Generic placeholder image

Current Molecular Pharmacology

Editor-in-Chief

ISSN (Print): 1874-4672
ISSN (Online): 1874-4702

Review Article

AdipoRon: A Novel Insulin Sensitizer in Various Complications and the Underlying Mechanisms: A Review

Author(s): Ishfaq Ahmad Bhat, Shaheen Wasil Kabeer, Mohammad Irshad Reza, Reyaz Hassan Mir* and Muhammad Ovais Dar

Volume 13, Issue 2, 2020

Page: [94 - 107] Pages: 14

DOI: 10.2174/1874467212666191022102800

Price: $65

Abstract

Background: AdipoRon is the first synthetic analog of endogenous adiponectin, an adipose tissue-derived hormone. AdipoRon possesses pharmacological properties similar to adiponectin and its ability to bind and activate the adipoR1 and adipoR2 receptors makes it a suitable candidate for the treatment of a multitude of disorders.

Objective: In the present review, an attempt was made to compile and discuss the efficacy of adipoRon against various disorders.

Results: AdipoRon is a drug that acts not only in metabolic diseases but in other conditions unrelated to energy metabolism. It is well- reported that adipoRon exhibits strong anti-obesity, anti-diabetic, anticancer, anti-depressant, anti-ischemic, anti-hypertrophic properties and also improves conditions like post-traumatic stress disorder, anxiety, and systemic sclerosis.

Conclusion: A lot is known about its effects in experimental systems, but the translation of this knowledge to the clinic requires studies which, for many of the potential target conditions, have yet to be carried out. The beneficial effects of AdipoRon in novel clinical conditions will suggest an underlying pathophysiological role of adiponectin and its receptors in previously unsuspected settings.

Keywords: Adiponectin, adipokines, adipoR agonist, AdipoRon, an insulin sensitizer, metabolic disorders, cancer, CNS disorders.

Graphical Abstract
[1]
Okada-Iwabu, M.; Yamauchi, T.; Iwabu, M.; Honma, T.; Hamagami, K.; Matsuda, K.; Yamaguchi, M.; Tanabe, H.; Kimura-Someya, T.; Shirouzu, M.; Ogata, H.; Tokuyama, K.; Ueki, K.; Nagano, T.; Tanaka, A.; Yokoyama, S.; Kadowaki, T. A small-molecule AdipoR agonist for type 2 diabetes and short life in obesity. Nature, 2013, 503(7477), 493-499.
[http://dx.doi.org/10.1038/nature12656] [PMID: 24172895]
[2]
Holland, W.L.; Scherer, P.E. Cell Biology. Ronning after the adiponectin receptors. Science, 2013, 342(6165), 1460-1461.
[http://dx.doi.org/10.1126/science.1249077] [PMID: 24357309]
[3]
Okada-Iwabu, M.; Iwabu, M.; Ueki, K.; Yamauchi, T.; Kadowaki, T. Perspective of Small-Molecule AdipoR Agonist for Type 2 Diabetes and Short Life in Obesity. Diabetes Metab. J., 2015, 39(5), 363-372.
[http://dx.doi.org/10.4093/dmj.2015.39.5.363] [PMID: 26566493]
[4]
Shojima, N.; Kadowaki, T. Synthetic Gene Circuits: Insulin Self- Regulation. Nat. Biomed. Eng, 2017, 1(1), 0020.
[http://dx.doi.org/10.1038/s41551-016-0020]
[5]
Zhang, Y.; Zhao, J.; Li, R.; Lau, W.B.; Yuan, Y-X.; Liang, B.; Li, R.; Gao, E-H.; Koch, W.J.; Ma, X-L.; Wang, Y.J. AdipoRon, the first orally active adiponectin receptor activator, attenuates postischemic myocardial apoptosis through both AMPK-mediated and AMPK-independent signalings. Am. J. Physiol. Endocrinol. Metab., 2015, 309(3), E275-E282.
[http://dx.doi.org/10.1152/ajpendo.00577.2014] [PMID: 26037251]
[6]
Zhang, N.; Wei, W.Y.; Liao, H.H.; Yang, Z.; Hu, C.; Wang, S.S.; Deng, W.; Tang, Q.Z. AdipoRon, an adiponectin receptor agonist, attenuates cardiac remodeling induced by pressure overload. J. Mol. Med. (Berl.), 2018, 96(12), 1345-1357.
[http://dx.doi.org/10.1007/s00109-018-1696-8] [PMID: 30341569]
[7]
Yamashita, T.; Lakota, K.; Taniguchi, T.; Yoshizaki, A.; Sato, S.; Hong, W.; Zhou, X.; Sodin-Semrl, S.; Fang, F.; Asano, Y.; Varga, J. An orally-active adiponectin receptor agonist mitigates cutaneous fibrosis, inflammation and microvascular pathology in a murine model of systemic sclerosis. Sci. Rep., 2018, 8(1), 11843.
[http://dx.doi.org/10.1038/s41598-018-29901-w] [PMID: 30087356]
[8]
Akimoto, M.; Maruyama, R.; Kawabata, Y.; Tajima, Y.; Takenaga, K. Antidiabetic adiponectin receptor agonist AdipoRon suppresses tumour growth of pancreatic cancer by inducing RIPK1/ERK-dependent necroptosis. Cell Death Dis., 2018, 9(8), 804.
[http://dx.doi.org/10.1038/s41419-018-0851-z] [PMID: 30038429]
[9]
Ramzan, A.A.; Hicks, D.; Behbakht, K.; Powell, T.; Jansson, T.; Wilson, H.B. Anti-Tumor Effect of Adiponectin Receptor Agonist in Serous Ovarian Cancer. Gynecol. Oncol., 2018, 149, 59.
[http://dx.doi.org/10.1016/j.ygyno.2018.04.130]
[10]
Nicolas, S.; Debayle, D.; Béchade, C.; Maroteaux, L.; Gay, A.S.; Bayer, P.; Heurteaux, C.; Guyon, A.; Chabry, J. Adiporon, an adiponectin receptor agonist acts as an antidepressant and metabolic regulator in a mouse model of depression. Transl. Psychiatry, 2018, 8(1), 159.
[http://dx.doi.org/10.1038/s41398-018-0210-y] [PMID: 30115912]
[11]
Scherer, P.E.; Williams, S.; Fogliano, M.; Baldini, G.; Lodish, H.F. A novel serum protein similar to C1q, produced exclusively in adipocytes. J. Biol. Chem., 1995, 270(45), 26746-26749.
[http://dx.doi.org/10.1074/jbc.270.45.26746] [PMID: 7592907]
[12]
Hu, E.; Liang, P.; Spiegelman, B.M. AdipoQ is a novel adipose-specific gene dysregulated in obesity. J. Biol. Chem., 1996, 271(18), 10697-10703.
[http://dx.doi.org/10.1074/jbc.271.18.10697] [PMID: 8631877]
[13]
Nakano, Y.; Tobe, T.; Choi-Miura, N.H.; Mazda, T.; Tomita, M. Isolation and Characterization Protein Purified from Human of GBP28, Plasma a Novel. J. Biochem., 1996, 120(4), 803-812.
[http://dx.doi.org/10.1093/oxfordjournals.jbchem.a021483] [PMID: 8947845]
[14]
Matsubara, K.; Maeda, K.; Okubo, K.; Shimomura, I.; Matsuzawa, Y.; Funahashi, T. CDNA Cloning and Expression of a Novel Adipose Specific Collagen-like Factor, ApM1 (AdiposeMost Abundant Gene Transcript 1). Biochem. Biophys. Res. Commun., 2002, 221(2), 286-289.
[http://dx.doi.org/10.1006/bbrc.1996.0587] [PMID: 11846402]
[15]
Deng, Y.; Scherer, P.E. Adipokines as novel biomarkers and regulators of the metabolic syndrome. Ann. N. Y. Acad. Sci., 2010, 1212(1), E1-E19.
[http://dx.doi.org/10.1111/j.1749-6632.2010.05875.x] [PMID: 21276002]
[16]
Berg, A.H.; Combs, T.P.; Du, X.; Brownlee, M.; Scherer, P.E. The adipocyte-secreted protein Acrp30 enhances hepatic insulin action. Nat. Med., 2001, 7(8), 947-953.
[http://dx.doi.org/10.1038/90992] [PMID: 11479628]
[17]
Okamoto, Y.; Kihara, S.; Ouchi, N.; Nishida, M.; Arita, Y.; Kumada, M.; Ohashi, K.; Sakai, N.; Shimomura, I.; Kobayashi, H.; Terasaka, N.; Inaba, T.; Funahashi, T.; Matsuzawa, Y. Adiponectin reduces atherosclerosis in apolipoprotein E-deficient mice. Circulation, 2002, 106(22), 2767-2770.
[http://dx.doi.org/10.1161/01.CIR.0000042707.50032.19] [PMID: 12451000]
[18]
Qi, Y.; Takahashi, N.; Hileman, S.M.; Patel, H.R.; Berg, A.H.; Pajvani, U.B.; Scherer, P.E.; Ahima, R.S. Adiponectin acts in the brain to decrease body weight. Nat. Med., 2004, 10(5), 524-529.
[http://dx.doi.org/10.1038/nm1029] [PMID: 15077108]
[19]
Oshima, K.; Nampei, A.; Matsuda, M.; Iwaki, M.; Fukuhara, A.; Hashimoto, J.; Yoshikawa, H.; Shimomura, I. Adiponectin increases bone mass by suppressing osteoclast and activating osteoblast. Biochem. Biophys. Res. Commun., 2005, 331(2), 520-526.
[http://dx.doi.org/10.1016/j.bbrc.2005.03.210] [PMID: 15850790]
[20]
Takemura, Y.; Walsh, K.; Ouchi, N. Adiponectin and cardiovascular inflammatory responses. Curr. Atheroscler. Rep., 2007, 9(3), 238-243.
[http://dx.doi.org/10.1007/s11883-007-0025-4] [PMID: 18241619]
[21]
Halberg, N.; Schraw, T.D.; Wang, Z.V.; Kim, J.Y.; Yi, J.; Hamilton, M.P.; Luby-Phelps, K.; Scherer, P.E. Systemic fate of the adipocyte-derived factor adiponectin. Diabetes, 2009, 58(9), 1961-1970.
[http://dx.doi.org/10.2337/db08-1750] [PMID: 19581422]
[22]
Goldstein, B.J.; Scalia, R.G.; Ma, X.L. Protective vascular and myocardial effects of adiponectin. Nat. Clin. Pract. Cardiovasc. Med., 2009, 6(1), 27-35.
[http://dx.doi.org/10.1038/ncpcardio1398] [PMID: 19029992]
[23]
Yamauchi, T.; Kamon, J.; Minokoshi, Y.; Ito, Y.; Waki, H.; Uchida, S.; Yamashita, S.; Noda, M.; Kita, S.; Ueki, K.; Eto, K.; Akanuma, Y.; Froguel, P.; Foufelle, F.; Ferre, P.; Carling, D.; Kimura, S.; Nagai, R.; Kahn, B.B.; Kadowaki, T. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat. Med., 2002, 8(11), 1288-1295.
[http://dx.doi.org/10.1038/nm788] [PMID: 12368907]
[24]
Yamauchi, T.; Iwabu, M.; Okada-Iwabu, M.; Kadowaki, T. Adiponectin receptors: a review of their structure, function and how they work. Best Pract. Res. Clin. Endocrinol. Metab., 2014, 28(1), 15-23.
[http://dx.doi.org/10.1016/j.beem.2013.09.003] [PMID: 24417942]
[25]
Straub, L.G.; Scherer, P.E. Metabolic Messengers: Adiponectin. Nat. Metab., 2019, 1(3), 334-339.
[http://dx.doi.org/10.1038/s42255-019-0041-z]
[26]
Tanabe, H.; Fujii, Y.; Okada-Iwabu, M.; Iwabu, M.; Nakamura, Y.; Hosaka, T.; Motoyama, K.; Ikeda, M.; Wakiyama, M.; Terada, T.; Ohsawa, N.; Hato, M.; Ogasawara, S.; Hino, T.; Murata, T.; Iwata, S.; Hirata, K.; Kawano, Y.; Yamamoto, M.; Kimura-Someya, T.; Shirouzu, M.; Yamauchi, T.; Kadowaki, T.; Yokoyama, S. Crystal structures of the human adiponectin receptors. Nature, 2015, 520(7547), 312-316.
[http://dx.doi.org/10.1038/nature14301] [PMID: 25855295]
[27]
Kadowaki, T.; Yamauchi, T. Adiponectin and adiponectin receptors. Endocr. Rev., 2005, 26(3), 439-451.
[http://dx.doi.org/10.1210/er.2005-0005] [PMID: 15897298]
[28]
Tang, Y.T.; Hu, T.; Arterburn, M.; Boyle, B.; Bright, J.M.; Emtage, P.C.; Funk, W.D. PAQR proteins: a novel membrane receptor family defined by an ancient 7-transmembrane pass motif. J. Mol. Evol., 2005, 61(3), 372-380.
[http://dx.doi.org/10.1007/s00239-004-0375-2] [PMID: 16044242]
[29]
Un Nisa, K.; Reza, M.I. Key Relevance of Epigenetic Programming of Adiponectin gene in Pathogenesis of Metabolic disorders. Endocr. Metab. Immune Disord. Drug Targets, 2019, 19, 1-12.
[http://dx.doi.org/10.2174/1871530319666190801142637] [PMID: 31368881]
[30]
Vasiliauskaité-brooks, I.; Sounier, R.; Rochaix, P.; Bellot, G. Europe PMC Funders Group Structural Insights into Adiponectin Receptors Suggest Ceramidase Activity., 2017, 544(7648), 120-123.
[http://dx.doi.org/10.1038/nature21714.Structural]
[31]
Yamauchi, T.; Kamon, J.; Ito, Y.; Tsuchida, A.; Yokomizo, T.; Kita, S.; Sugiyama, T.; Miyagishi, M.; Hara, K.; Tsunoda, M.; Murakami, K.; Ohteki, T.; Uchida, S.; Takekawa, S.; Waki, H.; Tsuno, N.H.; Shibata, Y.; Terauchi, Y.; Froguel, P.; Tobe, K.; Koyasu, S.; Taira, K.; Kitamura, T.; Shimizu, T.; Nagai, R.; Kadowaki, T. Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature, 2003, 423(6941), 762-769.
[http://dx.doi.org/10.1038/nature01705] [PMID: 12802337]
[32]
Iwabu, M.; Yamauchi, T.; Okada-Iwabu, M.; Sato, K.; Nakagawa, T.; Funata, M.; Yamaguchi, M.; Namiki, S.; Nakayama, R.; Tabata, M.; Ogata, H.; Kubota, N.; Takamoto, I.; Hayashi, Y.K.; Yamauchi, N.; Waki, H.; Fukayama, M.; Nishino, I.; Tokuyama, K.; Ueki, K.; Oike, Y.; Ishii, S.; Hirose, K.; Shimizu, T.; Touhara, K.; Kadowaki, T. Adiponectin and AdipoR1 regulate PGC-1α and mitochondria by Ca(2+) and AMPK/SIRT1. Nature, 2010, 464(7293), 1313-1319.
[http://dx.doi.org/10.1038/nature08991] [PMID: 20357764]
[33]
Bjursell, M.; Ahnmark, A.; Bohlooly-Y, M.; William-Olsson, L.; Rhedin, M.; Peng, X.R.; Ploj, K.; Gerdin, A.K.; Arnerup, G.; Elmgren, A.; Berg, A.L.; Oscarsson, J.; Lindén, D. Opposing effects of adiponectin receptors 1 and 2 on energy metabolism. Diabetes, 2007, 56(3), 583-593.
[http://dx.doi.org/10.2337/db06-1432] [PMID: 17327425]
[34]
Liu, Y.; Michael, M.D.; Kash, S.; Bensch, W.R.; Monia, B.P.; Murray, S.F.; Otto, K.A.; Syed, S.K.; Bhanot, S.; Sloop, K.W.; Sullivan, J.M.; Reifel-Miller, A. Deficiency of adiponectin receptor 2 reduces diet-induced insulin resistance but promotes type 2 diabetes. Endocrinology, 2007, 148(2), 683-692.
[http://dx.doi.org/10.1210/en.2006-0708] [PMID: 17068142]
[35]
Lee, S.; Kwak, H-B. Role of adiponectin in metabolic and cardiovascular disease. J. Exerc. Rehabil., 2014, 10(2), 54-59.
[http://dx.doi.org/10.12965/jer.140100] [PMID: 24877038]
[36]
Blüher, M. Adipokines - removing road blocks to obesity and diabetes therapy. Mol. Metab., 2014, 3(3), 230-240.
[http://dx.doi.org/10.1016/j.molmet.2014.01.005] [PMID: 24749053]
[37]
Grundy, S.M.; Brewer, H.B., Jr; Cleeman, J.I.; Smith, S.C., Jr; Lenfant, C. Definition of metabolic syndrome: Report of the National Heart, Lung, and Blood Institute/American Heart Association conference on scientific issues related to definition. Circulation, 2004, 109(3), 433-438.
[http://dx.doi.org/10.1161/01.CIR.0000111245.75752.C6] [PMID: 14744958]
[38]
Alberti, K.G.M.M.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.C.; James, W.P.T.; Loria, C.M.; Smith, S.C., Jr Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation, 2009, 120(16), 1640-1645.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.109.192644] [PMID: 19805654]
[39]
Federico, A.; Dallio, M.; DI Sarno, R.; Giorgio, V.; Miele, L. Gut microbiota, obesity and metabolic disorders. Minerva Gastroenterol. Dietol., 2017, 63(4), 337-344.
[http://dx.doi.org/10.23736/S1121-421X.17.02376-5] [PMID: 28927249]
[40]
Zimmet, P.; Alberti, K.G.; Magliano, D.J.; Bennett, P.H. Diabetes mellitus statistics on prevalence and mortality: facts and fallacies. Nat. Rev. Endocrinol., 2016, 12(10), 616-622.
[http://dx.doi.org/10.1038/nrendo.2016.105] [PMID: 27388988]
[41]
Tuomi, T.; Santoro, N.; Caprio, S.; Cai, M.; Weng, J.; Groop, L. The many faces of diabetes: a disease with increasing heterogeneity. Lancet, 2014, 383(9922), 1084-1094.
[http://dx.doi.org/10.1016/S0140-6736(13)62219-9] [PMID: 24315621]
[43]
Tian, Y.; Jiang, C.; Wang, M.; Cai, R.; Zhang, Y.; He, Z.; Wang, H.; Wu, D.; Wang, F.; Liu, X.; He, Z.; An, P.; Wang, M.; Tang, Q.; Yang, Y.; Zhao, J.; Lv, S.; Zhou, W.; Yu, B.; Lan, J.; Yang, X.; Zhang, L.; Tian, H.; Gu, Z.; Song, Y.; Huang, T.; McNaughton, L.R. BMI, leisure-time physical activity, and physical fitness in adults in China: results from a series of national surveys, 2000-14. Lancet Diabetes Endocrinol., 2016, 4(6), 487-497.
[http://dx.doi.org/10.1016/S2213-8587(16)00081-4] [PMID: 27133172]
[44]
Surampudi, P.N.; John-Kalarickal, J.; Fonseca, V.A. Emerging concepts in the pathophysiology of type 2 diabetes mellitus. Mt. Sinai J. Med., 2009, 76(3), 216-226.
[http://dx.doi.org/10.1002/msj.20113] [PMID: 19421965]
[45]
Tiwari, P. Recent Trends in Therapeutic Approaches for Diabetes Management: A Comprehensive Update. J. Diabetes Res., 2015, 2015 340838
[http://dx.doi.org/10.1155/2015/340838] [PMID: 26273667]
[46]
Andrade-Oliveira, V.; Câmara, N.O.S.; Moraes-Vieira, P.M. Adipokines as drug targets in diabetes and underlying disturbances. J. Diabetes Res., 2015, 2015 681612
[http://dx.doi.org/10.1155/2015/681612] [PMID: 25918733]
[47]
Bik, W.; Baranowska, B. Adiponectin - a predictor of higher mortality in cardiovascular disease or a factor contributing to longer life? Neuroendocrinol. Lett., 2009, 30(2), 180-184.
[PMID: 19675525]
[48]
Swellam, M.; Sayed Mahmoud And, M.; Abdel-Fatah Ali, A. Clinical implications of adiponectin and inflammatory biomarkers in type 2 diabetes mellitus. Dis. Markers, 2009, 27(6), 269-278.
[http://dx.doi.org/10.1155/2009/703927] [PMID: 20075509]
[49]
Lee, C.H.; Hung, Y.J. Possible new therapeutic approach for obesity-related diseases: Role of adiponectin receptor agonists. J. Diabetes Investig., 2015, 6(3), 264-266.
[http://dx.doi.org/10.1111/jdi.12263] [PMID: 25969709]
[50]
Wang, S.J.; Lu, W.Y.; Liu, K.Y. Adiponectin receptor agonist AdipoRon suppresses adipogenesis in C3H10T1/2 cells through the adenosine monophosphate‑activated protein kinase signaling pathway. Mol. Med. Rep., 2017, 16(5), 7163-7169.
[http://dx.doi.org/10.3892/mmr.2017.7450] [PMID: 28901521]
[51]
Jin, D.C.; Yun, S.R.; Lee, S.W.; Han, S.W.; Kim, W.; Park, J.; Kim, Y.K. Current characteristics of dialysis therapy in Korea: 2016 registry data focusing on diabetic patients. Kidney Res. Clin. Pract., 2018, 37(1), 20-29.
[http://dx.doi.org/10.23876/j.krcp.2018.37.1.20] [PMID: 29629274]
[52]
Kim, Y.; Park, C.W. New therapeutic agents in diabetic nephropathy. Korean J. Intern. Med. (Korean. Assoc. Intern. Med.), 2017, 32(1), 11-25.
[http://dx.doi.org/10.3904/kjim.2016.174] [PMID: 28049280]
[53]
Li, L.; Wang, C.; Yang, H.; Liu, S.; Lu, Y.; Fu, P.; Liu, J. Metabolomics reveal mitochondrial and fatty acid metabolism disorders that contribute to the development of DKD in T2DM patients. Mol. Biosyst., 2017, 13(11), 2392-2400.
[http://dx.doi.org/10.1039/C7MB00167C] [PMID: 28956034]
[54]
Kim, Y.; Lim, J.H.; Kim, M.Y.; Kim, E.N.; Yoon, H.E.; Shin, S.J.; Choi, B.S.; Kim, Y.S.; Chang, Y.S.; Park, C.W. The Adiponectin Receptor Agonist AdipoRon Ameliorates Diabetic Nephropathy in a Model of Type 2 Diabetes. J. Am. Soc. Nephrol., 2018, 29(4), 1108-1127.
[http://dx.doi.org/10.1681/ASN.2017060627] [PMID: 29330340]
[55]
Choi, S.R.; Lim, J.H.; Kim, M.Y.; Kim, E.N.; Kim, Y.; Choi, B.S.; Kim, Y.S.; Kim, H.W.; Lim, K.M.; Kim, M.J.; Park, C.W. Adiponectin receptor agonist AdipoRon decreased ceramide, and lipotoxicity, and ameliorated diabetic nephropathy. Metabolism, 2018, 85, 348-360.
[http://dx.doi.org/10.1016/j.metabol.2018.02.004] [PMID: 29462574]
[56]
Stewart, J.; Manmathan, G.; Wilkinson, P. Primary prevention of cardiovascular disease: A review of contemporary guidance and literature. JRSM Cardiovasc. Dis., 2017, 6 2048004016687211
[http://dx.doi.org/10.1177/2048004016687211] [PMID: 28286646]
[57]
Ku, E.; Mitsnefes, M.M. Cardiovascular disease in young adults with incident ESRD. Nat. Rev. Nephrol., 2019, 15(7), 390-391.
[http://dx.doi.org/10.1038/s41581-019-0154-3] [PMID: 31043718]
[58]
Woodward, L.; Akoumianakis, I.; Antoniades, C. Unravelling the adiponectin paradox: novel roles of adiponectin in the regulation of cardiovascular disease. Br. J. Pharmacol., 2017, 174(22), 4007-4020.
[http://dx.doi.org/10.1111/bph.13619] [PMID: 27629236]
[59]
Wang, Y.; Ma, X.L.; Lau, W.B. Cardiovascular Adiponectin Resistance: The Critical Role of Adiponectin Receptor Modification. Trends Endocrinol. Metab., 2017, 28(7), 519-530.
[http://dx.doi.org/10.1016/j.tem.2017.03.004] [PMID: 28473178]
[60]
Kawano, J.; Arora, R. The role of adiponectin in obesity, diabetes, and cardiovascular disease. J. Cardiometab. Syndr., 2009, 4(1), 44-49.
[http://dx.doi.org/10.1111/j.1559-4572.2008.00030.x] [PMID: 19245516]
[61]
Shimabukuro, M.; Higa, N.; Asahi, T.; Oshiro, Y.; Takasu, N.; Tagawa, T.; Ueda, S.; Shimomura, I.; Funahashi, T.; Matsuzawa, Y. Hypoadiponectinemia is closely linked to endothelial dysfunction in man. J. Clin. Endocrinol. Metab., 2003, 88(7), 3236-3240.
[http://dx.doi.org/10.1210/jc.2002-021883] [PMID: 12843170]
[62]
Hong, K.; Lee, S.; Li, R.; Yang, Y.; Tanner, M.A.; Wu, J.; Hill, M.A. Adiponectin Receptor Agonist, AdipoRon, Causes Vasorelaxation Predominantly Via a Direct Smooth Muscle Action. Microcirculation, 2016, 23(3), 207-220.
[http://dx.doi.org/10.1111/micc.12266] [PMID: 26728950]
[63]
Fairaq, A.; Shawky, N.M.; Osman, I.; Pichavaram, P.; Segar, L.; Therapeutics, E. AdipoRon, an adiponectin receptor agonist, attenuates PDGF-induced VSMC proliferation through inhibition of mTOR signaling independent of AMPK: Implications toward suppression of neointimal hyperplasia. Pharmacol. Res., 2017, 119, 289-302.
[http://dx.doi.org/10.1016/j.phrs.2017.02.016] [PMID: 28237515]
[64]
Shibata, R.; Ouchi, N.; Ito, M.; Kihara, S.; Shiojima, I.; Pimentel, D.R.; Kumada, M.; Sato, K.; Schiekofer, S.; Ohashi, K.; Funahashi, T.; Colucci, W.S.; Walsh, K. Adiponectin-mediated modulation of hypertrophic signals in the heart. Nat. Med., 2004, 10(12), 1384-1389.
[http://dx.doi.org/10.1038/nm1137] [PMID: 15558058]
[65]
Hu, X.; Ou-Yang, Q.; Wang, L.; Li, T.; Xie, X.; Liu, J. AdipoRon prevents l-thyroxine or isoproterenol-induced cardiac hypertrophy through regulating the AMPK-related pathway. Acta Biochim. Biophys. Sin. (Shanghai), 2019, 51(1), 20-30.
[http://dx.doi.org/10.1093/abbs/gmy152] [PMID: 30566571]
[66]
Sung, H.K.; Song, E.; Jahng, J.W.S.; Pantopoulos, K.; Sweeney, G. Iron induces insulin resistance in cardiomyocytes via regulation of oxidative stress. Sci. Rep., 2019, 9(1), 4668.
[http://dx.doi.org/10.1038/s41598-019-41111-6] [PMID: 30874600]
[67]
Krebs, A.M.; Mitschke, J.; Lasierra Losada, M.; Schmalhofer, O.; Boerries, M.; Busch, H.; Boettcher, M.; Mougiakakos, D.; Reichardt, W.; Bronsert, P.; Brunton, V.G.; Pilarsky, C.; Winkler, T.H.; Brabletz, S.; Stemmler, M.P.; Brabletz, T. The EMT-activator Zeb1 is a key factor for cell plasticity and promotes metastasis in pancreatic cancer. Nat. Cell Biol., 2017, 19(5), 518-529.
[http://dx.doi.org/10.1038/ncb3513] [PMID: 28414315]
[68]
Gonoi, W.; Hayashi, T.Y.; Okuma, H.; Akahane, M.; Nakai, Y.; Mizuno, S.; Tateishi, R.; Isayama, H.; Koike, K.; Ohtomo, K. Development of pancreatic cancer is predictable well in advance using contrast-enhanced CT: a case-cohort study. Eur. Radiol., 2017, 27(12), 4941-4950.
[http://dx.doi.org/10.1007/s00330-017-4895-8] [PMID: 28631079]
[70]
Chu, L.C.; Goggins, M.G.; Fishman, E.K. Diagnosis and Detection of Pancreatic Cancer. Cancer J., 2017, 23(6), 333-342.
[http://dx.doi.org/10.1097/PPO.0000000000000290] [PMID: 29189329]
[71]
Wu, H.; Hasan, R.; Zhang, H.; Gray, J.; Williams, D.; Miller, M.; Allen, F.; Lee, V.; Kelly, T.; Zhou, G-L. Phosphorylation Regulates CAP1 (Cyclase-Associated Protein 1) Functions in the Motility and Invasion of Pancreatic Cancer Cells. Sci. Rep., 2019, 9(1), 4925.
[http://dx.doi.org/10.1038/s41598-019-41346-3] [PMID: 30894654]
[72]
Previdi, M.C.; Carotenuto, P.; Zito, D.; Pandolfo, R.; Braconi, C. Noncoding RNAs as novel biomarkers in pancreatic cancer: what do we know? Future Oncol., 2017, 13(5), 443-453.
[http://dx.doi.org/10.2217/fon-2016-0253] [PMID: 27841659]
[73]
Amundadottir, L.T. Pancreatic Cancer Genetics. Int. J. Biol. Sci., 2016, 12(3), 314-325.
[http://dx.doi.org/10.7150/ijbs.15001] [PMID: 26929738]
[74]
Camara, S.N.; Yin, T.; Yang, M.; Li, X.; Gong, Q.; Zhou, J.; Zhao, G.; Yang, Z.Y.; Aroun, T.; Kuete, M.; Ramdany, S.; Camara, A.K.; Diallo, A.T.; Feng, Z.; Ning, X.; Xiong, J.X.; Tao, J.; Qin, Q.; Zhou, W.; Cui, J.; Huang, M.; Guo, Y.; Gou, S.M.; Wang, B.; Liu, T.; Olivier, O.E.T.; Conde, T.; Cisse, M.; Magassouba, A.S.; Ballah, S.; Keita, N.L.M.; Souare, I.S.; Toure, A.; Traore, S.; Balde, A.K.; Keita, N.; Camara, N.D.; Emmanuel, D.; Wu, H.S.; Wang, C.Y. High risk factors of pancreatic carcinoma. J. Huazhong Univ. Sci. Technolog. Med. Sci., 2016, 36(3), 295-304.
[http://dx.doi.org/10.1007/s11596-016-1583-x] [PMID: 27376795]
[75]
Lowenfels, A.B.; Maisonneuve, P. Epidemiology and risk factors for pancreatic cancer. Best Pract. Res. Clin. Gastroenterol., 2006, 20(2), 197-209.
[http://dx.doi.org/10.1016/j.bpg.2005.10.001] [PMID: 16549324]
[76]
Roberts, N.J.; Norris, A.L.; Petersen, G.M.; Bondy, M.L.; Brand, R.; Gallinger, S.; Kurtz, R.C.; Olson, S.H.; Rustgi, A.K.; Schwartz, A.G.; Stoffel, E.; Syngal, S.; Zogopoulos, G.; Ali, S.Z.; Axilbund, J.; Chaffee, K.G.; Chen, Y.C.; Cote, M.L.; Childs, E.J.; Douville, C.; Goes, F.S.; Herman, J.M.; Iacobuzio-Donahue, C.; Kramer, M.; Makohon-Moore, A.; McCombie, R.W.; McMahon, K.W.; Niknafs, N.; Parla, J.; Pirooznia, M.; Potash, J.B.; Rhim, A.D.; Smith, A.L.; Wang, Y.; Wolfgang, C.L.; Wood, L.D.; Zandi, P.P.; Goggins, M.; Karchin, R.; Eshleman, J.R.; Papadopoulos, N.; Kinzler, K.W.; Vogelstein, B.; Hruban, R.H.; Klein, A.P. Whole genome sequencing defines the genetic heterogeneity of familial pancreatic cancer. Cancer Discov., 2016, 6(2), 166-175.
[http://dx.doi.org/10.1158/2159-8290.CD-15-0402] [PMID: 26658419]
[77]
Li, D.; Jiao, L. Molecular epidemiology of pancreatic cancer. Int. J. Gastrointest. Cancer, 2003, 33(1), 3-14.
[http://dx.doi.org/10.1385/IJGC:33:1:3] [PMID: 12909734]
[78]
Öğrendik, M. Periodontal Pathogens in the Etiology of Pancreatic Cancer. Gastrointest. Tumors, 2017, 3(3-4), 125-127.
[http://dx.doi.org/10.1159/000452708] [PMID: 28611978]
[79]
Luo, X.; Wei, Z.; Han, Y.; Li, C.; Guo, G. The Epidemiology of Pancreatitis and Pancreas Cancer. Gastroenterology, 2016, 144(6), 1252-1261.
[http://dx.doi.org/10.1053/j.gastro.2013.01.068.The]
[80]
Stanger, B.; Kim, E.; Seedt, B. RIP A Novel Protein Containing a Death Domain. Cell, 1995, 81.
[http://dx.doi.org/10.1016/0092-8674(95)90072-1] [PMID: 7538908]
[81]
Shen, H.M.; Vandenabeele, P. Necrotic Cell Death; Necrotic Cell Death, 2014, pp. 1-397.
[http://dx.doi.org/10.1007/978-1-4614-8220-8]
[82]
Kondylis, V.; Polykratis, A.; Ehlken, H.; Ochoa-Callejero, L.; Straub, B.K.; Krishna-Subramanian, S.; Van, T.M.; Curth, H.M.; Heise, N.; Weih, F.; Klein, U.; Schirmacher, P.; Kelliher, M.; Pasparakis, M. NEMO Prevents Steatohepatitis and Hepatocellular Carcinoma by Inhibiting RIPK1 Kinase Activity-Mediated Hepatocyte Apoptosis. Cancer Cell, 2015, 28(5), 582-598.
[http://dx.doi.org/10.1016/j.ccell.2015.10.001] [PMID: 26555174]
[83]
Lin, C-Y.; Chang, T-W.; Hsieh, W-H.; Hung, M-C.; Lin, I-H.; Lai, S-C.; Tzeng, Y-J. Simultaneous induction of apoptosis and necroptosis by Tanshinone IIA in human hepatocellular carcinoma HepG2 cells. Cell Death Discov., 2016, 2(1), 16065.
[http://dx.doi.org/10.1038/cddiscovery.2016.65] [PMID: 27752362]
[84]
Geserick, P.; Wang, J.; Schilling, R.; Horn, S.; Harris, P.A.; Bertin, J.; Gough, P.J.; Feoktistova, M.; Leverkus, M. Absence of RIPK3 predicts necroptosis resistance in malignant melanoma. Cell Death Dis., 2015, 6(9), e1884-e12.
[http://dx.doi.org/10.1038/cddis.2015.240] [PMID: 26355347]
[85]
X., D.-S.; M.-F., G.-L.; V., B.; F., L.; O., M.; V., F.; S., I.; F.A., M.; M.K., S.-E.-L.; S., M.; et al.. Tumor Suppressor Activity of the ERK/MAPK Pathway by Promoting Selective Protein Degradation. Genes Dev, 2013, 27(8), 900.
[86]
Messaggio, F.; Mendonsa, A.M.; Castellanos, J.; Nagathihalli, N.S.; Gorden, L.; Merchant, N.B.; VanSaun, M.N. Adiponectin receptor agonists inhibit leptin induced pSTAT3 and in vivo pancreatic tumor growth. Oncotarget, 2017, 8(49), 85378-85391.
[http://dx.doi.org/10.18632/oncotarget.19905] [PMID: 29156726]
[87]
Gloss, B.S.; Samimi, G. Epigenetic biomarkers in epithelial ovarian cancer. Cancer Lett., 2014, 342(2), 257-263.
[http://dx.doi.org/10.1016/j.canlet.2011.12.036] [PMID: 22245949]
[88]
Webb, P.M.; Leader, G.; Jordan, S.J.; Head, T.; Causes, C. Best Practice & Research Clinical Obstetrics and Gynaecology Epidemiology of Epithelial Ovarian Cancer. Best Pract. Res. Clin. Obstet. Gynaecol., 2016, 1-12.
[http://dx.doi.org/10.1016/j.bpobgyn.2016.08.006] [PMID: 27743768]
[89]
Hallas-Potts, A.; Dawson, J.C.; Herrington, C.S. Ovarian cancer cell lines derived from non-serous carcinomas migrate and invade more aggressively than those derived from high-grade serous carcinomas. Sci. Rep., 2019, 9(1), 5515.
[http://dx.doi.org/10.1038/s41598-019-41941-4] [PMID: 30940866]
[90]
Jones, M.R.; Kamara, D.; Karlan, B.Y.; Pharoah, P.D.P.; Gayther, S.A. Genetic epidemiology of ovarian cancer and prospects for polygenic risk prediction. Gynecol. Oncol., 2017, 147(3), 705-713.
[http://dx.doi.org/10.1016/j.ygyno.2017.10.001] [PMID: 29054568]
[91]
Hunn, J.; Rodriguez, G.C. Ovarian cancer: etiology, risk factors, and epidemiology. Clin. Obstet. Gynecol., 2012, 55(1), 3-23.
[http://dx.doi.org/10.1097/GRF.0b013e31824b4611] [PMID: 22343225]
[92]
Kaldawy, A.; Segev, Y.; Lavie, O.; Auslender, R.; Sopik, V.; Narod, S.A. Low-grade serous ovarian cancer: A review. Gynecol. Oncol., 2016, 143(2), 433-438.
[http://dx.doi.org/10.1016/j.ygyno.2016.08.320] [PMID: 27581327]
[93]
Salomon-Perzyński, A.; Salomon-Perzyńska, M.; Michalski, B.; Skrzypulec-Plinta, V.; Skrzypulec, V. High-grade serous ovarian cancer: the clone wars. Arch. Gynecol. Obstet., 2017, 295(3), 569-576.
[http://dx.doi.org/10.1007/s00404-017-4292-1] [PMID: 28154920]
[94]
Li, W.; Saud, S.M.; Young, M.R.; Chen, G.; Hua, B. Targeting AMPK for cancer prevention and treatment. Oncotarget, 2015, 6(10), 7365-7378.
[http://dx.doi.org/10.18632/oncotarget.3629] [PMID: 25812084]
[95]
Taliaferro-Smith, L.; Nagalingam, A.; Zhong, D.; Zhou, W.; Saxena, N.K.; Sharma, D. LKB1 is required for adiponectin-mediated modulation of AMPK-S6K axis and inhibition of migration and invasion of breast cancer cells. Oncogene, 2009, 28(29), 2621-2633.
[http://dx.doi.org/10.1038/onc.2009.129] [PMID: 19483724]
[96]
Chhipa, R.R.; Wu, Y.; Ip, C. AMPK-mediated autophagy is a survival mechanism in androgen-dependent prostate cancer cells subjected to androgen deprivation and hypoxia. Cell. Signal., 2011, 23(9), 1466-1472.
[http://dx.doi.org/10.1016/j.cellsig.2011.04.008] [PMID: 21554950]
[97]
Zong, H.; Yin, B.; Zhou, H.; Cai, D.; Ma, B.; Xiang, Y. Inhibition of mTOR pathway attenuates migration and invasion of gallbladder cancer via EMT inhibition. Mol. Biol. Rep., 2014, 41(7), 4507-4512.
[http://dx.doi.org/10.1007/s11033-014-3321-4] [PMID: 24623408]
[98]
Vakana, E.; Platanias, L.C. AMPK in BCR-ABL expressing leukemias. Regulatory effects and therapeutic implications. Oncotarget, 2011, 2(12), 1322-1328.
[PMID: 22249159]
[99]
Tebbe, C.; Chhina, J.; Dar, S.A.; Sarigiannis, K.; Giri, S.; Munkarah, A.R.; Rattan, R. Metformin limits the adipocyte tumor-promoting effect on ovarian cancer. Oncotarget, 2014, 5(13), 4746-4764.
[http://dx.doi.org/10.18632/oncotarget.2012] [PMID: 24970804]
[100]
Kuipers, E.J.; Grady, W.M.; Lieberman, D.; Seufferlein, T.; Sung, J.J.; Boelens, P.G.; van de Velde, C.J.H.; Watanabe, T. Colorectal cancer. Nat. Rev. Dis. Primers, 2015, 1, 15065.
[http://dx.doi.org/10.1038/nrdp.2015.65] [PMID: 27189416]
[101]
Malih, S.; Najafi, R. AdipoRon: a possible drug for colorectal cancer prevention? Tumour Biol., 2015, 36(9), 6673-6675.
[http://dx.doi.org/10.1007/s13277-015-3911-3] [PMID: 26282004]
[102]
Surapaneni, S.K.; Bashir, S.; Tikoo, K. Gold nanoparticles-induced cytotoxicity in triple negative breast cancer involves different epigenetic alterations depending upon the surface charge. Sci. Rep., 2018, 8(1), 12295.
[http://dx.doi.org/10.1038/s41598-018-30541-3] [PMID: 30115982]
[103]
Kalimutho, M.; Parsons, K.; Mittal, D.; López, J.A.; Srihari, S.; Khanna, K.K. Targeted Therapies for Triple-Negative Breast Cancer: Combating a Stubborn Disease. Trends Pharmacol. Sci., 2015, 36(12), 822-846.
[http://dx.doi.org/10.1016/j.tips.2015.08.009] [PMID: 26538316]
[104]
Al-Mahmood, S.; Sapiezynski, J.; Garbuzenko, O.B.; Minko, T. Metastatic and triple-negative breast cancer: challenges and treatment options. Drug Deliv. Transl. Res., 2018, 8(5), 1483-1507.
[http://dx.doi.org/10.1007/s13346-018-0551-3] [PMID: 29978332]
[105]
Moiseenko, F.; Volkov, N.; Bogdanov, A.; Dubina, M.; Moiseyenko, V. Resistance mechanisms to drug therapy in breast cancer and other solid tumors: An opinion. F1000 Res., 2017, 6, 288.
[http://dx.doi.org/10.12688/f1000research.10992.1] [PMID: 28751966]
[106]
Wang, L.; Collings, C.K.; Zhao, Z.; Cozzolino, K.A.; Ma, Q.; Liang, K.; Marshall, S.A.; Sze, C.C.; Hashizume, R.; Savas, J.N.; Shilatifard, A. A cytoplasmic COMPASS is necessary for cell survival and triple-negative breast cancer pathogenesis by regulating metabolism. Genes Dev., 2017, 31(20), 2056-2066.
[http://dx.doi.org/10.1101/gad.306092.117] [PMID: 29138278]
[107]
Cacabelos, R.; Torrellas, C.; Fernández-novoa, L.; López-muñoz, F. Histamine and Immune Biomarkers in CNS Disorders. Mediators of inflammation, 2016, 2016
[http://dx.doi.org/10.1155/2016/1924603]
[108]
van den Heuvel, M.P.; Sporns, O. A cross-disorder connectome landscape of brain dysconnectivity. Nat. Rev. Neurosci., 2019, 20(7), 435-446.
[http://dx.doi.org/10.1038/s41583-019-0177-6] [PMID: 31127193]
[109]
Bloemer, J.; Pinky, P.D.; Govindarajulu, M.; Hong, H.; Judd, R.; Amin, R.H.; Moore, T.; Dhanasekaran, M.; Reed, M.N.; Suppiramaniam, V. Role of Adiponectin in Central Nervous System Disorders. Neural Plast., 2018, 20184593530
[http://dx.doi.org/10.1155/2018/4593530] [PMID: 30150999]
[110]
Otte, C.; Gold, S.M.; Penninx, B.W.; Pariante, C.M.; Etkin, A.; Fava, M.; Mohr, D.C.; Schatzberg, A.F. Major depressive disorder. Nat. Rev. Dis. Primers, 2016, 2, 16065.
[http://dx.doi.org/10.1038/nrdp.2016.65] [PMID: 27629598]
[111]
Formolo, D.A.; Lee, T.H.; Yau, S.Y. Increasing Adiponergic System Activity as a Potential Treatment for Depressive Disorders. Mol. Neurobiol., 2019, 1-11.
[http://dx.doi.org/10.1007/s12035-019-01644-3] [PMID: 31140056]
[112]
Maron, E.; Nutt, D. Biological markers of generalized anxiety disorder. Dialogues Clin. Neurosci., 2017, 19(2), 147-158.
[PMID: 28867939]
[113]
Sun, F.; Lei, Y.; You, J.; Li, C.; Sun, L.; Garza, J.; Zhang, D.; Guo, M.; Scherer, P.E.; Lodge, D.; Lu, X.Y. Adiponectin modulates ventral tegmental area dopamine neuron activity and anxiety-related behavior through AdipoR1. Mol. Psychiatry, 2019, 24(1), 126-144.
[http://dx.doi.org/10.1038/s41380-018-0102-9] [PMID: 29988086]
[114]
Zhang, D.; Wang, X.; Wang, B.; Garza, J.C.; Fang, X.; Wang, J.; Scherer, P.E.; Brenner, R.; Zhang, W.; Lu, X.Y. Adiponectin regulates contextual fear extinction and intrinsic excitability of dentate gyrus granule neurons through AdipoR2 receptors. Mol. Psychiatry, 2017, 22(7), 1044-1055.
[http://dx.doi.org/10.1038/mp.2016.58] [PMID: 27137743]
[115]
Erickson, M.A.; Dohi, K.; Banks, W.A. Neuroinflammation: a common pathway in CNS diseases as mediated at the blood-brain barrier. Neuroimmunomodulation, 2012, 19(2), 121-130.
[http://dx.doi.org/10.1159/000330247] [PMID: 22248728]
[116]
Zhou, Q.; Xiang, H.; Li, A.; Lin, W.; Huang, Z.; Guo, J.; Wang, P.; Chi, Y.; Xiang, K.; Xu, Y.; Zhou, L.; So, K.F.; Chen, X.; Sun, X.; Ren, Y. Activating Adiponectin Signaling with Exogenous AdipoRon Reduces Myelin Lipid Accumulation and Suppresses Macrophage Recruitment after Spinal Cord Injury. J. Neurotrauma, 2019, 36(6), 903-918.
[http://dx.doi.org/10.1089/neu.2018.5783] [PMID: 30221582]
[117]
Yu, J.; Zheng, J.; Lu, J.; Sun, Z.; Wang, Z.; Zhang, J. AdipoRon Protects Against Secondary Brain Injury After Intracerebral Hemorrhage via Alleviating Mitochondrial Dysfunction: Possible Involvement of AdipoR1-AMPK-PGC1α Pathway. Neurochem. Res., 2019, 44(7), 1678-1689.
[http://dx.doi.org/10.1007/s11064-019-02794-5] [PMID: 30982205]
[118]
Huang, C.; Tomata, Y.; Kakizaki, M.; Sugawara, Y.; Hozawa, A.; Momma, H.; Tsuji, I.; Nagatomi, R. High circulating adiponectin levels predict decreased muscle strength among older adults aged 70 years and over: A prospective cohort study. Nutr. Metab. Cardiovasc. Dis., 2015, 25(6), 594-601.
[http://dx.doi.org/10.1016/j.numecd.2015.03.010] [PMID: 25921841]
[119]
Ito, R.; Higa, M.; Goto, A.; Aoshima, M.; Ikuta, A.; Ohashi, K.; Yokoyama, S.; Ohno, Y.; Egawa, T.; Miyata, H.; Goto, K. Activation of adiponectin receptors has negative impact on muscle mass in C2C12 myotubes and fast-type mouse skeletal muscle. PLoS One, 2018, 13(10)e0205645
[http://dx.doi.org/10.1371/journal.pone.0205645] [PMID: 30308063]
[120]
Allanore, Y.; Simms, R.; Distler, O.; Trojanowska, M.; Pope, J.; Denton, C.P.; Varga, J. Systemic sclerosis. Nat. Rev. Dis. Primers, 2015, 23(1), 15002.
[http://dx.doi.org/10.1038/nrdp.2015.2]
[121]
Varga, J.; Pasche, B. Transforming growth factor beta as a therapeutic target in systemic sclerosis. Nat. Rev. Rheumatol., 2009, 5(4), 200-206.
[http://dx.doi.org/10.1038/nrrheum.2009.26] [PMID: 19337284]
[122]
Masui, Y.; Asano, Y.; Shibata, S.; Noda, S.; Aozasa, N.; Akamata, K.; Yamada, D.; Tamaki, Z.; Tada, Y.; Sugaya, M.; Sato, S.; Kadono, T. Serum adiponectin levels inversely correlate with the activity of progressive skin sclerosis in patients with diffuse cutaneous systemic sclerosis. J. Eur. Acad. Dermatol. Venereol., 2012, 26(3), 354-360.
[http://dx.doi.org/10.1111/j.1468-3083.2011.04077.x] [PMID: 21504484]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy