An Updated Library on the Synthesis of Aziridines

Author(s): Anindita Mukherjee, Nirnita C. Ghosal, Grigory V. Zyryanov, Adinath Majee*, Sougata Santra*.

Journal Name: Current Green Chemistry

Volume 6 , Issue 3 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Aziridines are highly versatile intermediates in organic synthesis due to their easy access and their susceptibility to ring-opening by facile C-N bond cleavage. They are synthetically very important as they are valuable precursors of amino sugars, β-lactam antibiotics and alkaloids or present in various natural products that exhibit potent biological activities. The synthesis of this moiety from the easily available chemicals is desirable due to its tremendous use in the various branches of chemistry. Here, a short review has been reported on the synthesis of this scaffold employing different strategies under different greener conditions. Various methods have been developed in the presence of green catalysts and solvents.

Keywords: Aziridines, organic synthesis, green chemistry, olefins, chloramine-T, imine.

[1]
Ramón, D.J.; Yus, M. Asymmetric multicomponent reactions (AMCRs): the new frontier. Angew. Chem. Int. Ed. Engl., 2005, 44(11), 1602-1634.
[http://dx.doi.org/10.1002/anie.200460548] [PMID: 15719349]
[2]
Simon, M.O.; Li, C.J. Green chemistry oriented organic synthesis in water. Chem. Soc. Rev., 2012, 41(4), 1415-1427.
[http://dx.doi.org/10.1039/C1CS15222J] [PMID: 22048162]
[3]
Gawande, M.B.; Velhinho, A.; Nogueira, I.D.; Ghumman, C.A.A.; Teodoro, O.M.N.D.; Branco, P.S. A facile synthesis of cysteine-ferrite magnetic nanoparticles for application in multicomponent reactions - a sustainable protocol. RSC Advances, 2012, 2(15), 6144-6149.
[http://dx.doi.org/10.1039/c2ra20955a]
[4]
Gu, Y. Multicomponent reactions in unconventional solvents: State of the art. Green Chem., 2012, 14(8), 2091-2128.
[http://dx.doi.org/10.1039/c2gc35635j]
[5]
Gawande, M.B.; Bonifácio, V.D.B.; Luque, R.; Branco, P.S.; Varma, R.S. Benign by design: catalyst-free in-water, on-water green chemical methodologies in organic synthesis. Chem. Soc. Rev., 2013, 42(12), 5522-5551.
[http://dx.doi.org/10.1039/c3cs60025d] [PMID: 23529409]
[6]
Anastas, P.T.; Warner, J.C. Green Chemistry: Theory and Practice, 2005th ed; Oxford University Press: Oxford, 1998
[7]
Sheldon, R. Enzymes. Picking a winner. Nature, 1999, 399(6737), 636-637.
[http://dx.doi.org/10.1038/21316] [PMID: 10385108]
[8]
Tanaka, K.; Toda, F. Solvent-free organic synthesis. Chem. Rev., 2000, 100(3), 1025-1074.
[http://dx.doi.org/10.1021/cr940089p] [PMID: 11749257]
[9]
Sheldon, R.A.; Arends, I.W.C.E.; Hanefeld, U. Green Chemistry and Catalysis; Wiley-VCH: Weinheim, 2007.
[http://dx.doi.org/10.1002/9783527611003]
[10]
Anastas, P.T.; Levy, I.J.; Parent, K.E. Green Chemistry Education: Changing the Course of Chemistry Eds. ACS Symposium Series, 2009, Vol. 1011
[http://dx.doi.org/10.1021/bk-2009-1011.ch001]
[11]
Clark, J.H.; Luque, R.; Matharu, A.S. Green chemistry, biofuels, and biorefinery. Annu. Rev. Chem. Biomol. Eng., 2012, 3, 183-207.
[http://dx.doi.org/10.1146/annurev-chembioeng-062011-081014] [PMID: 22468603]
[12]
Farrán, A.; Cai, C.; Sandoval, M.; Xu, Y.; Liu, J.; Hernáiz, M.J.; Linhardt, R.J. Green solvents in carbohydrate chemistry: from raw materials to fine chemicals. Chem. Rev., 2015, 115(14), 6811-6853.
[http://dx.doi.org/10.1021/cr500719h] [PMID: 26121409]
[13]
Kaneda, K.; Mizugaki, T. Development of concerto metal catalysts using apatite compounds for green organic syntheses. Energy Environ. Sci., 2009, 2(6), 655-673.
[http://dx.doi.org/10.1039/b901997a]
[14]
Zhang, W. Green chemistry aspects of fluorous techniques-opportunities and challenges for small-scale organic synthesis. Green Chem., 2009, 11(7), 911-920.
[http://dx.doi.org/10.1039/b820740b]
[15]
Candeias, N.R.; Branco, L.C.; Gois, P.M.P.; Afonso, C.A.M.; Trindade, A.F. More sustainable approaches for the synthesis of N-based heterocycles. Chem. Rev., 2009, 109(6), 2703-2802.
[http://dx.doi.org/10.1021/cr800462w] [PMID: 19385653]
[16]
Pearson, W.H.; Lian, B.W.; Bergmeier, S.C. In: Comprehensive Heterocyclic Chemistry II; ; Padwa, A., Ed.; Pergamon Press: New York, 1996. 1A, 1.
[17]
Tanner, D. Chiral aziridines - their synthesis and use in stereoselective transformations. Angew. Chem. Int. Ed. Engl., 1994, 33(6), 599-619.
[http://dx.doi.org/10.1002/anie.199405991]
[18]
Coleman, R.S.; Chen, W. A convergent approach to the mitomycin ring system. Org. Lett., 2001, 3(8), 1141-1144.
[http://dx.doi.org/10.1021/ol0156244] [PMID: 11348179]
[19]
Kasai, M.; Kono, M. Studies on the chemistry of mitomycins. Synlett, 1992, 1992(10), 778-790.
[http://dx.doi.org/10.1055/s-1992-21490]
[20]
Coleman, R.S.; Perez, R.J.; Burk, C.H.; Navarro, A. Studies on the mechanism of action of azinomycin B: definition of regioselectivity and sequence selectivity of DNA cross-link formation and clarification of the role of the naphthoate. J. Am. Chem. Soc., 2002, 124(44), 13008-13017.
[http://dx.doi.org/10.1021/ja025563k] [PMID: 12405827]
[21]
Coleman, R.S.; Li, J.; Navarro, A. Total synthesis of azinomycin A. Angew. Chem. Int. Ed. Engl., 2001, 40(9), 1736-1739.
[http://dx.doi.org/10.1002/1521-3773(20010504)40:9<1736:AID-ANIE17360>3.0.CO;2-#] [PMID: 11353495]
[22]
Kuo, M.S.; Yurek, D.A.; Mizsak, S.A. Structure elucidation of ficellomycin. J. Antibiot. (Tokyo), 1989, 42(3), 357-360.
[http://dx.doi.org/10.7164/antibiotics.42.357] [PMID: 2708128]
[23]
Reusser, F. Ficellomycin and feldamycin; inhibitors of bacterial semiconservative DNA replication. Biochemistry, 1977, 16(15), 3406-3412.
[http://dx.doi.org/10.1021/bi00634a018] [PMID: 329871]
[24]
Argoudelis, A.D.; Reusser, F.; Whaley, H.A.; Baczynskyj, L.; Mizsak, S.A.; Wnuk, R.J. Antibiotics produced by Streptomyces ficellus. I. Ficellomycin. J. Antibiot. (Tokyo), 1976, 29(10), 1001-1006.
[http://dx.doi.org/10.7164/antibiotics.29.1001] [PMID: 994319]
[25]
Nakao, Y.; Fujita, M.; Warabi, K.; Matsunaga, S.; Fusetani, N. Miraziridine A, a novel cysteine protease inhibitor from the marine sponge Theonella aff. Mirabilis. J. Am. Chem. Soc., 2000, 122(42), 10462-10463.
[http://dx.doi.org/10.1021/ja001859j]
[26]
Tsuchida, T.; Inuma, H.; Kinoshita, N.; Ikeda, T.; Sawa, T.; Hamada, M.; Takeuchi, T. Azicemicins A and B, a new antimicrobial agent produced by Amycolatopsis. I. Taxonomy, fermentation, isolation, characterization and biological activities. J. Antibiot. (Tokyo), 1995, 48(3), 217-221.
[http://dx.doi.org/10.7164/antibiotics.48.217] [PMID: 7730155]
[27]
Tsuchida, T.; Iinuma, H.; Kinoshita, N.; Ikeda, T.; Sawa, R.; Takahashi, Y.; Naganawa, H.; Sawa, T.; Hamada, M.; Takeuchi, T. Azicemicin A, a new antimicrobial antibiotic from Amycolatopsis. J. Antibiot. (Tokyo), 1993, 46(11), 1772-1774.
[http://dx.doi.org/10.7164/antibiotics.46.1772] [PMID: 8270504]
[28]
Benbow, J.W.; Schulte, G.K.; Danishefsky, S.J. The total synthesis of (±)‐mitomycin K. Angew. Chem. Int. Ed. Engl., 1992, 31(7), 915-917.
[http://dx.doi.org/10.1002/anie.199209151]
[29]
Fukuyama, T.; Yang, L.H. Practical total synthesis of (±)-mitomycin C. J. Am. Chem. Soc., 1989, 111(21), 8303-8304.
[http://dx.doi.org/10.1021/ja00203a055]
[30]
Mohan, J.M.; Uphade, B.S.; Choudhary, V.R.; Ravindranathan, T.; Sudalai, A. Carbenoid transfer to imines: a new heterogeneous catalyticsynthesis of aziridines. Chem. Commun. (Camb.), 1997, 1997(15), 1429-1430.
[http://dx.doi.org/10.1039/a702745a]
[31]
Müller, P.; Fruit, C. Enantioselective catalytic aziridinations and asymmetric nitrene insertions into CH bonds. Chem. Rev., 2003, 103(8), 2905-2920.
[http://dx.doi.org/10.1021/cr020043t] [PMID: 12914485]
[32]
Vyas, R.; Gao, G.Y.; Harden, J.D.; Zhang, X.P. Iron(III) porphyrin catalyzed aziridination of alkenes with bromamine-T as nitrene source. Org. Lett., 2004, 6(12), 1907-1910.
[http://dx.doi.org/10.1021/ol049691k] [PMID: 15176780]
[33]
Sun, W.; Herdtweck, E.; Kühn, F.E. Catalytic aziridinations with copper(II) salen complexes. New J. Chem., 2005, 29(12), 1577-1580.
[http://dx.doi.org/10.1039/b509568a]
[34]
Gao, G.Y.; Jones, J.E.; Vyas, R.; Harden, J.D.; Zhang, X.P. Cobalt-catalyzed aziridination with diphenylphosphoryl azide (DPPA): direct synthesis of N-phosphorus-substituted aziridines from alkenes. J. Org. Chem., 2006, 71(17), 6655-6658.
[http://dx.doi.org/10.1021/jo0609226] [PMID: 16901165]
[35]
Lebel, H.; Lectard, S.; Parmentier, M. Copper-catalyzed alkene aziridination with N-tosyloxycarbamates. Org. Lett., 2007, 9(23), 4797-4800.
[http://dx.doi.org/10.1021/ol702152e] [PMID: 17944479]
[36]
Mayer, A.C.; Salit, A.F.; Bolm, C. Iron-catalysed aziridination reactions promoted by an ionic liquid. Chem. Commun. (Camb.), 2008, 2008(45), 5975-5977.
[http://dx.doi.org/10.1039/b813655f] [PMID: 19030557]
[37]
Branco, P.S.; Raje, V.P.; Dourado, J.; Gordo, J. Catalyst-free aziridination and unexpected homologation of aziridines from imines. Org. Biomol. Chem., 2010, 8(13), 2968-2974.
[http://dx.doi.org/10.1039/c001894e] [PMID: 20458427]
[38]
Deyrup, J.A. The Chemistry of Heterocyclic Compounds; Hassner, A., Ed.; Wiley: New York, 1983.
[39]
McCoull, W.; Davis, F.A. Recent synthetic applications of chiral aziridines. Synthesis, 2000, 2000(10), 1347-1365.
[http://dx.doi.org/10.1055/s-2000-7097]
[40]
Atkinson, R.S. 3-Acetoxyaminoquinazolinones (QNHOAc) as aziridinating agents: ring-opening of N-(Q)-substituted aziridines. Tetrahedron, 1999, 55(6), 1519-1559.
[http://dx.doi.org/10.1016/S0040-4020(98)01199-5]
[41]
Sweeney, J.B. Aziridines: epoxides’ ugly cousins? Chem. Soc. Rev., 2002, 31(5), 247-258.
[http://dx.doi.org/10.1039/B006015L] [PMID: 12357722]
[42]
Hancock, M.T.; Pinhas, A.R. A convenient and inexpensive conversion of an aziridine to an oxazolidinone. Tetrahedron Lett., 2003, 44(29), 5457-5460.
[http://dx.doi.org/10.1016/S0040-4039(03)01325-X]
[43]
Hu, X.E. Nucleophilic ring opening of aziridines. Tetrahedron, 2004, 60(12), 2701-2743.
[http://dx.doi.org/10.1016/j.tet.2004.01.042]
[44]
Jacobsen, E.N. Comprehensive Asymmetric Catalysis II; Jacobsen, E.N.; Pfaltz, A; Yamamoto, H., Ed.; Springer: Berlin, 1999, Vol. 2, p. 607.
[http://dx.doi.org/10.1007/978-3-642-58571-5]
[45]
Gao, G.Y.; Harden, J.D.; Zhang, X.P. Cobalt-catalyzed efficient aziridination of alkenes. Org. Lett., 2005, 7(15), 3191-3193.
[http://dx.doi.org/10.1021/ol050896i] [PMID: 16018618]
[46]
Muller, P. Advances in Catalytic Processes; Doyle, M.P., Ed.; JAI Press: Greenwich, 1997, Vol. 2, p. 113.
[47]
Minakata, S.; Komatsu, M. Modern Amination Methods; Ricci, A., Ed.; Wiley-VCH: Weinheim, 2000, pp. 169-194.
[http://dx.doi.org/10.1002/9783527613182.ch6]
[48]
Mohr, F.; Binfield, S.A.; Fettinger, J.C.; Vedernikov, A.N. A practical, fast, and high-yielding aziridination procedure using simple Cu(II) complexes containing N-donor pyridine-based ligands. J. Org. Chem., 2005, 70(12), 4833-4839.
[http://dx.doi.org/10.1021/jo050485f] [PMID: 15932325]
[49]
Catino, A.J.; Nichols, J.M.; Forslund, R.E.; Doyle, M.P. Efficient aziridination of olefins catalyzed by mixed-valent dirhodium(II,III) caprolactamate. Org. Lett., 2005, 7(13), 2787-2790.
[http://dx.doi.org/10.1021/ol0510973] [PMID: 15957947]
[50]
Keaney, G.F.; Wood, J.L. Rhodium perfluorobutyramide (Rh2 (pfm)4): a synthetically useful catalyst for olefin aziridinations. Tetrahedron Lett., 2005, 46(23), 4031-4034.
[http://dx.doi.org/10.1016/j.tetlet.2005.04.027]
[51]
Kemp, J.E. Comprehensive Organic Synthesis, 7; Trost, B.M.; Fleming, I., Eds.; Pergamon Press: Oxford. , 1991, p. Vol. 7, p. 469.
[http://dx.doi.org/10.1016/B978-0-08-052349-1.00199-2]
[52]
Rai, K.M.L.; Hanssner, A. In: Comprehensive Heterocyclic Chemistry II; Padwa, A., Ed.; Pergamon Press: Oxford, UK, 1996.
[53]
Hansen, K.B.; Finney, N.S.; Jacobsen, E.N. Carbenoid transfer to imines: A new asymmetric catalytic synthesis of aziridines. Angew. Chem. Int. Ed. Engl., 1995, 34(6), 676-678.
[http://dx.doi.org/10.1002/anie.199506761]
[54]
Rasmussen, K.G.; Jorgensen, K.A. Catalytic formation of aziridines from imines and diazoacetate. J. Chem. Soc. Chem. Commun., 1995, 1401-1402.
[http://dx.doi.org/10.1039/C39950001401]
[55]
Zhu, Z.; Espenson, J.H. Reactions of ethyl diazoacetate catalyzed by methylrhenium trioxide. J. Org. Chem., 1995, 60(22), 7090-7091.
[http://dx.doi.org/10.1021/jo00127a008]
[56]
Bartnik, R.; Mloston, G. Aziridines; III1. 1,2,3-Trisubstituted aziridines by the reaction of phenyldiazomethane with imines in the presence of zinc iodide. Synthesis, 1983, 1983(11), 924.
[http://dx.doi.org/10.1055/s-1983-30572]
[57]
Jephcote, V.J.; John, D.I.; Williams, D.J. Lewis acid-catalysed reactions of 2,2,2-trichloroethyl 6-diazopenicillanate and imines: rearrangements of spiro-6-aziridine- and spiro-6-oxirane-penicillanates. X-Ray crystal structures of (3S,6′S]-2,2,2-trichloroethyl 3-[4-nitrophenyl)-1-phenylspiro[aziridine-2,6′-penicillanate] and (3S,7aR)- 2,2,2-trichloroethyl 2,3,5,7a-tetrahydro-7-methoxy-2,2-dimethyl-6-(4-nitrophenyl)-5-oxopyrrolo[2,1-b]thiazole-3-carboxylate. J. Chem. Soc., Perkin Trans. 1, 1986, 2195-2201.
[http://dx.doi.org/10.1039/P19860002195]
[58]
Casarrubios, L.; Perez, J.A.; Brookhard, M.; Templeton, J.L. Lewis acid-catalyzed synthesis of aziridine. J. Org. Chem., 1996, 61(24), 8358.
[http://dx.doi.org/10.1021/jo961391w]
[59]
Evans, D.A.; Faul, M.M.; Bilodeau, M.T. Copper-catalyzed aziridination of olefins by (N-(p-toluenesulfonyl) imino) phenyliodinane. J. Org. Chem., 1991, 56(24), 6744-6746.
[http://dx.doi.org/10.1021/jo00024a008]
[60]
Li, Z.; Conser, K.R.; Jacobsen, E.N. Asymmetric alkene aziridination with readily available chiral diimine-based catalysts. J. Am. Chem. Soc., 1993, 115(12), 5326-5327.
[http://dx.doi.org/10.1021/ja00065a067]
[61]
Evans, D.A.; Faul, M.M.; Anderson, B.A.; Barnes, D.M. Bis(oxazoline)-copper complexes as chiral catalysts for the enantioselective aziridination of olefins. J. Am. Chem. Soc., 1993, 115(12), 5328-5329.
[http://dx.doi.org/10.1021/ja00065a068]
[62]
Thakur, V.V.; Sudalai, A. N-Bromoamides as versatile catalysts for aziridination of olefins using chloramine-T. Tetrahedron Lett., 2003, 44(5), 989-992.
[http://dx.doi.org/10.1016/S0040-4039(02)02729-6]
[63]
Llewellyn, D.B.; Adamson, D.; Arndtsen, B.A. A novel example of chiral counteranion induced enantioselective metal catalysis: the importance of ion-pairing in copper-catalyzed olefin aziridination and cyclopropanation. Org. Lett., 2000, 2(26), 4165-4168.
[http://dx.doi.org/10.1021/ol000303y] [PMID: 11150190]
[64]
Brandt, P.; Sodergren, M.J.; Andersson, P.A.; Norrby, P-O. Mechanistic studies of copper-catalyzed alkene aziridination. J. Am. Chem. Soc., 2000, 122(33), 8013-8020.
[http://dx.doi.org/10.1021/ja993246g]
[65]
Gillespie, K.M.; Sanders, C.J.; O’Shaughnessy, P.; Westmoreland, I.; Thickitt, C.P.; Scott, P. Enantioselective aziridination using copper complexes of biaryl Schiff bases. J. Org. Chem., 2002, 67(10), 3450-3458.
[http://dx.doi.org/10.1021/jo025515i] [PMID: 12003558]
[66]
Sasaki, M.; Yudin, A.K. Oxidative cycloamination of olefins with aziridines as a versatile route to saturated nitrogen-containing heterocycles. J. Am. Chem. Soc., 2003, 125(47), 14242-14243.
[http://dx.doi.org/10.1021/ja037726q] [PMID: 14624549]
[67]
Jain, S.L.; Sain, B. Aziridination of alkenes using N-iodo-N-potassio-p-toluenesulphonamide as a nitrene precursor. Tetrahedron Lett., 2003, 44(3), 575-577.
[http://dx.doi.org/10.1016/S0040-4039(02)02582-0]
[68]
Siu, T.; Yudin, A.K. Practical olefin aziridination with a broad substrate scope. J. Am. Chem. Soc., 2002, 124(4), 530-531.
[http://dx.doi.org/10.1021/ja0172215] [PMID: 11804478]
[69]
Nishimura, M.; Minakata, S.; Takahashi, T.; Oderaotoshi, Y.; Komatsu, M. Asymmetric N1 unit transfer to olefins with a chiral nitridomanganese complex: novel stereoselective pathways to aziridines or oxazolines. J. Org. Chem., 2002, 67(7), 2101-2110.
[http://dx.doi.org/10.1021/jo016146d] [PMID: 11925215]
[70]
Hilt, G. Direct electrochemical aziridination of alkenes under metal- free conditions. Angew. Chem. Int. Ed. Engl, 2002, 41(19), 3586-3588, 3513.
[http://dx.doi.org/10.1002/1521-3773(20021004)41:19<3586::AIDANIE3586> 3.0.CO;2-7] [PMID: 12370899]
[71]
Kano, D.; Minakata, S.; Komatsu, M. Novel organic-solvent-free aziridination of olefins: Chloramine-T–I2 system under phase-transfer catalysis conditions. J. Chem. Soc., Perkin Trans. 1, 2001, 3186-3188.
[http://dx.doi.org/10.1039/b104940m]
[72]
Antunes, A.M.M.; Marto, S.J.L.; Branco, P.S.; Prabhakar, S.; Lobo, A.M. Palladium(II)-promoted aziridination of olefins with bromamine T as the nitrogen transfer reagent. Chem. Commun. (Camb.), 2001, 405-406.
[http://dx.doi.org/10.1039/b008701g]
[73]
Minakata, S.; Komatsu, M. Development of new synthetic methods of heterocycles using chloramine-T as a nitrogen source. J. Synth. Org. Chem. Jpn., 2003, 61(7), 706-714.
[http://dx.doi.org/10.5059/yukigoseikyokaishi.61.706]
[74]
Simkhovich, L.; Gross, Z. Iron(IV) corroles are potent catalysts for aziridination of olefins by Chloramine-T. Tetrahedron Lett., 2001, 42(45), 8089-8092.
[http://dx.doi.org/10.1016/S0040-4039(01)01717-8]
[75]
Jeong, J.U.; Tao, B.; Sagasser, I.; Henniges, H.; Sharpless, K.B. Bromine-catalyzed aziridination of olefins. A rare example of atom-transfer redox catalysis by a main group element. J. Am. Chem. Soc., 1998, 120(27), 6844-6845.
[http://dx.doi.org/10.1021/ja981419g]
[76]
Ando, T.; Kano, D.; Minakata, S.; Ryu, I.; Komatsu, M. Iodine-catalyzed aziridination of alkenes using chloramine-T as a nitrogen source. Tetrahedron, 1998, 54(44), 13485-13494.
[http://dx.doi.org/10.1016/S0040-4020(98)00827-8]
[77]
Ali, S.I.; Nikalje, M.D.; Sudalai, A. Pyridinium hydrobromide perbromide: a versatile catalyst for aziridination of olefins using Chloramine-T. Org. Lett., 1999, 1(5), 705-707.
[http://dx.doi.org/10.1021/ol9900966] [PMID: 16118868]
[78]
Sodergren, M.J.; Alonso, D.A.; Anderson, P.G. Readily available nitrene precursors increase the scope of Evans’ asymmetric aziridination of olefins. Tetrahedron Asymmetry, 1997, 8(21), 3563-3565.
[http://dx.doi.org/10.1016/S0957-4166(97)00496-5]
[79]
Dauban, P.; Dodd, R.H.PhI. =NSes: A New iminoiodinane reagent for the copper-catalyzed aziridination of olefins. J. Org. Chem., 1999, 64(14), 5304-5307.
[http://dx.doi.org/10.1021/jo990356x]
[80]
Adam, W.; Roschmann, K.J.; Saha-Moller, C.R. Catalytic asymmetric aziridination of enol derivatives in the presence of chiral copper complexes to give optically active α‐amino ketones. Eur. J. Org. Chem., 2000, 2000(3), 557-561.
[http://dx.doi.org/10.1002/(SICI)1099-0690(200002)2000:3<557:AID-EJOC557>3.0.CO;2-B]
[81]
Dauban, P.; Sanière, L.; Tarrade, A.; Dodd, R.H. Copper-catalyzed nitrogen transfer mediated by iodosylbenzene PhI=O. J. Am. Chem. Soc., 2001, 123(31), 7707-7708.
[http://dx.doi.org/10.1021/ja010968a] [PMID: 11480997]
[82]
Shi, M.; Wang, C.J.; Chan, A.S.C. Axially dissymmetric binaphthyldiimine chiral salen-type ligands for copper-catalyzed asymmetric aziridination. Tetrahedron Asymmetry, 2001, 12(22), 3105-3111.
[http://dx.doi.org/10.1016/S0957-4166(01)00534-1]
[83]
Comba, P.; Merz, M.; Pritzkow, H. Catalytic aziridination of styrene with copper complexes of substituted 3,7‐diazabicyclo [3.3.1]nonanones. Eur. J. Inorg. Chem., 2003, 2003(9), 1711-1718.
[http://dx.doi.org/10.1002/ejic.200200618]
[84]
Kwong, H.L.; Liu, D.; Chan, K.Y.; Lee, C.S.; Hung, K.H.; Che, C.M. Copper (I)-catalyzed asymmetric alkene aziridination mediated by PhI(OAc)2: a facile one-pot procedure. Tetrahedron Lett., 2004, 45(20), 3965-3968.
[http://dx.doi.org/10.1016/j.tetlet.2004.03.107]
[85]
Lam, T.C.H.; Mak, W.L.; Wong, W.L.; Kwong, H.L.; Sung, H.H.Y.; Lo, S.M.F.; Williams, I.D.; Leung, W.H. Synthesis and crystal structure of a chiral C3-Symmetric oxygen tripodal ligand and its applications to asymmetric catalysis. Organometallics, 2004, 23(6), 1247-1252.
[http://dx.doi.org/10.1021/om034320d]
[86]
Jain, S.L.; Sharma, V.B.; Sain, B. An unusual copper catalyzed iodine mediated aziridination of olefins with the direct use of p‐toluenesulphonamide. Synth. Commun., 2005, 35(1), 913.
[http://dx.doi.org/10.1081/SCC-200046475]
[87]
Jain, S.L.; Sain, B. Metallophthalocyanines as potent catalysts for aziridination of olefins. J. Mol. Catal. A, 2003, 195(1-2), 283-287.
[http://dx.doi.org/10.1016/S1381-1169(02)00588-5]
[88]
Dauban, P.; Dodd, R.H. Synthesis of cyclic sulfonamides via intramolecular copper-catalyzed reaction of unsaturated iminoiodinanes. Org. Lett., 2000, 2(15), 2327-2329.
[http://dx.doi.org/10.1021/ol000130c] [PMID: 10930275]
[89]
Leca, D.; Toussaint, A.; Mareau, C.; Fensterbank, L.; Lacôte, E.; Malacria, M. Efficient copper-mediated reactions of nitrenes derived from sulfonimidamides. Org. Lett., 2004, 6(20), 3573-3575.
[http://dx.doi.org/10.1021/ol0485520] [PMID: 15387551]
[90]
Gillespie, K.M.; Crust, E.J.; Deeth, R.J.; Scott, P. Mechanism of alkene aziridination in the [(biaryldiimine)CuI] catalyst system; precise substrate orientation via two-centre binding. Chem. Commun. (Camb.), 2001, 785-786.
[http://dx.doi.org/10.1039/b101415n]
[91]
Muller, P.; Baud, C.; Jacquier, Y. A method for rhodium (II)-catalyzed aziridination of olefins. Tetrahedron, 1996, 52(5), 1543-1548.
[http://dx.doi.org/10.1016/0040-4020(95)00999-X]
[92]
Nägeli, I.; Baud, C.; Bernardinelli, G.; Jacquier, Y.; Moran, M.; Müllet, P. Rhodium(II)‐catalyzed CH insertions with [(4‐nitrophenyl)sulfonyl]iminophenyl‐λ3‐iodane. Helv. Chim. Acta, 1997, 80(4), 1087-1105.
[http://dx.doi.org/10.1002/hlca.19970800407]
[93]
Bolm, C.; Legros, J.; Le Paih, J.; Zani, L. Iron-catalyzed reactions in organic synthesis. Chem. Rev., 2004, 104(12), 6217-6254.
[http://dx.doi.org/10.1021/cr040664h] [PMID: 15584700]
[94]
Correa, A.; García Mancheño, O.; Bolm, C. Iron-catalysed carbon-heteroatom and heteroatom-heteroatom bond forming processes. Chem. Soc. Rev., 2008, 37(6), 1108-1117.
[http://dx.doi.org/10.1039/b801794h] [PMID: 18497924]
[95]
Fürstner, A.; Martin, R. Advances in iron catalyzed cross coupling reactions. Chem. Lett., 2005, 34(5), 624-629.
[http://dx.doi.org/10.1246/cl.2005.624]
[96]
Sherry, B.D.; Fürstner, A. The promise and challenge of iron-catalyzed cross coupling. Acc. Chem. Res., 2008, 41(11), 1500-1511.
[http://dx.doi.org/10.1021/ar800039x] [PMID: 18588321]
[97]
Mayer, M.F.; Hossain, M.M. Catalytic preparation of aziridines with an iron Lewis acid. J. Org. Chem., 1998, 63(20), 6839-6844.
[http://dx.doi.org/10.1021/jo9804792] [PMID: 11672303]
[98]
Simonato, J-P.; Pécant, J.; Marchon, J-C.; Scheidt, R.W. Antagonistic metal-directed inductions in catalytic asymmetric aziridination by manganese and iron tetramethylchiroporphyrins. Chem. Commun. (Camb.), 1999, 989-990.
[http://dx.doi.org/10.1039/a901559k]
[99]
Heuss, B.D.; Mayer, M.F.; Dennis, S.; Hossain, M.M. Iron mediated nitrenoid transfer: [(η5-C5H5)Fe(CO)2(THF)]+[BF4]− catalyzed aziridination of olefins. Inorg. Chim. Acta, 2003, 342, 301-304.
[http://dx.doi.org/10.1016/S0020-1693(02)01145-3]
[100]
Avenier, F.; Latour, J.M. Catalytic aziridination of olefins and amidation of thioanisole by a non-heme iron complex. Chem. Commun. (Camb.), 2004, (13), 1544-1545.
[http://dx.doi.org/10.1039/b404561k] [PMID: 15216372]
[101]
Klotz, K.L.; Slominski, L.M.; Hull, A.V.; Gottsacker, V.M.; Mas-Ballesté, R.; Que, L., Jr; Halfen, J.A. Non-heme iron(II) complexes are efficient olefin aziridination catalysts. Chem. Commun. (Camb.), 2007, (20), 2063-2065.
[http://dx.doi.org/10.1039/b700493a] [PMID: 17713079]
[102]
Liu, P.; Wong, E.L.M.; Yuen, A.W.H.; Che, C.M. Highly efficient alkene epoxidation and aziridination catalyzed by iron(II) salt + 4,4′,4′′-trichloro-2,2′:6′,2′′-terpyridine/4,4′′-dichloro-4′-O-PEG-OCH3-2,2′:6′,2′′-terpyridine. Org. Lett., 2008, 10(15), 3275-3278.
[http://dx.doi.org/10.1021/ol801157m] [PMID: 18582067]
[103]
Nakanishi, M.; Salit, A.F.; Bolm, C. Iron‐catalyzed aziridination reactions. Adv. Synth. Catal., 2008, 350(11-12), 1835-1840.
[http://dx.doi.org/10.1002/adsc.200700519]
[104]
Wang, D.K.; Dai, L.X.; Hou, X.L. Lewis acid promoted aziridination of imines with semistabilized sulfonium ylides: highly stereoselective synthesis of vinyl- and ethynyl-aziridines. Chem. Commun. (Camb.), 1997, 1231-1232.
[http://dx.doi.org/10.1039/a702955a]
[105]
Jain, S.L.; Sharma, V.B.; Sain, B. An efficient transition metal-free aziridination of alkenes with Chloramine-T using aqueous H2O2/HBr. Tetrahedron Lett., 2004, 45(47), 8731-8732.
[http://dx.doi.org/10.1016/j.tetlet.2004.09.155]
[106]
Kim, H.Y.; Talukdar, A.; Cushman, M. Regioselective synthesis of N-β-hydroxyethylaziridines by the ring-opening reaction of epoxides with aziridine generated in situ. Org. Lett., 2006, 8(6), 1085-1087.
[http://dx.doi.org/10.1021/ol0529703] [PMID: 16524274]
[107]
Yadav, L.D.S.; Kapoor, R. Garima. Organocatalytic stereoselective aziridination of imines via ammonium ylides. Synlett, 2009, 2009(19), 3123-3126.
[http://dx.doi.org/10.1055/s-0029-1218342]
[108]
Borkin, D.; Carlson, A.; Török, B. K-10-catalyzed highly diastereoselective synthesis of aziridines. Synlett, 2010, 2010(19), 3123-3126.
[109]
Kiyokawa, K.; Kosaka, T.; Minakata, S. Metal-free aziridination of styrene derivatives with iminoiodinane catalyzed by a combination of iodine and ammonium iodide. Org. Lett., 2013, 15(18), 4858-4861.
[http://dx.doi.org/10.1021/ol402276f] [PMID: 24004346]
[110]
Chatterjee, R.; Samanta, S.; Mukherjee, A.; Santra, S.; Zyryanov, G.V.; Majee, A. Use of allylzinc halide as a source of halide: Differential addition of nucleophiles to Ts-aziridines and aldehydes under similar reaction conditions. Tetrahedron Lett., 2019, 60(3), 276-283.
[http://dx.doi.org/10.1016/j.tetlet.2018.12.027]
[111]
Ghosal, N.C.; De, A.; Mahato, S.; Santra, S.; Zyryanov, G.V.; Majee, A. An efficient synthesis of oxazolidines by tandem ring‐opening/closing reaction of Ts‐aziridine using formic acid. ChemistrySelect, 2018, 3(37), 10509-10514.
[http://dx.doi.org/10.1002/slct.201802657]
[112]
Samanta, S.; Chatterjee, R.; Mahato, S.; Hajra, A.; Santra, S.; Zyryanov, G.V.; Majee, A. Synthesis of diverse β-(nitrooxy)-substituted amines by regioselective ring-opening of aziridines under neat conditions. Synth. Commun., 2018, 48(14), 1857-1866.
[http://dx.doi.org/10.1080/00397911.2018.1471509]
[113]
Ghosal, N.C.; Santra, S.; Zyryanov, G.V.; Hajra, A.; Majee, A. Conversion of aziridines to oxazolidines through geminal difunctionalization of vinyl arenes or by tandem ring-opening/closing reaction of aziridine itself. Tetrahedron Lett., 2016, 57(31), 3551-3555.
[http://dx.doi.org/10.1016/j.tetlet.2016.06.119]
[114]
Ghosal, N.C.; Santra, S.; Das, S.; Hajra, A.; Zyryanov, G.V.; Majee, A. Organocatalysis by an aprotic imidazolium zwitterion: regioselective ring-opening of aziridines and applicable to gram scale synthesis. Green Chem., 2016, 18(2), 565-574.
[http://dx.doi.org/10.1039/C5GC01323B]
[115]
Ghosal, N.C.; Mahato, S.; Chatterjee, R.; Santra, S.; Zyryanov, G.V.; Majee, A. A mild and efficient method for the syntheses and regioselective ring-opening of aziridines. SynOpen, 2017, 01(01), 15-23.
[http://dx.doi.org/10.1055/s-0036-1588809]
[116]
Masakado, S.; Kobayashi, Y.; Takemoto, Y. Photo-induced aziridination of alkenes with N-sulfonyliminoiodinanes. Chem. Pharm. Bull. (Tokyo), 2018, 66(6), 688-690.
[http://dx.doi.org/10.1248/cpb.c18-00198] [PMID: 29863071]
[117]
Yu, W-L.; Chen, J-Q.; Wei, Y-L.; Wang, Z-Y.; Xu, P-F. Alkene functionalization for the stereospecific synthesis of substituted aziridines by visible-light photoredox catalysis. Chem. Commun. (Camb.), 2018, 54(16), 1948-1951.
[http://dx.doi.org/10.1039/C7CC09151F] [PMID: 29326995]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 6
ISSUE: 3
Year: 2019
Page: [226 - 241]
Pages: 16
DOI: 10.2174/2213346106666191024123452

Article Metrics

PDF: 12
HTML: 1

Special-new-year-discount