Non-invasive Biodiversified Sensors: A Modernized Screening Technology for Cancer

Author(s): Anjali Takke, Pravin Shende*.

Journal Name: Current Pharmaceutical Design

Volume 25 , Issue 38 , 2019

Become EABM
Become Reviewer

Abstract:

Background: Biological sensors revolutionize the method of diagnoses of diseases from early to final stages using the biomarkers present in the body. Biosensors are advantageous due to the involvement of minimal sample collection with improved specificity and sensitivity for the detection of biomarkers.

Methods: Conventional biopsies restrict problems like patient non-compliance, cross-infection and high cost and to overcome these issues biological samples like saliva, sweat, urine, tears and sputum progress into clinical and diagnostic research for the development of non-invasive biosensors. This article covers various non-invasive measurements of biological samples, optical-based, mass-based, wearable and smartphone-based biosensors for the detection of cancer.

Results: The demand for non-invasive, rapid and economic analysis techniques escalated due to the modernization of the introduction of self-diagnostics and miniature forms of devices. Biosensors have high sensitivity and specificity for whole cells, microorganisms, enzymes, antibodies, and genetic materials.

Conclusion: Biosensors provide a reliable early diagnosis of cancer, which results in faster therapeutic outcomes with in-depth fundamental understanding of the disease progression.

Keywords: Biosensor, non-invasive, urine, sweat, wearable, cancer, detection.

[1]
Shende P, Vaidya J, Kulkarni YA, Gaud RS. Systematic approaches for biodiagnostics using exhaled air. J Control Release 2017; 268: 282-95.
[http://dx.doi.org/10.1016/j.jconrel.2017.10.035] [PMID: 29111149]
[2]
Shende P, Vaidya J, Gaud RS. Pharmacotherapeutic approaches for transportation of anticancer agents via skin. Artif Cells Nanomed Biotechnol 2018; 46(sup3): S423-33.
[http://dx.doi.org/10.1080/21691401.2018.1498349] [PMID: 30095010]
[3]
World Health Organisation. Cancer burden rises to 181 million new cases and 96 million cancer deaths in 2018. Int Agency Res Cancer 2018; pp. 13-5.
[4]
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin 2019; 69(1): 7-34.
[http://dx.doi.org/10.3322/caac.21551] [PMID: 30620402]
[5]
Hsieh M-C, Thompson T, Wu X-C, et al. The effect of comorbidity on the use of adjuvant chemotherapy and type of regimen for curatively resected stage III colon cancer patients. Cancer Med 2016; 5(5): 871-80.
[http://dx.doi.org/10.1002/cam4.632] [PMID: 26773804]
[6]
Bohunicky B, Mousa SA. Biosensors: the new wave in cancer diagnosis. Nanotechnol Sci Appl 2010; 4: 1-10.
[http://dx.doi.org/10.2147/NSA.S13465] [PMID: 24198482]
[7]
Zhou Q, Hu H-G, Hou L. Discover, develop & validate-advance and prospect of tumor biomarkers. Clin Lab 2015; 61(11): 1589-99.
[http://dx.doi.org/10.7754/Clin.Lab.2015.150332] [PMID: 26731982]
[8]
Wang L. Screening and biosensor-based approaches for lung cancer detection. Sensors (Basel) 2017; 17(10): 1-22.
[http://dx.doi.org/10.3390/s17102420] [PMID: 29065541]
[9]
Michaelson J, Satija S, Moore R, et al. The pattern of breast cancer screening utilization and its consequences. Cancer 2002; 94(1): 37-43.
[http://dx.doi.org/10.1002/cncr.10154] [PMID: 11815958]
[10]
Pickhardt PJ, Hassan C, Halligan S, Marmo R. Colorectal cancer: CT colonography and colonoscopy for detection-systematic review and meta-analysis. Radiology 2011; 259(2): 393-405.
[http://dx.doi.org/10.1148/radiol.11101887] [PMID: 21415247]
[11]
Cardoso AR, Moreira FTC, Fernandes R, Sales MGF. Novel and simple electrochemical biosensor monitoring attomolar levels of miRNA-155 in breast cancer. Biosens Bioelectron 2016; 80: 621-30.
[http://dx.doi.org/10.1016/j.bios.2016.02.035] [PMID: 26901459]
[12]
Campuzano S, Pedrero M, Pingarrón JM. Non-invasive breast cancer diagnosis through electrochemical biosensing at different molecular levels. Sensors (Basel) 2017; 17(9)e1993
[http://dx.doi.org/10.3390/s17091993] [PMID: 28858236]
[13]
Gouvea C. Biosensors for health applications. Biosens. Heal. Environ. Biosecurity InTech 2011.
[14]
Vineis P, Schatzkin A, Potter JD. Models of carcinogenesis: an overview. Carcinogenesis 2010; 31(10): 1703-9.
[http://dx.doi.org/10.1093/carcin/bgq087] [PMID: 20430846]
[15]
Basil CF, Zhao Y, Zavaglia K, et al. Common cancer biomarkers. Cancer Res 2006; 66(6): 2953-61.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-3433] [PMID: 16540643]
[16]
Tothill IE. Biosensors for cancer markers diagnosis. Semin Cell Dev Biol 2009; 20(1): 55-62.
[http://dx.doi.org/10.1016/j.semcdb.2009.01.015] [PMID: 19429492]
[17]
Duquesne I, Weisbach L, Aziz A, Kluth LA, Xylinas E. Young academic urologist urothelial carcinoma group of the european association of urology. The contemporary role and impact of urine-based biomarkers in bladder cancer. Transl Androl Urol 2017; 6(6): 1031-42.
[http://dx.doi.org/10.21037/tau.2017.11.29] [PMID: 29354490]
[18]
Karimi-Busheri F, Rasouli-Nia A, Zadorozhny V, Fakhrai H. CD24+/CD38- as new prognostic marker for non-small cell lung cancer. Multidiscip Respir Med 2013; 8(1): 65.
[http://dx.doi.org/10.1186/2049-6958-8-65] [PMID: 24094028]
[19]
Miller GJ, Brawer MK, Sakr WA, Thrasher JB, Townsend R. Prostate cancer: serum and tissue markers. Rev Urol 2001; 3(Suppl. 2): S11-9.
[PMID: 16985995]
[20]
Mittal S, Kaur H, Gautam N, Mantha AK. Biosensors for breast cancer diagnosis: a review of bioreceptors, biotransducers and signal amplification strategies. Biosens Bioelectron 2017; 88: 217-31.
[http://dx.doi.org/10.1016/j.bios.2016.08.028] [PMID: 27567264]
[21]
Okuno J, Maehashi K, Kerman K, Takamura Y, Matsumoto K, Tamiya E. Label-free immunosensor for prostate-specific antigen based on single-walled carbon nanotube array-modified microelectrodes. Biosens Bioelectron 2007; 22(9-10): 2377-81.
[http://dx.doi.org/10.1016/j.bios.2006.09.038] [PMID: 17110096]
[22]
Wang Q, Gao P, Wang X, Duan Y. Investigation and identification of potential biomarkers in human saliva for the early diagnosis of oral squamous cell carcinoma. Clin Chim Acta 2014; 427: 79-85.
[http://dx.doi.org/10.1016/j.cca.2013.10.004] [PMID: 24144867]
[23]
Mittal S, Bansal V, Garg S, Atreja G, Bansal S. The diagnostic role of Saliva - a review. J Clin Exp Dent 2011; 3: 314-20.
[http://dx.doi.org/10.4317/jced.3.e314]
[24]
Chiappin S, Antonelli G, Gatti R, De Palo EF. Saliva specimen: a new laboratory tool for diagnostic and basic investigation. Clin Chim Acta 2007; 383(1-2): 30-40.
[http://dx.doi.org/10.1016/j.cca.2007.04.011] [PMID: 17512510]
[25]
Shah FD, Begum R, Vajaria BN, et al. A review on salivary genomics and proteomics biomarkers in oral cancer. Indian J Clin Biochem 2011; 26(4): 326-34.
[http://dx.doi.org/10.1007/s12291-011-0149-8] [PMID: 23024467]
[26]
Rathnayake N, Åkerman S, Klinge B, et al. Salivary biomarkers for detection of systemic diseases. PLoS One 2013; 8(4)e61356
[http://dx.doi.org/10.1371/journal.pone.0061356] [PMID: 23637817]
[27]
Wang A, Wang CP, Tu M, Wong DTW. Oral biofluid biomarker research: current status and emerging frontiers. Diagnostics (Basel) 2016; 6(4)e45
[http://dx.doi.org/10.3390/diagnostics6040045] [PMID: 27999326]
[28]
Liu J, Duan Y. Saliva: a potential media for disease diagnostics and monitoring. Oral Oncol 2012; 48(7): 569-77.
[http://dx.doi.org/10.1016/j.oraloncology.2012.01.021] [PMID: 22349278]
[29]
Mishra R. Cell cycle-regulatory cyclins and their deregulation in oral cancer. Oral Oncol 2013; 49(6): 475-81.
[http://dx.doi.org/10.1016/j.oraloncology.2013.01.008] [PMID: 23434055]
[30]
Zhang L, Farrell JJ, Zhou H, et al. Salivary transcriptomic biomarkers for detection of resectable pancreatic cancer Gastroenterology 2010; 138(3): 949-57: e1-7.
[http://dx.doi.org/10.1053/j.gastro.2009.11.010] [PMID: 19931263]
[31]
Choi J, Ghaffari R, Baker LB, Rogers JA. Skin-interfaced systems for sweat collection and analytics. Sci Adv 2018; 4(2)e3921
[http://dx.doi.org/10.1126/sciadv.aar3921] [PMID: 29487915]
[32]
Raiszadeh MM, Ross MM, Russo PS, et al. Proteomic analysis of eccrine sweat: implications for the discovery of schizophrenia biomarker proteins. J Proteome Res 2012; 11(4): 2127-39.
[http://dx.doi.org/10.1021/pr2007957] [PMID: 22256890]
[33]
Jadoon S, Karim S, Akram MR, et al. Recent developments in sweat analysis and its applications. Int J Anal Chem 2015; 2015164974
[http://dx.doi.org/10.1155/2015/164974] [PMID: 25838824]
[34]
Jia W, Bandodkar AJ, Valdés-Ramírez G, et al. Electrochemical tattoo biosensors for real-time noninvasive lactate monitoring in human perspiration. Anal Chem 2013; 85(14): 6553-60.
[http://dx.doi.org/10.1021/ac401573r] [PMID: 23815621]
[35]
Huang X, Liu Y, Chen K, et al. Stretchable, wireless sensors and functional substrates for epidermal characterization of sweat. Small 2014; 10(15): 3083-90.
[http://dx.doi.org/10.1002/smll.201400483] [PMID: 24706477]
[36]
Goodwin ML, Gladden LB, Nijsten MWN, Jones KB. Lactate and cancer: revisiting the warburg effect in an era of lactate shuttling. Front Nutr 2015; 1: 27.
[http://dx.doi.org/10.3389/fnut.2014.00027] [PMID: 25988127]
[37]
Mendler AN, Hu B, Prinz PU, Kreutz M, Gottfried E, Noessner E. Tumor lactic acidosis suppresses CTL function by inhibition of p38 and JNK/c-Jun activation. Int J Cancer 2012; 131(3): 633-40.
[http://dx.doi.org/10.1002/ijc.26410] [PMID: 21898391]
[38]
Hirschhaeuser F, Sattler UGA, Mueller-Klieser W. Lactate: a metabolic key player in cancer. Cancer Res 2011; 71(22): 6921-5.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-1457] [PMID: 22084445]
[39]
Bonuccelli G, Tsirigos A, Whitaker-Menezes D, et al. Ketones and lactate “fuel” tumor growth and metastasis: evidence that epithelial cancer cells use oxidative mitochondrial metabolism. Cell Cycle 2010; 9(17): 3506-14.
[http://dx.doi.org/10.4161/cc.9.17.12731] [PMID: 20818174]
[40]
Husain Z, Huang Y, Seth P, Sukhatme VP. Tumor-derived lactate modifies antitumor immune response: effect on myeloid-derived suppressor cells and NK cells. J Immunol 2013; 191(3): 1486-95.
[http://dx.doi.org/10.4049/jimmunol.1202702] [PMID: 23817426]
[41]
Whitaker-Menezes D, Martinez-Outschoorn UE, Lin Z, et al. Evidence for a stromal-epithelial “lactate shuttle” in human tumors: MCT4 is a marker of oxidative stress in cancer-associated fibroblasts. Cell Cycle 2011; 10(11): 1772-83.
[http://dx.doi.org/10.4161/cc.10.11.15659] [PMID: 21558814]
[42]
Dijkstra S, Birker IL, Smit FP, et al. Prostate cancer biomarker profiles in urinary sediments and exosomes. J Urol 2014; 191(4): 1132-8.
[http://dx.doi.org/10.1016/j.juro.2013.11.001] [PMID: 24211598]
[43]
Fernandez-Serra A, Casanova-Salas I, Rubio L, et al. [Update on the diagnosis of PCa in urine. The current role of urine markers Arch Esp Urol 2015; 68(3): 240-9.
[PMID: 25948797]
[44]
Babjuk M, Oosterlinck W, Sylvester R, et al. European association of urology (EAU). EAU guidelines on non-muscle-invasive urothelial carcinoma of the bladder, the 2011 update. Eur Urol 2011; 59(6): 997-1008.
[http://dx.doi.org/10.1016/j.eururo.2011.03.017] [PMID: 21458150]
[45]
Yao VJ, D’Angelo S, Butler KS, et al. Ligand-targeted theranostic nanomedicines against cancer. J Control Release 2016; 240: 267-86.
[http://dx.doi.org/10.1016/j.jconrel.2016.01.002] [PMID: 26772878]
[46]
Montuschi P, Santonico M, Mondino C, et al. Diagnostic performance of an electronic nose, fractional exhaled nitric oxide, and lung function testing in asthma. Chest 2010; 137(4): 790-6.
[http://dx.doi.org/10.1378/chest.09-1836] [PMID: 20081096]
[47]
Prabhakar B, Shende P, Augustine S. Current trends and emerging diagnostic techniques for lung cancer. Biomed Pharmacother 2018; 106: 1586-99.
[http://dx.doi.org/10.1016/j.biopha.2018.07.145] [PMID: 30119234]
[48]
Horváth I, Lázár Z, Gyulai N, Kollai M, Losonczy G. Exhaled biomarkers in lung cancer. Eur Respir J 2009; 34: 261-75.
[http://dx.doi.org/10.1183/09031936.00142508] [PMID: 19567608]
[49]
Pereira J, Porto-Figueira P, Cavaco C, et al. Breath analysis as a potential and non-invasive frontier in disease diagnosis: an overview. Metabolites 2015; 5(1): 3-55.
[http://dx.doi.org/10.3390/metabo5010003] [PMID: 25584743]
[50]
Nardi-Agmon I, Abud-Hawa M, Liran O, et al. Exhaled breath analysis for monitoring response to treatment in advanced lung cancer. J Thorac Oncol 2016; 11(6): 827-37.
[http://dx.doi.org/10.1016/j.jtho.2016.02.017] [PMID: 26968885]
[51]
Sethi S, Nanda R, Chakraborty T. Clinical application of volatile organic compound analysis for detecting infectious diseases. Clin Microbiol Rev 2013; 26(3): 462-75.
[http://dx.doi.org/10.1128/CMR.00020-13] [PMID: 23824368]
[52]
Fens N, Zwinderman AH, van der Schee MP, et al. Exhaled breath profiling enables discrimination of chronic obstructive pulmonary disease and asthma. Am J Respir Crit Care Med 2009; 180(11): 1076-82.
[http://dx.doi.org/10.1164/rccm.200906-0939OC] [PMID: 19713445]
[53]
Strand N, Bhushan A, Schivo M, Kenyon NJ, Davis CE. Chemically polymerized polypyrrole for on-chip concentration of volatile breath metabolites. Sens Actuators B Chem 2010; 143(2): 516-23.
[http://dx.doi.org/10.1016/j.snb.2009.09.052] [PMID: 20161533]
[54]
Shende P, Augustine S, Prabhakar B, Gaud RS. Advanced multimodal diagnostic approaches for detection of lung cancer. Expert Rev Mol Diagn 2019; 19(5): 409-17.
[http://dx.doi.org/10.1080/14737159.2019.1607299] [PMID: 30977684]
[55]
Shende P, Vaidya J, Kulkarni YA. Bio-inspired nano-engineered strip for semiquantitative FeNO analysis. J Breath Res 2019; 13(4)046002
[http://dx.doi.org/10.1088/1752-7163/ab1faf] [PMID: 31063980]
[56]
Belinsky SA. Gene-promoter hypermethylation as a biomarker in lung cancer. Nat Rev Cancer 2004; 4(9): 707-17.
[http://dx.doi.org/10.1038/nrc1432] [PMID: 15343277]
[57]
Xing L, Todd NW, Yu L, Fang H, Jiang F. Early detection of squamous cell lung cancer in sputum by a panel of microRNA markers. Mod Pathol 2010; 23(8): 1157-64.
[http://dx.doi.org/10.1038/modpathol.2010.111] [PMID: 20526284]
[58]
Van Haeringen NJ. Clinical biochemistry of tears. Surv Ophthalmol 1981; 26(2): 84-96.
[http://dx.doi.org/10.1016/0039-6257(81)90145-4] [PMID: 7034254]
[59]
Herber S, Grus FH, Sabuncuo P, Augustin AJ. Two-dimensional analysis of tear protein patterns of diabetic patients. Electrophoresis 2001; 22(9): 1838-44.
[http://dx.doi.org/10.1002/1522-2683(200105)22:9<1838:AID-ELPS1838>3.0.CO;2-7] [PMID: 11425240]
[60]
Böhm D, Keller K, Pieter J, et al. Comparison of tear protein levels in breast cancer patients and healthy controls using a de novo proteomic approach. Oncol Rep 2012; 28(2): 429-38.
[http://dx.doi.org/10.3892/or.2012.1849] [PMID: 22664934]
[61]
Evans V, Vockler C, Friedlander M, Walsh B, Willcox MD. Lacryglobin in human tears, a potential marker for cancer. Clin Exp Ophthalmol 2001; 29(3): 161-3.
[http://dx.doi.org/10.1046/j.1442-9071.2001.00408.x] [PMID: 11446459]
[62]
Zhou L, Beuerman RW. Expert Review of Proteomics The power of tears: how tear proteomics research could revolutionize the clinic Exp Rev Proteomics 2017; 14(3).
[http://dx.doi.org/10.1080/14789450.2017.1285703]
[63]
Wulfkuhle JD, Paweletz CP, Steeg PS, Petricoin EF III, Liotta L. Proteomic approaches to the diagnosis, treatment, and monitoring of cancer. Adv Exp Med Biol 2003; 532: 59-68.
[http://dx.doi.org/10.1007/978-1-4615-0081-0_7] [PMID: 12908550]
[64]
Tiwari S, Gupta PK, Bagbi Y, Sarkar T, Solanki PR. L-cysteine capped lanthanum hydroxide nanostructures for non-invasive detection of oral cancer biomarker. Biosens Bioelectron 2017; 89(Pt 2): 1042-52.
[http://dx.doi.org/10.1016/j.bios.2016.10.020] [PMID: 27825517]
[65]
Hasanzadeh M, Shadjou N, de la Guardia M. Aptamer-based assay of biomolecules: recent advances in electro-analytical approach. TrAC Trends Anal Chem 2017; 89: 119-32.
[http://dx.doi.org/10.1016/j.trac.2017.02.003]
[66]
Arif S, Qudsia S, Urooj S, Chaudry N, Arshad A, Andleeb S. Blueprint of quartz crystal microbalance biosensor for early detection of breast cancer through salivary autoantibodies against ATP6AP1. Biosens Bioelectron 2015; 65: 62-70.
[http://dx.doi.org/10.1016/j.bios.2014.09.088] [PMID: 25461139]
[67]
Tan W, Sabet L, Li Y, et al. Optical protein sensor for detecting cancer markers in saliva. Biosens Bioelectron 2008; 24(2): 266-71.
[http://dx.doi.org/10.1016/j.bios.2008.03.037] [PMID: 18479906]
[68]
Weigum SE, Floriano PN, Redding SW, et al. Nano-bio-chip sensor platform for examination of oral exfoliative cytology. Cancer Prev Res (Phila) 2010; 3(4): 518-28.
[http://dx.doi.org/10.1158/1940-6207.CAPR-09-0139] [PMID: 20332305]
[69]
Wang Z, Zhang J, Guo Y, et al. A novel electrically magnetic-controllable electrochemical biosensor for the ultra sensitive and specific detection of attomolar level oral cancer-related microRNA. Biosens Bioelectron 2013; 45: 108-13.
[http://dx.doi.org/10.1016/j.bios.2013.02.007] [PMID: 23455049]
[70]
Kumar S, Kumar S, Tiwari S, et al. Biofunctionalized nanostructured zirconia for biomedical application: a smart approach for oral cancer detection. Adv Sci (Weinh) 2015; 2(8)1500048
[http://dx.doi.org/10.1002/advs.201500048] [PMID: 27980963]
[71]
Kumar S, Sharma JG, Maji S, Malhotra BD. Nanostructured zirconia decorated reduced graphene oxide based efficient biosensing platform for non-invasive oral cancer detection. Biosens Bioelectron 2016; 78: 497-504.
[http://dx.doi.org/10.1016/j.bios.2015.11.084] [PMID: 26657594]
[72]
Kumar S, Kumar S, Tiwari S, et al. Highly sensitive protein functionalized nanostructured hafnium oxide based biosensing platform for non-invasive oral cancer detection. Sens Actuators B Chem 2016; 235: 1-10.
[http://dx.doi.org/10.1016/j.snb.2016.05.047]
[73]
Liang Y-H, Chang C-C, Chen C-C, Chu-Su Y, Lin C-W. Development of an Au/ZnO thin film surface plasmon resonance-based biosensor immunoassay for the detection of carbohydrate antigen 15-3 in human saliva. Clin Biochem 2012; 45(18): 1689-93.
[http://dx.doi.org/10.1016/j.clinbiochem.2012.09.001] [PMID: 22981930]
[74]
Zilberman Y, Sonkusale SR. Microfluidic optoelectronic sensor for salivary diagnostics of stomach cancer. Biosens Bioelectron 2015; 67: 465-71.
[http://dx.doi.org/10.1016/j.bios.2014.09.006] [PMID: 25223554]
[75]
Sakurada K, Akutsu T, Fukushima H, Watanabe K, Yoshino M. Detection of dermcidin for sweat identification by real-time RT-PCR and ELISA. Forensic Sci Int 2010; 194(1-3): 80-4.
[http://dx.doi.org/10.1016/j.forsciint.2009.10.015] [PMID: 19914015]
[76]
Khalid T, Aggio R, White P, et al. Urinary volatile organic compounds for the detection of prostate cancer. PLoS One 2015; 10(11)e0143283
[http://dx.doi.org/10.1371/journal.pone.0143283] [PMID: 26599280]
[77]
Feng S, Zheng Z, Xu Y, et al. A noninvasive cancer detection strategy based on gold nanoparticle surface-enhanced raman spectroscopy of urinary modified nucleosides isolated by affinity chromatography. Biosens Bioelectron 2017; 91: 616-22.
[http://dx.doi.org/10.1016/j.bios.2017.01.006] [PMID: 28103517]
[78]
Lan J, Xu W, Wan Q, et al. Colorimetric determination of sarcosine in urine samples of prostatic carcinoma by mimic enzyme palladium nanoparticles. Anal Chim Acta 2014; 825: 63-8.
[http://dx.doi.org/10.1016/j.aca.2014.03.040] [PMID: 24767152]
[79]
Giannetto M, Bianchi MV, Mattarozzi M, Careri M. Competitive amperometric immunosensor for determination of p53 protein in urine with carbon nanotubes/gold nanoparticles screen-printed electrodes: a potential rapid and noninvasive screening tool for early diagnosis of urinary tract carcinoma. Anal Chim Acta 2017; 991: 133-41.
[http://dx.doi.org/10.1016/j.aca.2017.09.005] [PMID: 29031295]
[80]
Cormio L, Vedruccio C, Leucci G, et al. Noninvasive electromagnetic detection of bladder cancer. ISRN Urol 2014; 2014802328
[http://dx.doi.org/10.1155/2014/802328] [PMID: 24563795]
[81]
Khalid T, White P, De Lacy Costello B, et al. A pilot study combining a GC-sensor device with a statistical model for the identification of bladder cancer from urine headspace. PLoS One 2013; 8(7)e69602
[http://dx.doi.org/10.1371/journal.pone.0069602] [PMID: 23861976]
[82]
Ye B, Skates S, Mok SC, et al. Proteomic-based discovery and characterization of glycosylated eosinophil-derived neurotoxin and COOH-terminal osteopontin fragments for ovarian cancer in urine. Clin Cancer Res 2006; 12(2): 432-41.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-0461] [PMID: 16428483]
[83]
Asimakopoulos AD, Del Fabbro D, Miano R, et al. Prostate cancer diagnosis through electronic nose in the urine headspace setting: a pilot study. Prostate Cancer Prostatic Dis 2014; 17(2): 206-11.
[http://dx.doi.org/10.1038/pcan.2014.11] [PMID: 24686772]
[84]
Ma H, Zhang X, Li X, Li R, Du B, Wei Q. Electrochemical immunosensor for detecting typical bladder cancer biomarker based on reduced graphene oxide-tetraethylene pentamine and trimetallic AuPdPt nanoparticles. Talanta 2015; 143: 77-82.
[http://dx.doi.org/10.1016/j.talanta.2015.05.029] [PMID: 26078131]
[85]
Liu X, Wei M, Xu E, et al. A sensitive, label-free electrochemical detection of telomerase activity without modification or immobilization. Biosens Bioelectron 2017; 91: 347-53.
[http://dx.doi.org/10.1016/j.bios.2016.12.054] [PMID: 28043077]
[86]
Di Natale C, Macagnano A, Martinelli E, et al. Lung cancer identification by the analysis of breath by means of an array of non-selective gas sensors. Biosens Bioelectron 2003; 18(10): 1209-18.
[http://dx.doi.org/10.1016/S0956-5663(03)00086-1] [PMID: 12835038]
[87]
Chen X, Cao M, Li Y, et al. A study of an electronic nose for detection of lung cancer based on a virtual SAW gas sensors array and imaging recognition method. Meas Sci Technol 2005; 16: 1535-46.
[http://dx.doi.org/10.1088/0957-0233/16/8/001]
[88]
Nardi-Agmon I, Peled N. Exhaled breath analysis for the early detection of lung cancer: recent developments and future prospects. Lung Cancer (Auckl) 2017; 8: 31-8.
[http://dx.doi.org/10.2147/LCTT.S104205] [PMID: 28553152]
[89]
Sakumura Y, Koyama Y, Tokutake H, et al. Diagnosis by volatile organic compounds in exhaled breath from lung cancer patients using support vector machine algorithm. Sensors (Basel) 2017; 17(2): 287.
[http://dx.doi.org/10.3390/s17020287] [PMID: 28165388]
[90]
Chen X, Xu F, Wang Y, et al. A study of the volatile organic compounds exhaled by lung cancer cells in vitro for breath diagnosis. Cancer 2007; 110(4): 835-44.
[http://dx.doi.org/10.1002/cncr.22844] [PMID: 17599760]
[91]
Machado RF, Laskowski D, Deffenderfer O, et al. Detection of lung cancer by sensor array analyses of exhaled breath. Am J Respir Crit Care Med 2005; 171(11): 1286-91.
[http://dx.doi.org/10.1164/rccm.200409-1184OC] [PMID: 15750044]
[92]
Mazzone PJ, Hammel J, Dweik R, et al. Diagnosis of lung cancer by the analysis of exhaled breath with a colorimetric sensor array. Thorax 2007; 62(7): 565-8.
[http://dx.doi.org/10.1136/thx.2006.072892] [PMID: 17327260]
[93]
Phillips M, Cataneo RN, Cummin ARC, et al. Detection of lung cancer with volatile markers in the breath. Chest 2003; 123(6): 2115-23.
[http://dx.doi.org/10.1378/chest.123.6.2115] [PMID: 12796197]
[94]
Phillips M, Altorki N, Austin JHM, et al. Prediction of lung cancer using volatile biomarkers in breath. Cancer Biomark 2007; 3(2): 95-109.
[http://dx.doi.org/10.3233/CBM-2007-3204] [PMID: 17522431]
[95]
Phillips M, Altorki N, Austin JHM, et al. Detection of lung cancer using weighted digital analysis of breath biomarkers. Clin Chim Acta 2008; 393(2): 76-84.
[http://dx.doi.org/10.1016/j.cca.2008.02.021] [PMID: 18420034]
[96]
Poli D, Carbognani P, Corradi M, et al. Exhaled volatile organic compounds in patients with non-small cell lung cancer: cross sectional and nested short-term follow-up study. Respir Res 2005; 6: 71.
[http://dx.doi.org/10.1186/1465-9921-6-71] [PMID: 16018807]
[97]
Wehinger A, Schmid A, Mechtcheriakov S, et al. Lung cancer detection by proton transfer reaction mass-spectrometric analysis of human breath gas. Int J Mass Spectrom 2007; 265: 49-59.
[http://dx.doi.org/10.1016/j.ijms.2007.05.012]
[98]
Peng G, Tisch U, Adams O, et al. Diagnosing lung cancer in exhaled breath using gold nanoparticles. Nat Nanotechnol 2009; 4(10): 669-73.
[http://dx.doi.org/10.1038/nnano.2009.235] [PMID: 19809459]
[99]
Chapman EA, Thomas PS, Stone E, Lewis C, Yates DH. A breath test for malignant mesothelioma using an electronic nose. Eur Respir J 2012; 40(2): 448-54.
[http://dx.doi.org/10.1183/09031936.00040911] [PMID: 22183490]
[100]
Dragonieri S, Schot R, Mertens BJA, et al. An electronic nose in the discrimination of patients with asthma and controls. J Allergy Clin Immunol 2007; 120(4): 856-62.
[http://dx.doi.org/10.1016/j.jaci.2007.05.043] [PMID: 17658592]
[101]
Peng G, Hakim M, Broza YY, et al. Detection of lung, breast, colorectal, and prostate cancers from exhaled breath using a single array of nanosensors. Br J Cancer 2010; 103(4): 542-51.
[http://dx.doi.org/10.1038/sj.bjc.6605810] [PMID: 20648015]
[102]
Shuster G, Gallimidi Z, Reiss AH, et al. Classification of breast cancer precursors through exhaled breath. Breast Cancer Res Treat 2011; 126(3): 791-6.
[http://dx.doi.org/10.1007/s10549-010-1317-x] [PMID: 21190078]
[103]
Phillips M, Gleeson K, Hughes JMB, et al. Volatile organic compounds in breath as markers of lung cancer: a cross-sectional study. Lancet 1999; 353(9168): 1930-3.
[http://dx.doi.org/10.1016/S0140-6736(98)07552-7] [PMID: 10371572]
[104]
Wang C, Ke C, Wang X, et al. Noninvasive detection of colorectal cancer by analysis of exhaled breath. Anal Bioanal Chem 2014; 406(19): 4757-63.
[http://dx.doi.org/10.1007/s00216-014-7865-x] [PMID: 24820062]
[105]
Xu ZQ, Broza YY, Ionsecu R, et al. A nanomaterial-based breath test for distinguishing gastric cancer from benign gastric conditions. Br J Cancer 2013; 108(4): 941-50.
[http://dx.doi.org/10.1038/bjc.2013.44] [PMID: 23462808]
[106]
Hakim M, Billan S, Tisch U, et al. Diagnosis of head-and-neck cancer from exhaled breath. Br J Cancer 2011; 104(10): 1649-55.
[http://dx.doi.org/10.1038/bjc.2011.128] [PMID: 21505455]
[107]
Amal H, Ding L, Liu BB, et al. The scent fingerprint of hepatocarcinoma: in-vitro metastasis prediction with volatile organic compounds (VOCs). Int J Nanomedicine 2012; 7: 4135-46.
[http://dx.doi.org/10.2147/IJN.S32680] [PMID: 22888249]
[108]
Xue R, Dong L, Zhang S, et al. Investigation of volatile biomarkers in liver cancer blood using solid-phase microextraction and gas chromatography/mass spectrometry. Rapid Commun Mass Spectrom 2008; 22(8): 1181-6.
[http://dx.doi.org/10.1002/rcm.3466] [PMID: 18350562]
[109]
Lebrecht A, Boehm D, Schmidt M, Koelbl H, Schwirz RL, Grus FH. Diagnosis of breast cancer by tear proteomic pattern. Cancer Genomics Proteomics 2009; 6(3): 177-82.
[PMID: 19487546]
[110]
Vashist SK, Mudanyali O, Schneider EM, Zengerle R, Ozcan A. Cellphone-based devices for bioanalytical sciences. Anal Bioanal Chem 2014; 406(14): 3263-77.
[http://dx.doi.org/10.1007/s00216-013-7473-1] [PMID: 24287630]
[111]
Xu X, Akay A, Wei H, Wang S, et al. Advances in smartphone-based point-of-care diagnostics. Proc IEEE 2015; 103: 236-47.
[http://dx.doi.org/10.1109/JPROC.2014.2378776]
[112]
Hosu O, Ravalli A, Lo Piccolo GM, Cristea C, Sandulescu R, Marrazza G. Smartphone-based immunosensor for CA125 detection. Talanta 2017; 166: 234-40.
[http://dx.doi.org/10.1016/j.talanta.2017.01.073] [PMID: 28213228]
[113]
Gopinath SCB, Tang T-H, Chen Y, Citartan M, Lakshmipriya T. Bacterial detection: from microscope to smartphone. Biosens Bioelectron 2014; 60: 332-42.
[http://dx.doi.org/10.1016/j.bios.2014.04.014] [PMID: 24836016]
[114]
Preechaburana P, Gonzalez MC, Suska A, Filippini D. Surface plasmon resonance chemical sensing on cell phones. Angew Chem Int Ed Engl 2012; 51(46): 11585-8.
[http://dx.doi.org/10.1002/anie.201206804] [PMID: 23074061]
[115]
Das A, Swedish T, Wahi A, et al. Mobile phone based mini-spectrometer for rapid screening of skin cancer Pro SPIE Soc Photo-Optical Instr Eng 2015; M94820.
[116]
Airthings expands its radon-detecting ecosystem | TechHive [cited 2018 July 12]. Available at: www.techhive.com/article/3245651/ces/airthings-expands-its-radon-detecting-ecosystem
[117]
Sabesan S, Sankar R. Improving long‐term management of epilepsy using a wearable multimodal seizure detection system. Epilepsy Behav 2015; 46: 56-7.
[http://dx.doi.org/10.1016/j.yebeh.2015.02.057]
[118]
My UV. PATCH INFO | La Roche-Posay [cited 2018 July 12]. Available at: www.laroche-posay.us/my-uv-patch-info
[119]
Zhang J, Rector J, Lin JQ, et al. Nondestructive tissue analysis for ex vivo and in vivo cancer diagnosis using a handheld mass spectrometry system. Sci Transl Med 2017; 9(406)eaan3968
[http://dx.doi.org/10.1126/scitranslmed.aan3968] [PMID: 28878011]
[120]
Pantone’s 2018 Color of the Year Is Ultra Violet, Meant to Evoke Artistic Expression and the Cosmos - Adweek [cited 2018 July 12]. Available at: www.adweek.com/brand-marketing/pantones-2018-color-of-the-year-is-ultra-violet-meant-to-evoke-artistic-expression-and-the-cosmos
[121]
ScanMed Brings Prostate/Pelvic MRI Coil for Prostate Cancer Detection to the Masses on CBS Action News 3 [cited 2018 July 12]. Available at: www.prnewswire.com/news-releases/scanmed-brings-prostatepelvic-mri-coil-for-prostate-cancer-detection-to-the-masses-on-cbs-action-news-3-300130386
[122]
Cyrcadia Health | Early Detection Technology for Breast Cancer [cited 2018 July 12] .Available at: www.cyrcadiahealth.com
[123]
Wearable Cancer Monitors: Accessories to a Cure [cited 2018 July 12]. Available at. www.aabme.asme.org/posts/wearable-cancer-monitors-accessories-to-a-cure
[124]
Vyly V. kegel exercise shorts for men [cited 2018 July 12]. Available at: www.vylyv.com
[125]
Dimitrov DV. Medical Internet of Things and Big Data in Healthcare. Healthc Inform Res 2016; 22(3): 156-63.
[http://dx.doi.org/10.4258/hir.2016.22.3.156] [PMID: 27525156]
[126]
Djelouat H, Amira A, Bensaali F. Compressive Sensing-Based IoT applications: a review. J Sens Actuator Networks 2018; 7: 45.
[http://dx.doi.org/10.3390/jsan7040045]
[128]
Lee H-J, Yook J-G. Recent research trends of radio-frequency biosensors for biomolecular detection. Biosens Bioelectron 2014; 61: 448-59.
[http://dx.doi.org/10.1016/j.bios.2014.05.025] [PMID: 24934746]
[129]
Wang L. Early diagnosis of breast cancer. Sensors (Basel) 2017; 17(7): 1572.
[http://dx.doi.org/10.3390/s17071572] [PMID: 28678153]
[130]
Sun N, Yoon T-J, Lee H, Andress W, Weissleder R, Ham D. Palm NMR and 1-Chip NMR. IEEE J Solid-State Circuits 2011; 46(1): 342-52.
[http://dx.doi.org/10.1109/JSSC.2010.2074630]
[131]
Dore MP, Tufano MO, Pes GM, et al. Tissue resonance interaction accurately detects colon lesions: a double-blind pilot study. World J Gastroenterol 2015; 21(25): 7851-9.
[http://dx.doi.org/10.3748/wjg.v21.i25.7851] [PMID: 26167085]
[132]
Ben Aicha A. Noninvasive detection of potentially precancerous lesions of vocal fold based on glottal wave signal and svm approaches. Procedia Comput Sci 2018; 126: 586-95.
[http://dx.doi.org/10.1016/j.procs.2018.07.293]
[133]
Ezzine K, Ben Hamida A, Ben Messaoud Z, Frikha M. Towards a computer tool for automatic detection of laryngeal cancer. 2016; 2nd Int Conf Adv Technol Signal Image Process IEEE 387-92.
[http://dx.doi.org/10.1109/ATSIP.2016.7523111]
[134]
Dell’Atti D, Tombelli S, Minunni M, Mascini M. Detection of clinically relevant point mutations by a novel piezoelectric biosensor. Biosens Bioelectron 2006; 21(10): 1876-9.
[http://dx.doi.org/10.1016/j.bios.2005.11.023] [PMID: 16388945]
[135]
Vilela P, El-Sagheer A, Millar TM, Brown T, Muskens OL, Kanaras AG. Graphene oxide-upconversion nanoparticle based optical sensors for targeted detection of mrna biomarkers present in alzheimer’s disease and prostate cancer. ACS Sens 2017; 2(1): 52-6.
[http://dx.doi.org/10.1021/acssensors.6b00651] [PMID: 28722438]
[136]
Vo-Dinh T, Cullum B. Biosensors and biochips: advances in biological and medical diagnostics. Fresenius J Anal Chem 2000; 366(6-7): 540-51.
[http://dx.doi.org/10.1007/s002160051549] [PMID: 11225766]
[137]
Maalouf R, Chebib H, Saïkali Y, Vittori O, Sigaud M, Jaffrezic-Renault N. Amperometric and impedimetric characterization of a glutamate biosensor based on Nafion and a methyl viologen modified glassy carbon electrode. Biosens Bioelectron 2007; 22(11): 2682-8.
[http://dx.doi.org/10.1016/j.bios.2006.11.003] [PMID: 17161943]
[138]
Elshafey R, Tavares AC, Siaj M, Zourob M. Electrochemical impedance immunosensor based on gold nanoparticles-protein G for the detection of cancer marker epidermal growth factor receptor in human plasma and brain tissue. Biosens Bioelectron 2013; 50: 143-9.
[http://dx.doi.org/10.1016/j.bios.2013.05.063] [PMID: 23850780]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 25
ISSUE: 38
Year: 2019
Page: [4108 - 4120]
Pages: 13
DOI: 10.2174/1381612825666191022162232
Price: $65

Article Metrics

PDF: 19
HTML: 4