Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

General Review Article

Novel Antibacterial Strategies for Combating Bacterial Multidrug Resistance

Author(s): Xiao-Ling Xu, Xu-Qi Kang, Jing Qi, Fei-Yang Jin, Di Liu and Yong-Zhong Du*

Volume 25, Issue 44, 2019

Page: [4717 - 4724] Pages: 8

DOI: 10.2174/1381612825666191022163237

Price: $65

Abstract

Background: Antibacterial multidrug resistance has emerged as one of the foremost global problems affecting human health. The emergence of resistant infections with the increasing number of multidrug-resistant pathogens has posed a serious problem, which required innovative collaborations across multiple disciplines to address this issue.

Methods: In this review, we will explain the mechanisms of bacterial multidrug resistance and discuss different strategies for combating it, including combination therapy, the use of novel natural antibiotics, and the use of nanotechnology in the development of efflux pump inhibitors.

Results: While combination therapy will remain the mainstay of bacterial multi-drug resistance treatment, nanotechnology will play critical roles in the development of novel treatments in the coming years.

Conclusion: Nanotechnology provides an encouraging platform for the development of clinically relevant and practical strategies to overcome drug resistance in the future.

Keywords: Bacterial multidrug resistance, antibiotics, combination therapy, efflux pumps, nanotechnology, infections.

[1]
Hussain S, Joo J, Kang J, et al. Antibiotic-loaded nanoparticles targeted to the site of infection enhance antibacterial efficacy. Nat Biomed Eng 2018; 2(2): 95-103.
[http://dx.doi.org/10.1038/s41551-017-0187-5] [PMID: 29955439]
[2]
Li L-L, Wang H. Infection-targeted bactericidal nanoparticles. Nat Biomed Eng 2018; 2(2): 56-7.
[http://dx.doi.org/10.1038/s41551-018-0199-9] [PMID: 31015624]
[3]
Hajipour MJ, Fromm KM, Ashkarran AA, et al. Antibacterial properties of nanoparticles. Trends Biotechnol 2012; 30(10): 499-511.
[http://dx.doi.org/10.1016/j.tibtech.2012.06.004] [PMID: 22884769]
[4]
Anes J, McCusker MP, Fanning S, Martins M. The ins and outs of RND efflux pumps in Escherichia coli. Front Microbiol 2015; 6: 587.
[http://dx.doi.org/10.3389/fmicb.2015.00587] [PMID: 26113845]
[5]
World Health Organization. Antimicrobial resistance: global report on surveillance 2014.
[6]
Sun J, Deng Z, Yan A. Bacterial multidrug efflux pumps: mechanisms, physiology and pharmacological exploitations. Biochem Biophys Res Commun 2014; 453(2): 254-67.
[http://dx.doi.org/10.1016/j.bbrc.2014.05.090] [PMID: 24878531]
[7]
Bockman MR, Engelhart CA, Dawadi S, et al. Avoiding antibiotic inactivation in mycobacterium tuberculosis by Rv3406 through strategic nucleoside modification. ACS Infect Dis 2018; 4(7): 1102-13.
[http://dx.doi.org/10.1021/acsinfecdis.8b00038] [PMID: 29663798]
[8]
Penesyan A, Gillings M, Paulsen IT. Antibiotic discovery: combatting bacterial resistance in cells and in biofilm communities. Molecules 2015; 20(4): 5286-98.
[http://dx.doi.org/10.3390/molecules20045286] [PMID: 25812150]
[9]
Blecher K, Nasir A, Friedman A. The growing role of nanotechnology in combating infectious disease. Virulence 2011; 2(5): 395-401.
[http://dx.doi.org/10.4161/viru.2.5.17035] [PMID: 21921677]
[10]
Balzli CL, McCormick CC, Caballero AR, Tang A, O’Callaghan RJ. The effectiveness of an improved combination therapy for experimental Staphylococcus aureus keratitis. Adv Ther 2010; 27(12): 933-40.
[http://dx.doi.org/10.1007/s12325-010-0082-x] [PMID: 21046494]
[11]
Dangi A, Dwivedi V, Vedi S, Owais M, Misra-Bhattacharya S. Improvement in the antifilarial efficacy of doxycycline and rifampicin by combination therapy and drug delivery approach. J Drug Target 2010; 18(5): 343-50.
[http://dx.doi.org/10.3109/10611860903450007] [PMID: 19954408]
[12]
Wang Y, Venter H, Ma S. Efflux pump inhibitors: A novel approach to combat efflux-mediated drug resistance in bacteria. Curr Drug Targets 2016; 17(6): 702-19.
[http://dx.doi.org/10.2174/1389450116666151001103948] [PMID: 26424403]
[13]
Spengler G, Kincses A, Gajdács M, Amaral L. New roads leading to old destinations: efflux pumps as targets to reverse multidrug resistance in bacteria. Molecules 2017; 22(3): 468.
[http://dx.doi.org/10.3390/molecules22030468] [PMID: 28294992]
[14]
Lomovskaya O, Bostian KA. Practical applications and feasibility of efflux pump inhibitors in the clinic--a vision for applied use. Biochem Pharmacol 2006; 71(7): 910-8.
[http://dx.doi.org/10.1016/j.bcp.2005.12.008] [PMID: 16427026]
[15]
Pagès J-M, Amaral L. Mechanisms of drug efflux and strategies to combat them: challenging the efflux pump of Gram-negative bacteria. Biochim Biophys Acta 2009; 1794: 826-33.
[16]
Pelgrift RY, Friedman AJ. Nanotechnology as a therapeutic tool to combat microbial resistance. Adv Drug Deliv Rev 2013; 65(13-14): 1803-15.
[http://dx.doi.org/10.1016/j.addr.2013.07.011] [PMID: 23892192]
[17]
Khameneh B, Diab R, Ghazvini K, Fazly Bazzaz BS. Breakthroughs in bacterial resistance mechanisms and the potential ways to combat them. Microb Pathog 2016; 95: 32-42.
[http://dx.doi.org/10.1016/j.micpath.2016.02.009] [PMID: 26911646]
[18]
Knetsch ML, Koole LH. New strategies in the development of antimicrobial coatings: The example of increasing usage of silver and silver nanoparticles. Polymers (Basel) 2011; 3: 340-66.
[http://dx.doi.org/10.3390/polym3010340]
[19]
Singh R, Smitha MS, Singh SP. The role of nanotechnology in combating multi-drug resistant bacteria. J Nanosci Nanotechnol 2014; 14(7): 4745-56.
[http://dx.doi.org/10.1166/jnn.2014.9527] [PMID: 24757944]
[20]
Schairer DO, Chouake JS, Nosanchuk JD, Friedman AJ. The potential of nitric oxide releasing therapies as antimicrobial agents. Virulence 2012; 3(3): 271-9.
[http://dx.doi.org/10.4161/viru.20328] [PMID: 22546899]
[21]
Huh AJ, Kwon YJ. “Nanoantibiotics”: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J Control Release 2011; 156(2): 128-45.
[http://dx.doi.org/10.1016/j.jconrel.2011.07.002] [PMID: 21763369]
[22]
Leid JG, Ditto AJ, Knapp A, et al. In vitro antimicrobial studies of silver carbene complexes: activity of free and nanoparticle carbene formulations against clinical isolates of pathogenic bacteria. J Antimicrob Chemother 2012; 67(1): 138-48.
[http://dx.doi.org/10.1093/jac/dkr408] [PMID: 21972270]
[23]
Natan M, Banin E. From nano to micro: using nanotechnology to combat microorganisms and their multidrug resistance. FEMS Microbiol Rev 2017; 41(3): 302-22.
[http://dx.doi.org/10.1093/femsre/fux003] [PMID: 28419240]
[24]
Levy SB. The antibiotic paradox: how miracle drugs are destroying the miracle. Switzerland: Springer 2013.
[25]
Davies J, Davies D. Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev 2010; 74(3): 417-33.
[http://dx.doi.org/10.1128/MMBR.00016-10] [PMID: 20805405]
[26]
Chopra R, Alderborn G, Podczeck F, Newton JM. The influence of pellet shape and surface properties on the drug release from uncoated and coated pellets. Int J Pharm 2002; 239(1-2): 171-8.
[http://dx.doi.org/10.1016/S0378-5173(02)00104-7] [PMID: 12052702]
[27]
Riley MA, Robinson SM, Roy CM, Dennis M, Liu V, Dorit RL. Resistance is futile: The bacteriocin model for addressing the antibiotic resistance challenge. Biochem Soc Trans 2012; 40(6): 1438-42.
[http://dx.doi.org/10.1042/BST20120179]
[28]
El Chakhtoura NG, Saade E, Iovleva A, et al. Therapies for multidrug resistant and extensively drug-resistant non-fermenting gram-negative bacteria causing nosocomial infections: a perilous journey toward ‘molecularly targeted’ therapy. Expert Rev Anti Infect Ther 2018; 16(2): 89-110.
[http://dx.doi.org/10.1080/14787210.2018.1425139] [PMID: 29310479]
[29]
Aminov RI, Mackie RI. Evolution and ecology of antibiotic resistance genes. FEMS Microbiol Lett 2007; 271(2): 147-61.
[http://dx.doi.org/10.1111/j.1574-6968.2007.00757.x] [PMID: 17490428]
[30]
Freire-Moran L, Aronsson B, Manz C, et al. Critical shortage of new antibiotics in development against multidrug-resistant bacteria-time to react is now. Drug Resist Updat 2011; 14(2): 118-24.
[http://dx.doi.org/10.1016/j.drup.2011.02.003] [PMID: 21435939]
[31]
Pan SY, Pan S, Yu Z-L, et al. New perspectives on innovative drug discovery: an overview. J Pharm Pharm Sci 2010; 13(3): 450-71.
[http://dx.doi.org/10.18433/J39W2G] [PMID: 21092716]
[32]
Miller WR, Murray BE, Rice LB, Arias CA. Vancomycin-Resistant Enterococci: Therapeutic Challenges in the 21st Century. Infect Dis Clin North Am 2016; 30: 415-39.
[http://dx.doi.org/10.1016/j.idc.2016.02.006.] [PMID: 27208766]
[33]
Alanis AJ. Resistance to antibiotics: are we in the post-antibiotic era? Arch Med Res 2005; 36(6): 697-705.
[http://dx.doi.org/10.1016/j.arcmed.2005.06.009] [PMID: 16216651]
[34]
Miller LG, Perdreau-Remington F, Rieg G, et al. Necrotizing fasciitis caused by community-associated methicillin-resistant Staphylococcus aureus in Los Angeles. N Engl J Med 2005; 352(14): 1445-53.
[http://dx.doi.org/10.1056/NEJMoa042683] [PMID: 15814880]
[35]
Levy SB, Marshall B. Antibacterial resistance worldwide: causes, challenges and responses. Nat Med 2004; 10(12)(Suppl.): S122-9.
[http://dx.doi.org/10.1038/nm1145] [PMID: 15577930]
[36]
Dorman SE, Chaisson RE. From magic bullets back to the magic mountain: the rise of extensively drug-resistant tuberculosis. Nat Med 2007; 13(3): 295-8.
[http://dx.doi.org/10.1038/nm0307-295] [PMID: 17342143]
[37]
Jayaraman R. Antibiotic resistance: An overview of mechanisms and a paradigm shift. Curr Sci 2009; 1475-84.
[38]
Ganjian H, Nikokar I, Tieshayar A, Mostafaei A, Amirmozafari N, Kiani S. Effects of salt stress on the antimicrobial drug resistance and protein profile of Staphylococcus aureus. Jundishapur J Microbiol 2012; 5: 328-31.
[39]
Laxminarayan R, Brown GM. Economics of antibiotic resistance: a theory of optimal use. J Environ Econ Manage 2001; 42: 183-206.
[http://dx.doi.org/10.1006/jeem.2000.1156]
[40]
Gao P, Nie X, Zou M, Shi Y, Cheng G. Recent advances in materials for extended-release antibiotic delivery system. J Antibiot (Tokyo) 2011; 64(9): 625-34.
[http://dx.doi.org/10.1038/ja.2011.58] [PMID: 21811264]
[41]
Webber MA, Piddock LJ. The importance of efflux pumps in bacterial antibiotic resistance. J Antimicrob Chemother 2003; 51(1): 9-11.
[http://dx.doi.org/10.1093/jac/dkg050] [PMID: 12493781]
[42]
Amaral L, Martins A, Spengler G, Molnar J. Efflux pumps of gram-negative bacteria: what they do, how they do it, with what and how to deal with them. Front Pharmacol 2014; 4: 168.
[http://dx.doi.org/10.3389/fphar.2013.00168] [PMID: 24427138]
[43]
Poole K. Efflux pumps as antimicrobial resistance mechanisms. Ann Med 2007; 39(3): 162-76.
[http://dx.doi.org/10.1080/07853890701195262] [PMID: 17457715]
[44]
Higgins CF. Multiple molecular mechanisms for multidrug resistance transporters. Nature 2007; 446(7137): 749-57.
[http://dx.doi.org/10.1038/nature05630] [PMID: 17429392]
[45]
Mahamoud A, Chevalier J, Alibert-Franco S, Kern WV, Pagès J-M. Antibiotic efflux pumps in gram-negative bacteria: the inhibitor response strategy. J Antimicrob Chemother 2007; 59(6): 1223-9.
[http://dx.doi.org/10.1093/jac/dkl493] [PMID: 17229832]
[46]
Poole K. Mechanisms of bacterial biocide and antibiotic resistance. J Appl Microbiol 2002; 92(Suppl.): 55S-64S.
[http://dx.doi.org/10.1046/j.1365-2672.92.5s1.8.x] [PMID: 12000613]
[47]
Bush K, Jacoby GA. Updated functional classification of β-lactamases. Antimicrob Agents Chemother 2010; 54(3): 969-76.
[http://dx.doi.org/10.1128/AAC.01009-09] [PMID: 19995920]
[48]
Vila J, Marcos A, Marco F, et al. In vitro antimicrobial production of beta-lactamases, aminoglycoside-modifying enzymes, and chloramphenicol acetyltransferase by and susceptibility of clinical isolates of Acinetobacter baumannii. Antimicrob Agents Chemother 1993; 37(1): 138-41.
[http://dx.doi.org/10.1128/AAC.37.1.138] [PMID: 8431011]
[49]
Ferreira C, Pereira A, Melo L, Simões M. Advances in industrial biofilm control with micro-nanotechnology. Curr Res Technol Edu Topics Appl Microbiol Microb Biotechnol 2010; 2: 845-54.
[50]
Abbas HA, Serry FM. Biofilms: The microbial castle of resistance. Res J Pharm Technol 2013; 6: 2.
[51]
Huang L, Dai T, Xuan Y, Tegos GP, Hamblin MR. Synergistic combination of chitosan acetate with nanoparticle silver as a topical antimicrobial: efficacy against bacterial burn infections. Antimicrob Agents Chemother 2011; 55(7): 3432-8.
[http://dx.doi.org/10.1128/AAC.01803-10]
[52]
Kaltenpoth M, Göttler W, Herzner G, Strohm E. Symbiotic bacteria protect wasp larvae from fungal infestation. Curr Biol 2005; 15(5): 475-9.
[http://dx.doi.org/10.1016/j.cub.2004.12.084] [PMID: 15753044]
[53]
Gebhardt K, Schimana J, Müller J, et al. Screening for biologically active metabolites with endosymbiotic bacilli isolated from arthropods. FEMS Microbiol Lett 2002; 217(2): 199-205.
[http://dx.doi.org/10.1111/j.1574-6968.2002.tb11475.x] [PMID: 12480104]
[54]
Riedlinger J, Reicke A, Zähner H, et al. Abyssomicins, inhibitors of the para-aminobenzoic acid pathway produced by the marine Verrucosispora strain AB-18-032. J Antibiot (Tokyo) 2004; 57(4): 271-9.
[http://dx.doi.org/10.7164/antibiotics.57.271] [PMID: 15217192]
[55]
Gibbons S. Anti-staphylococcal plant natural products. Nat Prod Rep 2004; 21(2): 263-77.
[http://dx.doi.org/10.1039/b212695h] [PMID: 15042149]
[56]
Hagihara M, Crandon JL, Nicolau DP. The efficacy and safety of antibiotic combination therapy for infections caused by gram-positive and gram-negative organisms. Expert Opin Drug Saf 2012; 11(2): 221-33.
[http://dx.doi.org/10.1517/14740338.2012.632631] [PMID: 22074343]
[57]
Sun W, Weingarten RA, Xu M, et al. Rapid antimicrobial susceptibility test for identification of new therapeutics and drug combinations against multidrug-resistant bacteria. Emerg Microbes Infect 2016; 5(11) e116
[http://dx.doi.org/10.1038/emi.2016.123] [PMID: 27826141]
[58]
Singh N, Yeh PJ. Suppressive drug combinations and their potential to combat antibiotic resistance. J Antibiot (Tokyo) 2017; 70(11): 1033-42.
[http://dx.doi.org/10.1038/ja.2017.102] [PMID: 28874848]
[59]
Al-Obeid S, Jabri L, Al-Agamy M, Al-Omari A, Shibl A. Epidemiology of extensive drug resistant Acinetobacter baumannii (XDRAB) at Security Forces Hospital (SFH) in Kingdom of Saudi Arabia (KSA). J Chemother 2015; 27(3): 156-62.
[http://dx.doi.org/10.1179/1973947815Y.0000000019] [PMID: 25867622]
[60]
Wright GD. Antibiotic adjuvants: rescuing antibiotics from resistance. Trends Microbiol 2016; 24(11): 862-71.
[http://dx.doi.org/10.1016/j.tim.2016.06.009] [PMID: 27430191]
[61]
Gill EE, Franco OL, Hancock RE. Antibiotic adjuvants: diverse strategies for controlling drug-resistant pathogens. Chem Biol Drug Des 2015; 85(1): 56-78.
[http://dx.doi.org/10.1111/cbdd.12478] [PMID: 25393203]
[62]
Wong K, Ma J, Rothnie A, Biggin PC, Kerr ID. Towards understanding promiscuity in multidrug efflux pumps. Trends Biochem Sci 2014; 39(1): 8-16.
[http://dx.doi.org/10.1016/j.tibs.2013.11.002] [PMID: 24316304]
[63]
Nikaido H. Multidrug resistance in bacteria. Annu Rev Biochem 2009; 78: 119-46.
[64]
Costa SS, Viveiros M, Amaral L, Couto I. Multidrug efflux pumps in Staphylococcus aureus: An update. The Open Microbiol J 2013; 7: 59.
[65]
Garima K, Pathak R, Tandon R, et al. Differential expression of efflux pump genes of Mycobacterium tuberculosis in response to varied subinhibitory concentrations of antituberculosis agents. Tuberculosis 2015; 95: 155-61.
[66]
Xu GM. Relationships between the regulatory systems of quorum sensing and multidrug resistance. Front Microbiol 2016; 7: 958.
[PMID: 19231985]
[67]
Stermitz FR, Lorenz P, Tawara JN, Zenewicz LA, Lewis K. Synergy in a medicinal plant: antimicrobial action of berberine potentiated by 5′-methoxyhydnocarpin, a multidrug pump inhibitor. Proc Natl Acad Sci USA 2000; 97(4): 1433-7.
[http://dx.doi.org/10.1073/pnas.030540597] [PMID: 10677479]
[68]
Bame JR, Graf TN, Junio HA, et al. Sarothrin from Alkanna orientalis is an antimicrobial agent and efflux pump inhibitor. Planta Med 2013; 79(5): 327-9.
[http://dx.doi.org/10.1055/s-0032-1328259] [PMID: 23468310]
[69]
Kalia NP, Mahajan P, Mehra R, et al. Capsaicin, a novel inhibitor of the NorA efflux pump, reduces the intracellular invasion of Staphylococcus aureus. J Antimicrob Chemother 2012; 67(10): 2401-8.
[http://dx.doi.org/10.1093/jac/dks232] [PMID: 22807321]
[70]
Perumal S, Mahmud R. Chemical analysis, inhibition of biofilm formation and biofilm eradication potential of Euphorbia hirta L. against clinical isolates and standard strains. BMC Complement Altern Med 2013; 13: 346.
[http://dx.doi.org/10.1186/1472-6882-13-346] [PMID: 24321370]
[71]
Muzammil S, Hayat S, Fakhar-E-Alam M, et al. Nanoantibiotics: future nanotechnologies to combat antibiotic resistance. Front Biosci (Elite Ed) 2018; 10: 352-74.
[http://dx.doi.org/10.2741/e827] [PMID: 29293463]
[72]
Karimi F, Dabbagh S, Alizadeh S, Rostamnia S. Evaluation of AgClNPs@SBA-15/IL nanoparticle-induced oxidative stress and DNA mutation in Escherichia coli. Appl Microbiol Biotechnol 2016; 100(16): 7161-70.
[http://dx.doi.org/10.1007/s00253-016-7593-6] [PMID: 27209037]
[73]
Bazzaz BSF, Khameneh B, Jalili-Behabadi MM, Malaekeh-Nikouei B, Mohajeri SA. Preparation, characterization and antimicrobial study of a hydrogel (soft contact lens) material impregnated with silver nanoparticles. Cont Lens Anterior Eye 2014; 37: 149-52.
[74]
LewisOscar F, MubarakAli D, Nithya C, et al. One pot synthesis and anti-biofilm potential of copper nanoparticles (CuNPs) against clinical strains of Pseudomonas aeruginosa. Biofouling 2015; 31(4): 379-91.
[http://dx.doi.org/10.1080/08927014.2015.1048686] [PMID: 26057498]
[75]
Zhang Y, Zhu P, Li G, et al. Highly stable and re-dispersible nano Cu hydrosols with sensitively size-dependent catalytic and antibacterial activities. Nanoscale 2015; 7(32): 13775-83.
[http://dx.doi.org/10.1039/C5NR03414K] [PMID: 26219381]
[76]
Kruk T, Szczepanowicz K, Stefańska J, Socha RP, Warszyński P. Synthesis and antimicrobial activity of monodisperse copper nanoparticles. Colloids Surf B Biointerfaces 2015; 128: 17-22.
[http://dx.doi.org/10.1016/j.colsurfb.2015.02.009] [PMID: 25723345]
[77]
Brown A, Smith K, Samuels TA, Lu J, Obare S, Scott ME. Nanoparticles functionalized with ampicillin destroy multiple antibiotic resistant isolates of pseudomonas aeruginosa, enterobacter aerogenes and methicillin resistant Staphylococcus aureus. Appl Environ Microbiol 2012; 78(8): 2768-74.
[http://dx.doi.org/10.1128/AEM.06513-11]
[78]
Zhao Y, Ye C, Liu W, Chen R, Jiang X. Tuning the composition of AuPt bimetallic nanoparticles for antibacterial application. Angew Chem Int Ed Engl 2014; 53(31): 8127-31.
[http://dx.doi.org/10.1002/anie.201401035] [PMID: 24828967]
[79]
Cui Y, Zhao Y, Tian Y, Zhang W, Lü X, Jiang X. The molecular mechanism of action of bactericidal gold nanoparticles on Escherichia coli. Biomaterials 2012; 33(7): 2327-33.
[http://dx.doi.org/10.1016/j.biomaterials.2011.11.057] [PMID: 22182745]
[80]
Tao Y, Ju E, Ren J, Qu X. Bifunctionalized mesoporous silica-supported gold nanoparticles: intrinsic oxidase and peroxidase catalytic activities for antibacterial applications. Adv Mater 2015; 27(6): 1097-104.
[http://dx.doi.org/10.1002/adma.201405105] [PMID: 25655182]
[81]
Yuan P, Ding X, Guan Z, et al. Plasmon-coupled gold nanospheres for two-photon imaging and photoantibacterial activity. Adv Healthc Mater 2015; 4(5): 674-8.
[http://dx.doi.org/10.1002/adhm.201400524] [PMID: 25504821]
[82]
Sarwar S, Chakraborti S, Bera S, Sheikh IA, Hoque KM, Chakrabarti P. The antimicrobial activity of ZnO nanoparticles against Vibrio cholerae: variation in response depends on biotype. Nanomedicine (Lond) 2016; 12(6): 1499-509.
[http://dx.doi.org/10.1016/j.nano.2016.02.006] [PMID: 26970029]
[83]
Chakraborty R, Sarkar RK, Chatterjee AK, Manju U, Chattopadhyay AP, Basu T. A simple, fast and cost-effective method of synthesis of cupric oxide nanoparticle with promising antibacterial potency: unraveling the biological and chemical modes of action. Biochim Biophys Acta 2015; 1850(4): 845-56.
[http://dx.doi.org/10.1016/j.bbagen.2015.01.015] [PMID: 25637716]
[84]
Singh A, Ahmed A, Prasad KN, et al. Antibiofilm and membrane-damaging potential of cuprous oxide nanoparticles against Staphylococcus aureus with reduced susceptibility to vancomycin. Antimicrob Agents Chemother 2015; 59(11): 6882-90.
[http://dx.doi.org/10.1128/AAC.01440-15] [PMID: 26303796]
[85]
Wang H-Y, Hua X-W, Wu F-G, et al. Synthesis of ultrastable copper sulfide nanoclusters via trapping the reaction intermediate: potential anticancer and antibacterial applications. ACS Appl Mater Interfaces 2015; 7(13): 7082-92.
[http://dx.doi.org/10.1021/acsami.5b01214] [PMID: 25785786]
[86]
Roy AS, Parveen A, Koppalkar AR, Prasad MA. Effect of nano-titanium dioxide with different antibiotics against methicillin-resistant Staphylococcus aureus. J Biomater Nanobiotechnol 2010; 1: 37.
[http://dx.doi.org/10.4236/jbnb.2010.11005]
[87]
Haghighi F, Roudbar Mohammadi S, Mohammadi P, Hosseinkhani S, Shipour R. Antifungal activity of TiO2 nanoparticles and EDTA on Candida albicans biofilms. Infect Epidemiol Microbiol 2013; 1: 33-8.
[88]
Jin T, He Y. Antibacterial activities of magnesium oxide (MgO) nanoparticles against foodborne pathogens. J Nanopart Res 2011; 13: 6877-85.
[http://dx.doi.org/10.1007/s11051-011-0595-5]
[89]
Vatansever F, de Melo WC, Avci P, et al. Antimicrobial strategies centered around reactive oxygen species-bactericidal antibiotics, photodynamic therapy, and beyond. FEMS Microbiol Rev 2013; 37(6): 955-89.
[http://dx.doi.org/10.1111/1574-6976.12026] [PMID: 23802986]
[90]
Hetrick EM, Shin JH, Paul HS, Schoenfisch MH. Anti-biofilm efficacy of nitric oxide-releasing silica nanoparticles. Biomaterials 2009; 30(14): 2782-9.
[http://dx.doi.org/10.1016/j.biomaterials.2009.01.052] [PMID: 19233464]
[91]
Friedman A, Blecher K, Sanchez D, et al. Susceptibility of gram-positive and -negative bacteria to novel nitric oxide-releasing nanoparticle technology. Virulence 2011; 2(3): 217-21.
[http://dx.doi.org/10.4161/viru.2.3.16161] [PMID: 21577055]
[92]
Chakraborty SP, Sahu SK, Mahapatra SK, et al. Nanoconjugated vancomycin: new opportunities for the development of anti-VRSA agents. Nanotechnology 2010; 21(10)105103
[http://dx.doi.org/10.1088/0957-4484/21/10/105103] [PMID: 20154376]
[93]
Friedman AJ, Phan J, Schairer DO, et al. Antimicrobial and anti-inflammatory activity of chitosan-alginate nanoparticles: a targeted therapy for cutaneous pathogens. J Invest Dermatol 2013; 133(5): 1231-9.
[http://dx.doi.org/10.1038/jid.2012.399] [PMID: 23190896]
[94]
Zhang L, Pornpattananangku D, Hu C-M, Huang C-M. Development of nanoparticles for antimicrobial drug delivery. Curr Med Chem 2010; 17(6): 585-94.
[http://dx.doi.org/10.2174/092986710790416290] [PMID: 20015030]
[95]
Huang C-M, Chen C-H, Pornpattananangkul D, et al. Eradication of drug resistant Staphylococcus aureus by liposomal oleic acids. Biomaterials 2011; 32(1): 214-21.
[http://dx.doi.org/10.1016/j.biomaterials.2010.08.076] [PMID: 20880576]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy