. Pharmacol., 2015, 6, 65.
[PMID: 25873897]
[64]
Hong-Tao, M.; Beaven, M.A. Regulators of Ca2+ Signaling in Mast Cells: Potencial Targets For Treatment of Mast-Cell Related Diseases?; Madame Curie Bioscience Database, Landes Bioscience, 2013, pp. 2000-2013.
[65]
Mekori, Y.A.; Hershko, A.Y.T. T cell-mediated modulation of mast cell function: heterotypic adhesion-induced stimulatory or inhibitory effects. Front. Immunol., 2012, 3, 6.
[PMID: 22566892]
[66]
Caughey, G.H. Mast cell proteases as protective and inflammatory mediators. Adv. Exp. Med. Biol., 2011, 716, 212-234.
[PMID: 21713659]
[67]
Huang, L.; Ng, N.M.; Chen, M.; Lin, X.; Tang, T.; Cheng, H.; Yang, C.; Jiang, S. Inhibition of TRPM7 channels reduces degranulation and release of cytokines in rat bone marrow-derived mast cells. Int. J. Mol. Sci., 2014, 15(7), 11817-11831.
[PMID: 24995695]
[68]
Tanaka, T.; Narazaki, M.; Kishimoto, T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb. Perspect. Biol., 2014, 6(10)a016295
[PMID: 25190079]
[69]
Devos, F.C.; Pollaris, L.; Cremer, J.; Seys, S.; Hoshino, T.; Ceuppens, J.; Talavera, K.; Nemery, B.; Hoet, P.H.M.; Vanoirbeek, J.A.J. IL-13 is a central mediator of chemical-induced airway hyperreactivity in mice. PLoS One, 2017, 12(7)e0180690
[PMID: 28704401]
[70]
Boyette, L.B.; Macedo, C.; Hadi, K.; Elinoff, B.D.; Walters, J.T.; Ramaswami, B.; Chalasani, G.; Taboas, J.M.; Lakkis, F.G.; Metes, D.M. Phenotype, function, and differentiation potential of human monocyte subsets. PLoS One, 2017, 12(4)e0176460
[PMID: 28445506]
[71]
Zhao, Z.; Ni, Y.; Chen, J.; Zhong, J.; Yu, H.; Xu, X.; He, H.; Yan, Z.; Scholze, A.; Liu, D.; Zhu, Z.; Tepel, M. Increased migration of monocytes in essential hypertension is associated with increased transient receptor potential channel canonical type 3 channels. PLoS One, 2012, 7(3)e32628
[PMID: 22438881]
[72]
Vigano, E.; Diamond, C.E.; Spreafico, R. Balachander, Sobota, R.M.; Mortellaro, A. Human Caspase-4 and Caspase-5 regulate the one-step non-canonical inflammasome activation in monocytes. Nat. Commun., 2015, 6, 1-13.
[73]
Schilling, T.; Eder, C. Non-selective cation channel activity is required for lysophosphatidylcholine-induced monocyte migration. J. Cell. Physiol., 2009, 221(2), 325-334.
[PMID: 19562685]
[74]
Akerele, O.A.; Cheema, S.K. Fatty acyl composition of lysophosphatidylcholine is important in atherosclerosis. Med. Hypotheses, 2015, 85(6), 754-760.
[PMID: 26604024]
[75]
Gonçalves, I.; Edsfeldt, A.; Ko, N.Y.; Grufman, H.; Berg, K.; Björkbacka, H.; Nitulescu, M.; Persson, A.; Nilsson, M.; Prehn, C.; Adamski, J.; Nilsson, J. Evidence supporting a key role of Lp-PLA2-generated lysophosphatidylcholine in human atherosclerotic plaque inflammation. Arterioscler. Thromb. Vasc. Biol., 2012, 32(6), 1505-1512.
[PMID: 22499993]
[76]
Kanaoka, Y.; Boyce, J.A. Cysteinyl leukotrienes and their receptors; emerging concepts. Allergy Asthma Immunol. Res., 2014, 6(4), 288-295.
[PMID: 24991451]
[77]
Colazzo, F.; Gelosa, P.; Tremoli, E.; Sironi, L.; Castiglioni, L. Role of the Cysteinyl Leukotrienes in the Pathogenesis and Progression of Cardiovascular Diseases. Mediators Inflamm., 2017. 20172432958
[PMID: 28932020]
[78]
Laidlaw, T.M.; Boyce, J.A. Cysteinyl leukotriene receptors, old and new; implications for asthma. Clin. Exp. Allergy, 2012, 42(9), 1313-1320.
[PMID: 22925317]
[79]
Woszczek, G.; Chen, L.Y.; Nagineni, S.; Kern, S.; Barb, J.; Munson, P.J.; Logun, C.; Danner, R.L.; Shelhamer, J.H. Leukotriene D(4) induces gene expression in human monocytes through cysteinyl leukotriene type I receptor. J. Allergy Clin. Immunol., 2008, 121(1), 215-221.e1.
[PMID: 18028998]
[80]
Tibúrcio, R.; Nunes, S.; Nunes, I.; Rosa Ampuero, M.; Silva, I.B.; Lima, R.; Machado Tavares, N.; Brodskyn, C. Molecular Aspects of Dendritic Cell Activation in Leishmaniasis: An Immunobiological View. Front. Immunol., 2019, 10, 227.
[PMID: 30873156]
[81]
Worbs, T.; Hammerschmidt, S.I.; Förster, R. Dendritic cell migration in health and disease. Nat. Rev. Immunol., 2017, 17(1), 30-48.
[PMID: 27890914]
[82]
Vukcevic, M.; Zorzato, F.; Spagnoli, G.; Treves, S. Frequent calcium oscillations lead to NFAT activation in human immature dendritic cells. J. Biol. Chem., 2010, 285(21), 16003-16011.
[PMID: 20348098]
[83]
Bandyopadhyay, B.C.; Pingle, S.C.; Ahern, G.P. Store-operated Ca2+ signaling in dendritic cells occurs independently of STIM1. J. Leukoc. Biol., 2011, 89(1), 57-62.
[PMID: 20971921]
[84]
Félix, R.; Crottès, D.; Delalande, A.; Fauconnier, J.; Lebranchu, Y.; Le Guennec, J.Y.; Velge-Roussel, F. The Orai-1 and STIM-1 complex controls human dendritic cell maturation. PLoS One, 2013, 8(5)e61595
[PMID: 23700407]
[85]
Zundler, S.; Neurath, M.F. Interleukin-12: Functional activities and implications for disease. Cytokine Growth Factor Rev 2015, 26(5), 559-568.
[PMID: 26182974]
[86]
Trifunović, J.; Miller, L.; Debeljak, Ž.; Horvat, V. Pathologic patterns of interleukin 10 expression--a review. Biochem. Med. (Zagreb), 2015, 25(1), 36-48.
[PMID: 25672465]
[87]
Kak, G.; Raza, M.; Tiwari, B.K. Interferon-gamma (IFN-γ): Exploring its implications in infectious diseases. Biomol. Concepts, 2018, 9(1), 64-79.
[PMID: 29856726]
[88]
Bonilla, F.A.; Oettgen, H.C. Adaptive immunity. J. Allergy Clin. Immunol., 2010, 125(2)(Suppl. 2), S33-S40.
[PMID: 20061006]
[89]
Shaw, P.J.; Feske, S. Regulation of lymphocyte function by ORAI and STIM proteins in infection and autoimmunity. J. Physiol., 2012, 590(17), 4157-4167.
[PMID: 22615435]
[90]
Wu, Y.F.; Zhao, P.; Luo, X.; Xu, J.C.; Xue, L.; Zhou, Q.; Xiong, M.; Shen, J.; Peng, Y.B.; Yu, M.F.; Chen, W.; Ma, L.; Liu, Q.H. Chloroquine inhibits Ca2+ permeable ion channels-mediated Ca2+ signaling in primary B lymphocytes. Cell Biosci., 2017, 7, 28.
[PMID: 28546857]
[91]
Joseph, N.; Reicher, B.; Barda-Saad, M. The calcium feedback loop and T cell activation: how cytoskeleton networks control intracellular calcium flux. Biochim. Biophys. Acta, 2014, 1838(2), 557-568.
[PMID: 23860253]
[92]
Conforti, L. Potassium channels of T lymphocytes take center stage in the fight against cancer. J. Immunother. Cancer, 2017, 5, 2.
[PMID: 28105369]
[93]
Sevelsted Møller, L.; Fialla, A.D.; Schierwagen, R.; Biagini, M.; Liedtke, C.; Laleman, W.; Klein, S.; Reul, W.; Koch Hansen, L.; Rabjerg, M.; Singh, V.; Surra, J.; Osada, J.; Reinehr, R.; de Muckadell, O.B.S.; Köhler, R.; Trebicka, J. The calcium-activated potassium channel KCa3.1 is an important modulator of hepatic injury. Sci. Rep., 2016, 6, 28770.
[PMID: 27354175]
[94]
Littlechild, R.; Zaidman, N.; Khodaverdi, D.; Mason, M.J. Inhibition of KCa3.1 by depolarisation and 2-aminoethoxydiphenyl borate (2-APB) during Ca2+ release activated Ca2+ (CRAC) entry in human erythroleukemia (HEL) cells: Implications for the interpretation of 2-APB inhibition of CRAC entry. Cell Calcium, 2015, 57(2), 76-88.
[PMID: 25601026]
[95]
Nagaleekar, V.K.; Diehl, S.A.; Juncadella, I.; Charland, C.; Muthusamy, N.; Eaton, S.; Haynes, L.; Garrett-Sinha, L.A.; Anguita, J.; Rincón, M. IP3 receptor-mediated Ca2+ release in naive CD4 T cells dictates their cytokine program. J. Immunol., 2008, 181(12), 8315-8322.
[PMID: 19050248]
[96]
Taylor, C.W.; Tovey, S.C. IP(3) receptors: toward understanding their activation. Cold Spring Harb. Perspect. Biol., 2010, 2(12)a004010
[PMID: 20980441]
[97]
Baba, Y.; Kurosaki, T. Role of Calcium Signaling in B Cell Activation and Biology. Curr. Top. Microbiol. Immunol., 2016, 393, 143-174.
[PMID: 26369772]
[98]
de Gorter, D.J.J.; Vos, J.C.M.; Pals, S.T.; Spaargaren, M. The B cell antigen receptor controls AP-1 and NFAT activity through Ras-mediated activation of Ral. J. Immunol., 2007, 178(3), 1405-1414.
[PMID: 17237388]
[99]
Bhattacharyya, S.; Deb, J.; Patra, A.K.; Thuy Pham, D.A.; Chen, W.; Vaeth, M.; Berberich-Siebelt, F.; Klein-Hessling, S.; Lamperti, E.D.; Reifenberg, K.; Jellusova, J.; Schweizer, A.; Nitschke, L.; Leich, E.; Rosenwald, A.; Brunner, C.; Engelmann, S.; Bommhardt, U.; Avots, A.; Müller, M.R.; Kondo, E.; Serfling, E. NFATc1 affects mouse splenic B cell function by controlling the calcineurin--NFAT signaling network. J. Exp. Med., 2011, 208(4), 823-839.
[PMID: 21464221]
[100]
Giampaolo, S.; Wójcik, G.; Klein-Hessling, S.; Serfling, E.; Patra, A.K. B cell development is critically dependent on NFATc1 activity. Cell. Mol. Immunol., 2019, 16(5), 508-520.
[PMID: 29907883]
[101]
Maus, M.; Medgyesi, D.; Kiss, E.; Schneider, A.E.; Enyedi, A.; Szilágyi, N.; Matkó, J.; Sármay, G. B cell receptor-induced Ca2+ mobilization mediates F-actin rearrangements and is indispensable for adhesion and spreading of B lymphocytes. J. Leukoc. Biol., 2013, 93(4), 537-547.
[PMID: 23362305]
[102]
Liu, Q.H.; Liu, X.; Wen, Z.; Hondowicz, B.; King, L.; Monroe, J.; Freedman, B.D. Distinct calcium channels regulate responses of primary B lymphocytes to B cell receptor engagement and mechanical stimuli. J. Immunol., 2005, 174(1), 68-79.
[PMID: 15611229]
[103]
Tsubata, T. B-cell tolerance and autoimmunity. F1000 Res., 2017, 6, 391.
[PMID: 28408984]
[104]
Belgacem, Y.H.; Borodinsky, L.N. Correction for Belgacem and Borodinsky, Sonic hedgehog signaling is decoded by calcium spike activity in the developing spinal cord. Proc. Natl. Acad. Sci. USA, 2011, 108, 15534-15534.
[105]
Bootman, M.D.; Collins, T.J.; Mackenzie, L.; Roderick, H.L.; Berridge, M.J.; Peppiatt, C.M. 2-aminoethoxydiphenyl borate (2-APB) is a reliable blocker of store-operated Ca2+ entry but an inconsistent inhibitor of InsP3-induced Ca2+ release. FASEB J., 2002, 16(10), 1145-1150.
[PMID: 12153982]
[106]
Gutierrez-Martin, Y.; Martin-Romero, F.J.; Henao, F. Store-operated calcium entry in differentiated C2C12 skeletal muscle cells. Biochim. Biophys. Acta, 2005, 1711(1), 33-40.
[PMID: 15904661]
[107]
Isobe, K.; Yokoyama, T.; Moriguchi-Mori, K.; Kumagai, M.; Satoh, Y.I.; Kuji, A.; Saino, T. Role of pituitary adenylyl cyclase-activating polypeptide in intracellular calcium dynamics of neurons and satellite cells in rat superior cervical ganglia. Biomed. Res. (Aligarh), 2017, 38(2), 99-109.
[PMID: 28442666]
[108]
Prakriya, M.; Lewis, R.S. Potentiation and inhibition of Ca(2+) release-activated Ca(2+) channels by 2-aminoethyldiphenyl borate (2-APB) occurs independently of IP(3) receptors. J. Physiol., 2001, 536(Pt 1), 3-19.
[PMID: 11579153]
[109]
Yamboliev, I.A.; Mutafova-Yambolieva, V.N. PI3K and PKC contribute to membrane depolarization mediated by alpha2-adrenoceptors in the canine isolated mesenteric vein. BMC Physiol., 2005, 5, 9.
[PMID: 15958164]
[110]
Wang, Y.; Deshpande, M.; Payne, R. 2-Aminoethoxydiphenyl borate inhibits phototransduction and blocks voltage-gated potassium channels in Limulus ventral photoreceptors. Cell Calcium, 2002, 32(4), 209-216.
[PMID: 12379181]
[111]
Nilius, B.; Flockerzi, V. Mammalian transient receptor potential (TRP) cation channels. Preface. Handb. Exp. Pharmacol., 2014, 223, v-vi.
[PMID: 25296415]
[112]
Montell, C. The TRP superfamily of cation channels. Sci. STKE, 2005, 2005(272), re3-re3.
[PMID: 15728426]
[113]
Wu, L.J.; Sweet, T.B.; Clapham, D.E. International Union of Basic and Clinical Pharmacology. LXXVI. Current progress in the mammalian TRP ion channel family. Pharmacol. Rev., 2010, 62(3), 381-404.
[PMID: 20716668]
[114]
Zhang, E.; Liao, P. Brain transient receptor potential channels and stroke. J. Neurosci. Res., 2015, 93(8), 1165-1183.
[PMID: 25502473]
[115]
Nilius, B.; Owsianik, G.; Voets, T.; Peters, J.A. Transient receptor potential cation channels in disease. Physiol. Rev., 2007, 87(1), 165-217.
[PMID: 17237345]
[116]
Fusco, F.R.; Martorana, A.; Giampà, C.; De March, Z.; Vacca, F.; Tozzi, A.; Longone, P.; Piccirilli, S.; Paolucci, S.; Sancesario, G.; Mercuri, N.B.; Bernardi, G. Cellular localization of TRPC3 channel in rat brain: preferential distribution to oligodendrocytes. Neurosci. Lett., 2004, 365(2), 137-142.
[PMID: 15245795]
[117]
Narayanan, K.L.; Irmady, K.; Subramaniam, S.; Unsicker, K. von Bohlen und Halbach, O. Evidence that TRPC1 is involved in hippocampal glutamate-induced cell death. Neurosci. Lett., 2008, 446(2-3), 117-122.
[PMID: 18822346]
[118]
Flemming, R.; Xu, S.Z.; Beech, D.J. Pharmacological profile of store-operated channels in cerebral arteriolar smooth muscle cells. Br. J. Pharmacol., 2003, 139(5), 955-965.
[PMID: 12839869]
[119]
Hu, H.Z.; Gu, Q.; Wang, C.; Colton, C.K.; Tang, J.; Kinoshita-Kawada, M.; Lee, L.Y.; Wood, J.D.; Zhu, M.X. 2-aminoethoxydiphenyl borate is a common activator of TRPV1, TRPV2, and TRPV3. J. Biol. Chem., 2004, 279(34), 35741-35748.
[PMID: 15194687]
[120]
Trebak, M.; Bird, G.S.J.; McKay, R.R.; Putney, J.W. Jr Comparison of human TRPC3 channels in receptor-activated and store-operated modes. Differential sensitivity to channel blockers suggests fundamental differences in channel composition. J. Biol. Chem., 2002, 277(24), 21617-21623.
[PMID: 11943785]
[121]
Xu, S.Z.; Zeng, F.; Boulay, G.; Grimm, C.; Harteneck, C.; Beech, D.J. Block of TRPC5 channels by 2-aminoethoxydiphenyl borate: a differential, extracellular and voltage-dependent effect. Br. J. Pharmacol., 2005, 145(4), 405-414.
[PMID: 15806115]
[122]
Delmas, P.; Wanaverbecq, N.; Abogadie, F.C.; Mistry, M.; Brown, D.A. Signaling microdomains define the specificity of receptor-mediated InsP(3) pathways in neurons. Neuron, 2002, 34(2), 209-220.
[PMID: 11970863]
[123]
Lievremont, J.P.; Bird, G.S.; Putney, J.W., Jr; Carolina, N. Mechanism of inhibition of TRPC cation channels by 2-aminoethoxydiphenylborane. Mol. Pharmacol., 2005, 68(3), 758-762.
[PMID: 15933213]
[124]
Zamudio-Bulcock, P.A.; Everett, J.; Harteneck, C.; Valenzuela, C.F. Activation of steroid-sensitive TRPM3 channels potentiates glutamatergic transmission at cerebellar Purkinje neurons from developing rats. J. Neurochem., 2011, 119(3), 474-485.
[PMID: 21955047]
[125]
McHugh, D.; Flemming, R.; Xu, S.Z.; Perraud, A.L.; Beech, D.J. Critical intracellular Ca2+ dependence of transient receptor potential melastatin 2 (TRPM2) cation channel activation. J. Biol. Chem., 2003, 278(13), 11002-11006.
[PMID: 12529379]
[126]
Togashi, K.; Inada, H.; Tominaga, M. Inhibition of the transient receptor potential cation channel TRPM2 by 2-aminoethoxydiphenyl borate (2-APB). Br. J. Pharmacol., 2008, 153(6), 1324-1330.
[PMID: 18204483]
[127]
Hanano, T.; Hara, Y.; Shi, J.; Morita, H.; Umebayashi, C.; Mori, E.; Sumimoto, H.; Ito, Y.; Mori, Y.; Inoue, R. Involvement of TRPM7 in cell growth as a spontaneously activated Ca2+ entry pathway in human retinoblastoma cells. J. Pharmacol. Sci., 2004, 95(4), 403-419.
[PMID: 15286426]
[128]
Chokshi, R.; Fruasaha, P.; Kozak, J.A. 2-aminoethyl diphenyl borinate (2-APB) inhibits TRPM7 channels through an intracellular acidification mechanism. Channels (Austin), 2012, 6(5), 362-369.
[PMID: 22922232]
[129]
Chung, M.K.; Lee, H.; Mizuno, A.; Suzuki, M.; Caterina, M.J. 2-aminoethoxydiphenyl borate activates and sensitizes the heat-gated ion channel TRPV3. J. Neurosci., 2004, 24(22), 5177-5182.
[PMID: 15175387]
[130]
Colton, C.K.; Zhu, M.X. 2-Aminoethoxydiphenyl borate as a common activator of TRPV1, TRPV2, and TRPV3 channels. Handb. Exp. Pharmacol., 2007, 179, 173-187.
[PMID: 17217057]
[131]
Bender, F.L.P.; Mederos, Y.; Schnitzler, M.; Li, Y.; Ji, A.; Weihe, E.; Gudermann, T.; Schäfer, M.K. The temperature-sensitive ion channel TRPV2 is endogenously expressed and functional in the primary sensory cell line F-11. Cell. Physiol. Biochem., 2005, 15(1-4), 183-194.
[PMID: 15665528]
[132]
Gao, L.; Yang, P.; Qin, P.; Lu, Y.; Li, X. Tian, Q.; Yao, J. Selective potentiation of 2-APB-induced activation of TRPV1-3 channels by acid. Sci. Rep., 2016, 6, 1-15.
[133]
Gao, R.; Gao, X.; Xia, J.; Tian, Y.; Barrett, J.E.; Dai, Y.; Hu, H. Potent analgesic effects of a store-operated calcium channel inhibitor. Pain, 2013, 154(10), 2034-2044.
[PMID: 23778292]
[134]
Di- Marzo V.; De- Petrocellis, L.; Fezza, F.; Ligresti, A.; Bisogno, T. Anandamide receptors. Prostaglandins Leukot. Essent. Fatty Acids, 2002, 66, 377-391.
[135]
Di- Marzo V.; Blumberg, P.M.; Szallasi, A. Endovanilloid signaling in pain. Curr. Opin. Neurobiol., 2002, 12, 372-379.
[136]
Mezey, E.; Tóth, Z.E.; Cortright, D.N.; Arzubi, M.K.; Krause, J.E.; Elde, R.; Guo, A.; Blumberg, P.M.; Szallasi, A. Distribution of mRNA for vanilloid receptor subtype 1 (VR1), and VR1-like immunoreactivity, in the central nervous system of the rat and human. Proc. Natl. Acad. Sci. USA, 2000, 97(7), 3655-3660.
[PMID: 10725386]
[137]
Alloui, A.; Zimmermann, K.; Mamet, J.; Duprat, F.; Noël, J.; Chemin, J.; Guy, N.; Blondeau, N.; Voilley, N.; Rubat-Coudert, C.; Borsotto, M.; Romey, G.; Heurteaux, C.; Reeh, P.; Eschalier, A.; Lazdunski, M. TREK-1, a K+ channel involved in polymodal pain perception. EMBO J., 2006, 25(11), 2368-2376.
[PMID: 16675954]
[138]
Heurteaux, C.; Guy, N.; Laigle, C.; Blondeau, N.; Duprat, F.; Mazzuca, M.; Lang-Lazdunski, L.; Widmann, C.; Zanzouri, M.; Romey, G.; Lazdunski, M. TREK-1, a K+ channel involved in neuroprotection and general anesthesia. EMBO J., 2004, 23(13), 2684-2695.
[PMID: 15175651]
[139]
Talley, E.M.; Sirois, J.E.; Lei, Q.; Bayliss, D.A. Two-pore-Domain (KCNK) potassium channels: dynamic roles in neuronal function. Neuroscientist, 2003, 9(1), 46-56.
[PMID: 12580339]
[140]
Talley, E.M.; Solórzano, G.; Lei, Q.; Kim, D.; Bayliss, D.A. Cns distribution of members of the two-pore-domain (KCNK) potassium channel family. J. Neurosci., 2001, 21(19), 7491-7505.
[PMID: 11567039]
[141]
Tsunozaki, M.; Bautista, D.M. Mammalian somatosensory mechanotransduction. Curr. Opin. Neurobiol., 2009, 19(4), 362-369.
[PMID: 19683913]
[142]
Beltrán, L.; Beltrán, M.; Aguado, A.; Gisselmann, G.; Hatt, H. 2-Aminoethoxydiphenyl borate activates the mechanically gated human KCNK channels KCNK 2 (TREK-1), KCNK 4 (TRAAK), and KCNK 10 (TREK-2). Front. Pharmacol., 2013, 4, 63.
[PMID: 23720627]
[143]
Druzin, M.; Johansson, S. 2-Aminoethyl Diphenylborinate Blocks GABAA-Receptor-Mediated Currents in Rat Medial Preoptic Neurons. Opera Med. Physiol., 2016, 2, 63-68.
[144]
New, D.C.; An, H.; Ip, N.Y.; Wong, Y.H. GABAB heterodimeric receptors promote Ca2+ influx via store-operated channels in rat cortical neurons and transfected Chinese hamster ovary cells. Neuroscience, 2006, 137(4), 1347-1358.
[PMID: 16343781]
[145]
Faull, R.L.M.; Villiger, J.W. Multiple benzodiazepine receptors in the human basal ganglia: a detailed pharmacological and anatomical study. Neuroscience, 1988, 24(2), 433-451.
[PMID: 2834664]
[146]
Hendry, S.H.C.; Huntsman, M.M.; Viñuela, A.; Möhler, H.; de Blas, A.L.; Jones, E.G. GABAA receptor subunit immunoreactivity in primate visual cortex: distribution in macaques and humans and regulation by visual input in adulthood. J. Neurosci., 1994, 14(4), 2383-2401.
[PMID: 8158275]
[147]
Kullmann, D.M.; Ruiz, A.; Rusakov, D.M.; Scott, R.; Semyanov, A.; Walker, M.C. Presynaptic, extrasynaptic and axonal GABAA receptors in the CNS: where and why? Prog. Biophys. Mol. Biol., 2005, 87(1), 33-46.
[PMID: 15471589]
[148]
Mendez, I.; Elisevich, K.; Flumerfelt, B.A.M. GABAergic synaptic interactions in the substantia nigra. Brain Res., 1993, 617(2), 274-284.
[PMID: 8104661]
[149]
Nutt, D. GABA A Receptors : Subtypes, Regional Distribution and Function. J. Clin. Sleep Med., 1999, 2, 7-11.
[150]
Waldvogel, H.J.; Baer, K.; Faull, R.L.M. Distribution of GABAA Receptor Subunits in the Human Brain. J. Clin. Sleep Med., 1999, 2, 7-11. 2010
[151]
Hamada, T.; Liou, S.Y.; Fukushima, T.; Maruyama, T.; Watanabe, S.; Mikoshiba, K.; Ishida, N. The role of inositol trisphosphate-induced Ca2+ release from IP3-receptor in the rat suprachiasmatic nucleus on circadian entrainment mechanism. Neurosci. Lett., 1999, 263(2-3), 125-128.
[PMID: 10213151]
[152]
Leng, T.D.; Li, M.H.; Shen, J.F.; Liu, M.L.; Li, X.B. Sun, H.W.; Branigan, D.; Zeng, Z.; Si, H.F. Li, J.; Chen, J.; Xiong, Z.G. Suppression of TRPM7 inhibits proliferation, migration, and invasion of malignant human gliomacells. CNS Neurosci. Ther., 2015, 21, 252-261.
[PMID: 25438992]
[153]
Akay, Y.M.; Dragomire, A.; Wu, J.; Akay, M. 2-APB reduces the complexity of hippocampal gamma oscillations in rats. Conf. Proc. IEEE Eng. Med. Biol. Soc., 2008, 2008, 3680-3681.
[PMID: 19163510]
[154]
Steinbeck, J.A.; Henke, N.; Opatz, J.; Gruszczynska-Biegala, J.; Schneider, L.; Theiss, S.; Hamacher, N.; Steinfarz, B.; Golz, S.; Brüstle, O.; Kuznicki, J.; Methner, A. Store-operated calcium entry modulates neuronal network activity in a model of chronic epilepsy. Exp. Neurol., 2011, 232(2), 185-194.
[PMID: 21906591]
[155]
Naziroğlu, M.; Uğuz, A.C.; Ismailoğlu, Ö.; Çiğ, B.; Özgül, C.; Borcak, M. Role of TRPM2 cation channels in dorsal root ganglion of rats after experimental spinal cord injury. Muscle Nerve, 2013, 48(6), 945-950.
[PMID: 23512594]
[156]
Wolkowicz, P.E.; Wu, H.C.; Urthaler, F.; Ku, D.D. 2-APB induces instability in rat left atrial mechanical activity. J. Cardiovasc. Pharmacol., 2007, 49(5), 325-335.
[PMID: 17513952]
[157]
Xiao, J.; Liang, D.; Zhao, H.; Liu, Y.; Zhang, H.; Lu, X.; Liu, Y.; Li, J.; Peng, L.; Chen, Y.H. 2-Aminoethoxydiphenyl borate, a inositol 1,4,5-triphosphate receptor inhibitor, prevents atrial fibrillation. Exp. Biol. Med. (Maywood), 2010, 235(7), 862-868.
[PMID: 20472714]
[158]
Nakipova, O.V.; Averin, A.S.; Evdokimovskii, E.V.; Pimenov, O.Y.; Kosarski, L.; Ignat’ev, D.; Anufriev, A.; Kokoz, Y.M.; Reyes, S.; Terzic, A.; Alekseev, A.E. Store-operated Ca2+ entry supports contractile function in hearts of hibernators. PLoS One, 2017, 12(5)e0177469
[PMID: 28531217]
[159]
Németh, K.; Kurucz, I. Suppression of Ca2+ influx by unfractionated heparin in non-excitable intact cells via multiple mechanisms. Biochem. Pharmacol., 2005, 69(6), 929-940.
[PMID: 15748704]
[160]
Yu, Y.; Chen, S.; Xiao, C.; Jia, Y.; Guo, J.; Jiang, J.; Liu, P. TRPM7 is involved in angiotensin II induced cardiac fibrosis development by mediating calcium and magnesium influx. Cell Calcium, 2014, 55(5), 252-260.
[PMID: 24680379]
[161]
Wang, L.J.; Ma, K.T.; Shi, W.Y.; Wang, Y.Z.; Zhao, L.; Chen, X.Y.; Li, X.Z.; Jiang, X.W.; Zhang, Z.S.; Li, L.; Si, J.Q. Enhanced gap junctional channel activity between vascular smooth muscle cells in cerebral artery of spontaneously hypertensive rats. Clin. Exp. Hypertens., 2017, 39(4), 295-305.
[PMID: 28513236]
[162]
Ma, K.T.; Guan, B.C.; Yang, Y.Q.; Nuttall, A.L.; Jiang, Z.G. 2-Aminoethoxydiphenyl borate blocks electrical coupling and inhibits voltage-gated K+ channels in guinea pig arteriole cells. Am. J. Physiol. Heart Circ. Physiol., 2011, 300(1), H335-H346.
[PMID: 21037232]
[163]
Ewart, M.A.; Ugusman, A.; Vishwanath, A.; Almabrouk, T.A.M.; Alganga, H.; Katwan, O.J.; Hubanova, P.; Currie, S.; Kennedy, S. Changes in IP3 Receptor Expression and Function in Aortic Smooth Muscle of Atherosclerotic Mice. J. Vasc. Res., 2017, 54(2), 68-78.
[PMID: 28365690]
[164]
Simo-Cheyou, E.R.; Tan, J.J.; Grygorczyk, R.; Srivastava, A.K. STIM-1 and ORAI-1 channel mediate angiotensin-II-induced expression of Egr-1 in vascular smooth muscle cells. J. Cell. Physiol., 2017, 232(12), 3496-3509.
[PMID: 28105751]
[165]
Ishida, H.; Saito, S.Y.; Hishinuma, E.; Ishikawa, T. Differential Contribution of Nerve-Derived Noradrenaline to High K+-Induced Contraction Depending on Type of Artery. Biol. Pharm. Bull., 2017, 40(1), 56-60.
[PMID: 28049949]
[166]
Han, A.Y.; Lee, H.S.; Seol, G.H. Foeniculum vulgare Mill. increases cytosolic Ca2+ concentration and inhibits store-operated Ca2+ entry in vascular endothelial cells. Biomed. Pharmacother., 2016, 84, 800-805.
[PMID: 27721178]
[167]
Bencze, M.; Behuliak, M.; Vavřínová, A.; Zicha, J. Broad-range TRP channel inhibitors (2-APB, flufenamic acid, SKF-96365) affect differently contraction of resistance and conduit femoral arteries of rat. Eur. J. Pharmacol., 2015, 765, 533-540.
[PMID: 26384458]
[168]
Chen, X.; Yang, D.; Ma, S.; He, H.; Luo, Z.; Feng, X.; Cao, T.; Ma, L.; Yan, Z.; Liu, D.; Tepel, M.; Zhu, Z. Increased rhythmicity in hypertensive arterial smooth muscle is linked to transient receptor potential canonical channels. J. Cell. Mol. Med., 2010, 14(10), 2483-2494.
[PMID: 19725917]
[169]
Murakami, K.; Osanai, T.; Tanaka, M.; Nishizaki, K.; Kinjo, T.; Tanno, T.; Ishida, Y.; Suzuki, A.; Endo, T.; Tomita, H.; Okumura, K. Enhanced transient receptor potential channel-mediated Ca2+ influx in the cells with phospholipase C-δ1 overexpression: its possible role in coronary artery spasm. Fundam. Clin. Pharmacol., 2017, 31(4), 383-391.
[PMID: 28107550]
[170]
Wong, P.S.; Roberts, R.E.; Randall, M.D. Sex differences in the role of transient receptor potential (TRP) channels in endothelium-dependent vasorelaxation in porcine isolated coronary arteries. Eur. J. Pharmacol., 2015, 750, 108-117.
[PMID: 25620134]
[171]
Segri, N.J.; Borim, F.S.A.; Malta, D.C.; Fontbonne, A. De- Souza, E.C.; De- Oliveira, J.C.; Rodrigues, H.; Souza, W.V. HMGB1 Is Mechanistically Essential in the Development of Experimental Pulmonary Hypertension Am. J. Physiol. Physiol., 2018, 47, 36.
[172]
Henriquez, M.; Fonseca, M.; Perez-Zoghbi, J.F. Purinergic receptor stimulation induces calcium oscillations and smooth muscle contraction in small pulmonary veins. J. Physiol., 2018, 596(13), 2491-2506.
[PMID: 29790164]
[173]
Mader, F.; Krause, L.; Tokay, T.; Hakenberg, O.W.; Köhling, R.; Kirschstein, T. P2Y receptor-mediated transient relaxation of rat longitudinal ileum preparations involves phospholipase C activation, intracellular Ca(2+) release and SK channel activation. Acta Pharmacol. Sin., 2016, 37(5), 617-628.
[PMID: 27018177]
[174]
Ye, J.; Huang, J.; He, Q.; Zhao, W.; Zhou, X.; Zhang, Z.; Li, Y.; Wei, J.; Zhang, J. Blockage of store-operated Ca2+ entry antagonizes Epstein-Barr virus-promoted angiogenesis by inhibiting Ca2+ signaling-regulated VEGF production in nasopharyngeal carcinoma. Cancer Manag. Res., 2018, 10, 1115-1124.
[PMID: 29785139]
[175]
Pecenin, M.F.; Borges-Pereira, L.; Levano-Garcia, J.; Budu, A.; Alves, E.; Mikoshiba, K.; Thomas, A.; Garcia, C.R.S. Blocking IP3 signal transduction pathways inhibits melatonin-induced Ca2+ signals and impairs P. falciparum development and proliferation in erythrocytes. Cell Calcium, 2018, 72, 81-90.
[PMID: 29748136]
[176]
Van- Kruchten R.; Braun, A.; Feijge, M.A.; Kuijpers M.J.; Rivera-Galdos, R.; Kraft, P.; Stoll, G.; Kleinschnitz, C.; Bevers, E.M.; Nieswandt, B.; Heemskerk, J.W. Antithrombotic potential of blockers of store-operated calcium channels in platelets. Arterioscler. Thromb. Vasc. Biol., 2012, 32, 1717-1723.
[177]
Your Digestive System & How it Works, https://www.niddk.nih.gov/health-information/digestive-diseases/digestive-system-how-it-works (accessed May 29, 2019).
[178]
Furness, J.B.; Robbins, H.L.; Xiao, J.; Stebbing, M.J.; Nurgali, K. Projections and chemistry of Dogiel type II neurons in the mouse colon. Cell Tissue Res., 2004, 317(1), 1-12.
[PMID: 15170562]
[179]
Nurgali, K.; Stebbing, M.J.; Furness, J.B. Correlation of electrophysiological and morphological characteristics of enteric neurons in the mouse colon. J. Comp. Neurol., 2004, 468(1), 112-124.
[PMID: 14648694]
[180]
Martin- Cano F.E.; Gomez-Pinilla, P.J.; Pozo, M.J.; Camello, P.J. Spontaneous calcium oscillations in urinary bladder smooth muscle cells. J. Physiol. Pharmacol., 2009, 60, 93-99.
[181]
Karademir, M.; Gonul, Y.; Simsek, N.; Eser, O. The neuroprotective effects of 2-APB in rats with experimentally- -induced severe acute pancreatitis. Bratisl. Lek Listy, 2018, 119(12), 752-756.
[PMID: 30686013]
[182]
Ozaki, S.; Suzuki, A.Z.; Bauer, P.O.; Ebisui, E.; Mikoshiba, K. 2-Aminoethyl diphenylborinate (2-APB) analogues: regulation of Ca2+ signaling. Biochem. Biophys. Res. Commun., 2013, 441(2), 286-290.
[PMID: 24036266]
[183]
Arpigny, J.L.; Jaeger, K.E. Bacterial lipolytic enzymes: classification and properties. Biochem. J., 1999, 343(Pt 1), 177-183.
[PMID: 10493927]
[184]
Squecco, R.; Garella, R.; Luciani, G.; Francini, F.; Baccari, M.C. Muscular effects of orexin A on the mouse duodenum: mechanical and electrophysiological studies. J. Physiol., 2011, 589(Pt 21), 5231-5246.
[PMID: 21911618]
[185]
Dellis, O.; Mercier, P.; Chomienne, C. The boron-oxygen core of borinate esters is responsible for the store-operated calcium entry potentiation ability. BMC Pharmacol., 2011, 11, 1-12.
[PMID: 21266088]
[186]
Basbug, M.; Ozkan, O.F.; Cavdar, F. The Effects of 2-Aminoethyl Diphenylborinate on L-Arginine Induced Acute Pancreatitis in the Rats. Med. Sci. Disc., 2015, 2, 252-257.
[187]
Aksit, D.; Aksit, H.; Yildiz, O.; Dogru, M.S.; Yay, A.H.; Baykalir, B.G. Protective Effect of 2-Aminoethyl Diphenylborinate in Rat Colitis Model Induced by Acetic Acid. Int. J. Clin. Exp. Med., 2016, 9, 6219-6227.
[188]
Gregory, R.B.; Hughes, R.; Barritt, G.J. Induction of cholestasis in the perfused rat liver by 2-aminoethyl diphenylborate, an inhibitor of the hepatocyte plasma membrane Ca2+ channels. J. Gastroenterol. Hepatol., 2004, 19(10), 1128-1134.
[PMID: 15377289]
[189]
Kline, L.; Karpinski, E. Quercetin relaxes guinea pig gallbladder strips. Nutr. Res., 2016, 36(10), 1098-1104.
[PMID: 27865351]
[190]
Masia, R.; Yellen, G. Outwardly Rectifying Currents in Hepatocytes Are Inhibited by 2-APB. Biophys. J., 2012, 102, 680.
[191]
Comollo, T.W. Suggests Cx26 and 32 2-APB Site Molecular Modeling Suggests Homologous 2- APB Binding Sites in Connexins 26 and 32. bioRxiv, 2018, 1, 1-5.
[192]
Wang, G.; Zhang, J.; Xu, C.; Han, X.; Gao, Y.; Chen, H. Inhibition of SOCs Attenuates Acute Lung Injury Induced by Severe Acute Pancreatitis in Rats and PMVECs Injury Induced by Lipopolysaccharide. Inflammation, 2016, 39(3), 1049-1058.
[PMID: 27025854]
[193]
Takada, M.; Noguchi, A.; Sayama, Y.; Kurohane Kaneko, Y.; Ishikawa, T. Inositol 1,4,5-trisphosphate receptor-mediated initial Ca(2+) mobilization constitutes a triggering signal for hydrogen peroxide-induced apoptosis in INS-1 β-cells. Biol. Pharm. Bull., 2011, 34(7), 954-958.
[PMID: 21719997]
[194]
Nicoud, I.B.; Knox, C.D.; Jones, C.M.; Anderson, C.D.; Pierce, J.M.; Belous, A.E.; Earl, T.M.; Chari, R.S. 2-APB protects against liver ischemia-reperfusion injury by reducing cellular and mitochondrial calcium uptake. Am. J. Physiol. Gastrointest. Liver Physiol., 2007, 293(3), G623-G630.
[PMID: 17627971]
[195]
Du, K.; Williams, C.D.; McGill, M.R.; Xie, Y.; Farhood, A.; Vinken, M.; Jaeschke, H. The gap junction inhibitor 2-aminoethoxy-diphenyl-borate protects against acetaminophen hepatotoxicity by inhibiting cytochrome P450 enzymes and c-jun N-terminal kinase activation. Toxicol. Appl. Pharmacol., 2013, 273(3), 484-491.
[PMID: 24070586]
[196]
Lam, D.H.; Grant, C.E.; Hill, C.E. Differential expression of TRPM7 in rat hepatoma and embryonic and adult hepatocytes. Can. J. Physiol. Pharmacol., 2012, 90(4), 435-444.
[PMID: 22429021]
[197]
Qu, Y.Q.; Gordillo-Martinez, F.; Law, B.Y.K.; Han, Y.; Wu, A.; Zeng, W.; Lam, W.K.; Ho, C.; Mok, S.W.F.; He, H.Q.; Wong, V.K.W.; Wang, R. 2-Aminoethoxydiphenylborane sensitizes anti-tumor effect of bortezomib via suppression of calcium-mediated autophagy. Cell Death Dis., 2018, 9(3), 361.
[PMID: 29500417]
[198]
Dikic, I.; Elazar, Z. Mechanism and medical implications of mammalian autophagy. Nat. Rev. Mol. Cell Biol., 2018, 19(6), 349-364.
[PMID: 29618831]
[199]
Nussinov, R.; Wang, G.; Tsai, C.J.; Jang, H.; Lu, S.; Banerjee, A.; Zhang, J.; Gaponenko, V. Calmodulin and PI3K Signaling in KRAS Cancers. Trends Cancer, 2017, 3(3), 214-224.
[PMID: 28462395]
[200]
Liu, F.; Wang, X.Y.; Zhou, X.P.; Liu, Z.P.; Song, X.B.; Wang, Z.Y.; Wang, L. Cadmium disrupts autophagic flux by inhibiting cytosolic Ca2+-dependent autophagosome-lysosome fusion in primary rat proximal tubular cells. Toxicology, 2017, 383, 13-23.
[PMID: 28347754]
[201]
Hantute-Ghesquier, A.; Haustrate, A.; Prevarskaya, N.; Lehen’kyi, V. TRPM Family Channels in Cancer. Pharmaceuticals (Basel), 2018, 11(2), 1-14.
[PMID: 29875336]
[202]
Lin, R.; Wang, Y.; Chen, Q.; Liu, Z.; Xiao, S.; Wang, B.; Shi, B. TRPM2 promotes the proliferation and invasion of pancreatic ductal adenocarcinoma. Mol. Med. Rep., 2018, 17(6), 7537-7544.
[PMID: 29620272]
[203]
Zeng, X.; Sikka, S.C.; Huang, L.; Sun, C.; Xu, C.; Jia, D.; Abdel-Mageed, A.B.; Pottle, J.E.; Taylor, J.T.; Li, M. Novel role for the transient receptor potential channel TRPM2 in prostate cancer cell proliferation. Prostate Cancer Prostatic Dis., 2010, 13(2), 195-201.
[PMID: 20029400]
[204]
Hopkins, M.M.; Feng, X.; Liu, M.; Parker, L.P.; Koh, D.W. Inhibition of the transient receptor potential melastatin-2 channel causes increased DNA damage and decreased proliferation in breast adenocarcinoma cells. Int. J. Oncol., 2015, 46(5), 2267-2276.
[PMID: 25760245]
[205]
An, X.; Fu, Z.; Mai, C.; Wang, W.; Wei, L.; Li, D.; Li, C.; Jiang, L.H. Increasing the TRPM2 Channel Expression in Human Neuroblastoma SH-SY5Y Cells Augments the Susceptibility to ROS-Induced Cell Death. Cells, 2019, 8(1), 1-13.
[PMID: 30625984]
[206]
Li, X.; Jiang, L.H. A critical role of the transient receptor potential melastatin 2 channel in a positive feedback mechanism for reactive oxygen species-induced delayed cell death. J. Cell. Physiol., 2019, 234(4), 3647-3660.
[PMID: 30229906]
[207]
Chen, G.L.; Zeng, B.; Eastmond, S.; Elsenussi, S.E.; Boa, A.N.; Xu, S.Z. Pharmacological comparison of novel synthetic fenamate analogues with econazole and 2-APB on the inhibition of TRPM2 channels. Br. J. Pharmacol., 2012, 167(6), 1232-1243.
[PMID: 22646516]
[208]
Liu, K.; Xu, S.H.; Chen, Z.; Zeng, Q.X.; Li, Z.J.; Chen, Z.M. TRPM7 overexpression enhances the cancer stem cell-like and metastatic phenotypes of lung cancer through modulation of the Hsp90a/uPA/MMP2 signaling pathway. BMC Cancer, 2018, 18, 1-12.
[209]
Shergalis, A.; Bankhead, A., III; Luesakul, U.; Muangsin, N.; Neamati, N. Current Challenges and Opportunities in Treating Glioblastoma. Pharmacol. Rev., 2018, 70(3), 412-445.
[PMID: 29669750]
[210]
Leng, T.D.; Li, M.H.; Shen, J.F.; Liu, M.L.; Li, X.B.; Sun, H.W.; Branigan, D.; Zeng, Z.; Si, H.F.; Li, J.; Chen, J.; Xiong, Z.G. Suppression of TRPM7 inhibits proliferation, migration, and invasion of malignant human glioma cells. CNS Neurosci. Ther., 2015, 21(3), 252-261.
[PMID: 25438992]
[211]
He, B.; Liu, F.; Ruan, J.; Li, A.; Chen, J.; Li, R.; Shen, J.; Zheng, D.; Luo, R. Silencing TRPC1 expression inhibits invasion of CNE2 nasopharyngeal tumor cells. Oncol. Rep., 2012, 27(5), 1548-1554.
[PMID: 22367186]
[212]
Kim, B.J.; Hong, C. Role of transient receptor potential melastatin type 7 channel in gastric cancer. Integr. Med. Res., 2016, 5(2), 124-130.
[PMID: 28462107]
[213]
U.S. Army Armament Research & Development Command, Chemical Systems Laboratory, NIOSH Exchange Chemicals NX#01899..
[214]
J.M. Querejeta, E.; Oviedo, A.; Trujillo- Ferrara, J.G. Stereospecific activity of two glutamate analogs. Chirality, 2004, 16, 586-591.
[215]
Goto, J.; Suzuki, A.Z.; Ozaki, S.; Matsumoto, N.; Nakamura, T.; Ebisui, E.; Fleig, A.; Penner, R.; Mikoshiba, K. Two novel 2-aminoethyl diphenylborinate (2-APB) analogues differentially activate and inhibit store-operated Ca(2+) entry via STIM proteins. Cell Calcium, 2010, 47(1), 1-10.
[PMID: 19945161]
[216]
Hofer, A.; Kovacs, G.; Zappatini, A.; Leuenberger, M.; Hediger, M.A.; Lochner, M. Design, synthesis and pharmacological characterization of analogs of 2-aminoethyl diphenylborinate (2-APB), a known store-operated calcium channel blocker, for inhibition of TRPV6-mediated calcium transport. Bioorg. Med. Chem, 2013, 21(11), 3202-3213.
[PMID: 23602525]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 13
ISSUE: 1
Year: 2020
Page: [57 - 75]
Pages: 19
DOI: 10.2174/1874467212666191025145429
Price: $65

Article Metrics

PDF: 10
HTML: 1

Special-new-year-discount