Gut Microbiome: Lactation, Childbirth, Lung Dysbiosis, Animal Modeling, Stem Cell Treatment, and CNS Disorders

Author(s): Sydney Corey, Lauren Kvederis, Chase Kingsbury, Brooke Bonsack, Paul R. Sanberg, Vanessa Castelli, Jea-Young Lee, Cesar V. Borlongan*.

Journal Name: CNS & Neurological Disorders - Drug Targets
(Formerly Current Drug Targets - CNS & Neurological Disorders)

Volume 18 , Issue 9 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Here, we summarized recent advances in laboratory and clinical research on gut microbiome. The goal is to highlight recent discoveries on the biology and behavioral manifestations of gut microbiomes under normal and pathologic conditions. With this new scientific knowledge, we wish to cultivate cross-fertilization of science across multi-disciplines in the hopes of exploiting the gut microbiome as a key component of human development and its dysbiosis may signal pathological alterations that can be therapeutically targeted for regenerative medicine. In the end, we identify innovative research avenues that will merit from collaborations across biomedical disciplines that may facilitate the development of gut microbiome-based biomarkers and therapeutics. Gut microbiome stands as a core research area that transcends pediatric and nursing care, cancer biology, neurodegenerative disorders, cardiac function and diseases, among many other basic science and clinical arenas.

Keywords: Gut microbiota, inflammation, intestinal permeability, cell therapy, neurodegenerative diseases, breastfeeding, cancer biology, nursing.

[1]
Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI. The human microbiome project. Nature 2007; 449(7164): 804-10.
[http://dx.doi.org/10.1038/nature06244] [PMID: 17943116]
[2]
Shreiner AB, Kao JY, Young VB. The gut microbiome in health and in disease. Curr Opin Gastroenterol 2015; 31(1): 69-75.
[http://dx.doi.org/10.1097/MOG.0000000000000139] [PMID: 25394236]
[3]
Barko PC, McMichael MA, Swanson KS, Williams DA. The gastrointestinal microbiome: A review. J Vet Intern Med 2018; 32(1): 9-25.
[http://dx.doi.org/10.1111/jvim.14875] [PMID: 29171095]
[4]
Gill SR, Pop M, Deboy RT, et al. Metagenomic analysis of the human distal gut microbiome. Science 2006; 312(5778): 1355-9.
[http://dx.doi.org/10.1126/science.1124234] [PMID: 16741115]
[5]
Dominguez-Bello MG, Costello EK, Contreras M, et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci USA 2010; 107(26): 11971-5.
[http://dx.doi.org/10.1073/pnas.1002601107] [PMID: 20566857]
[6]
Aagaard K, Ma J, Antony KM, Ganu R, Petrosino J, Versalovic J. The placenta harbors a unique microbiome. Sci Transl Med 2014; 6(237)237ra65
[http://dx.doi.org/10.1126/scitranslmed.3008599] [PMID: 24848255]
[7]
Funkhouser LJ, Bordenstein SR. Mom knows best: The universality of maternal microbial transmission. PLoS Biol 2013; 11(8): e1001631
[http://dx.doi.org/10.1371/journal.pbio.1001631] [PMID: 23976878]
[8]
Sood R, Zehnder JL, Druzin ML, Brown PO. Gene expression patterns in human placenta. Proc Natl Acad Sci USA 2006; 103(14): 5478-83.
[http://dx.doi.org/10.1073/pnas.0508035103] [PMID: 16567644]
[9]
Stout MJ, Conlon B, Landeau M, et al. Identification of intracellular bacteria in the basal plate of the human placenta in term and preterm gestations. Am J Obstet Gynecol 2013; 226: 226: e1-7.
[http://dx.doi.org/10.1016/j.ajog.2013.01.018]
[10]
La Rosa PS, Warner BB, Zhou Y, et al. Patterned progression of bacterial populations in the premature infant gut. Proc Natl Acad Sci USA 2014; 111(34): 12522-7.
[http://dx.doi.org/10.1073/pnas.1409497111] [PMID: 25114261]
[11]
Palmer C, Bik EM, DiGiulio DB, Relman DA, Brown PO. Development of the human infant intestinal microbiota. PLoS Biol 2007; 5(7)e177
[http://dx.doi.org/10.1371/journal.pbio.0050177] [PMID: 17594176]
[12]
Yatsunenko T, Rey FE, Manary MJ, et al. Human gut microbiome viewed across age and geography. Nature 2012; 486(7402): 222-7.
[http://dx.doi.org/10.1038/nature11053] [PMID: 22699611]
[13]
Eckburg PB, Bik EM, Bernstein CN, et al. Diversity of the human intestinal microbial flora. Science 2005; 308(5728): 1635-8.
[http://dx.doi.org/10.1126/science.1110591] [PMID: 15831718]
[14]
O’Sullivan A, Farver M, Smilowitz JT. The influence of early infant-feeding practices on the intestinal microbiome and body composition in infants. Nutr Metab Insights 2015; 8(Suppl. 1): 1-9.
[PMID: 26715853]
[15]
Bäckhed F, Roswall J, Peng Y, et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 2015; 17(6): 852.
[http://dx.doi.org/10.1016/j.chom.2015.05.012] [PMID: 26308884]
[16]
Praveen P, Jordan F, Priami C, Morine MJ. The role of breast-feeding in infant immune system: A systems perspective on the intestinal microbiome. Microbiome 2015; 3: 41.
[http://dx.doi.org/10.1186/s40168-015-0104-7] [PMID: 26399409]
[17]
Groer MW, Gregory KE, Louis-Jacques A, Thibeau S, Walker WA. The very low birth weight infant microbiome and childhood health. Birth defects Res C Embryo Today 2015; 105(4): 252-64.
[http://dx.doi.org/10.1002/bdrc.21115] [PMID: 26663857]
[18]
Hemarajata P, Versalovic J. Effects of probiotics on gut microbiota: Mechanisms of intestinal immunomodulation and neuromodulation. Therap Adv Gastroenterol 2013; 6(1): 39-51.
[http://dx.doi.org/10.1177/1756283X12459294] [PMID: 23320049]
[19]
Al-Rubaye H, Perfetti G, Kaski JC. The role of microbiota in cardiovascular risk focus on trimethylamine oxide. Curr Probl Cardiol 2019; 44(6): 182-96.
[http://dx.doi.org/10.1016/j.cpcardiol.2018.06.005] [PMID: 30482503]
[20]
Peng J, Xiao X, Hu M, Zhang X. Interaction between gut microbiome and cardiovascular disease. Life sci 2018; 214: 153-7.
[http://dx.doi.org/10.1016/j.lfs.2018.10.063] [PMID: 30385177]
[21]
Wang Z, Klipfell E, Bennett BJ, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 2011; 472(7341): 57-63.
[http://dx.doi.org/10.1038/nature09922] [PMID: 21475195]
[22]
Alexander JL, Wilson ID, Teare J, Marchesi JR, Nicholson JK, Kinross JM. Gut microbiota modulation of chemotherapy efficacy and toxicity. Nat Rev Gastroenterol Hepatol 2017; 14(6): 356-65.
[http://dx.doi.org/10.1038/nrgastro.2017.20] [PMID: 28270698]
[23]
Anderson G, Maes M. How immune-inflammatory processes link CNS and psychiatric disorders: Classification and treatment implications. CNS Neurol Disord Drug Targets 2017; 16(3): 266-78.
[http://dx.doi.org/10.2174/1871527315666161122144659] [PMID: 27875954]
[24]
Caballero-Villarraso J, Galvan A, Escribano BM, Tunez I. Interrelationships among gut microbiota and host: Paradigms, role in neurodegenerative diseases and future prospects. CNS Neurol Disord Drug Targets 2017; 16(8): 945-64.
[PMID: 28714393]
[25]
Forssberg H. Microbiome programming of brain development: Implications for neurodevelopmental disorders. Dev Med Child Neurol 2019; 61(7): 744-9.
[http://dx.doi.org/10.1111/dmcn.14208] [PMID: 30868564]
[26]
Famitafreshi H, Karimian M. Overview of the recent advances in pathophysiology and treatment for autism. CNS Neurol Disord Drug Targets 2018; 17(8): 590-4.
[http://dx.doi.org/10.2174/1871527317666180706141654] [PMID: 29984672]
[27]
Padilla Del Campo C, Tunez I. Crosstalk between gut microbiota and the central nervous system in multiple sclerosis: Strengths, weaknesses, opportunities and threats analysis of the use of an experimental model. CNS Neurol Disord Drug Targets 2017; 16(9): 971-3.
[PMID: 29299991]
[28]
Roomruangwong C, Kanchanatawan B, Sirivichayakul S, et al. IgA/IgM responses to gram-negative bacteria are not associated with perinatal depression, but with physio-somatic symptoms and activation of the tryptophan catabolite pathway at the end of term and postnatal anxiety. CNS Neurol Disord Drug Targets 2019; 16(4): 472-83.
[http://dx.doi.org/10.2174/1871527316666170407145533] [PMID: 28403801]
[29]
Bajaj JS, Ridlon JM, Hylemon PB, et al. Linkage of gut microbiome with cognition in hepatic encephalopathy. Am J Physiol Gastrointest Liver Physiol 2012; 302(1): G168-75.
[http://dx.doi.org/10.1152/ajpgi.00190.2011] [PMID: 21940902]
[30]
Bravo JA, Forsythe P, Chew MV, et al. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci USA 2011; 108(38): 16050-5.
[http://dx.doi.org/10.1073/pnas.1102999108] [PMID: 21876150]
[31]
Groer M, Ashmeade T, Louis-Jacques A, Beckstead J, Ji M. Relationships of feeding and mother’s own milk with fecal calprotectin levels in preterm infants. Breastfeed Med 2016; 11: 207-12.
[http://dx.doi.org/10.1089/bfm.2015.0115] [PMID: 27002351]
[32]
Yee AL, Miller E, Dishaw LJ, et al. Longitudinal microbiome composition and stability correlate with increased weight and length of very-low-birth-weight infants. mSystems 2019; 4(1): 4.
[http://dx.doi.org/10.1128/mSystems.00229-18] [PMID: 30834328]
[33]
Takahata Y, Takada H, Nomura A, Nakayama H, Ohshima K, Hara T. Detection of interferon-gamma-inducible chemokines in human milk. Acta Paediatr 2003; 92(6): 659-65.
[http://dx.doi.org/10.1111/j.1651-2227.2003.tb00595.x] [PMID: 12856973]
[34]
Ericson JA, Duffau P, Yasuda K, et al. Gene expression during the generation and activation of mouse neutrophils: Implication of novel functional and regulatory pathways. PLoS One 2014; 9(10) e108553
[http://dx.doi.org/10.1371/journal.pone.0108553] [PMID: 25279834]
[35]
Bisgaard H, Li N, Bonnelykke K, et al. Reduced diversity of the intestinal microbiota during infancy is associated with increased risk of allergic disease at school age. J Allergy Clin Immunol 2011; 128(3): 646-52. e1-5.
[http://dx.doi.org/10.1016/j.jaci.2011.04.060] [PMID: 21782228]
[36]
Proal AD, Albert PJ, Marshall TG. The human microbiome and autoimmunity. Curr Opin Rheumatol 2013; 25(2): 234-40.
[http://dx.doi.org/10.1097/BOR.0b013e32835cedbf] [PMID: 23370376]
[37]
Sharma NS, Wille KM, Athira S, et al. Distal airway microbiome is associated with immunoregulatory myeloid cell responses in lung transplant recipients. J Heart Lung Transplant 2017; pii: S1053- 2498(17): 31898-3.
[PMID: 28756121]
[38]
Creasy A, Rosario K, Leigh BA, Dishaw LJ, Breitbart M. Unprecedented diversity of DNA phages from the family microviridae detected within the gut of a protochordate model organism (Ciona robusta). Viruses 2018; 10(8)pii: E404
[http://dx.doi.org/10.3390/v10080404] [PMID: 30065169]
[39]
Dishaw LJ, Leigh B, Cannon JP, et al. Gut immunity in a protochordate involves a secreted immunoglobulin-type mediator binding host chitin and bacteria. Nat Commun 2016; 7: 10617.
[http://dx.doi.org/10.1038/ncomms10617] [PMID: 26875669]
[40]
Lee JY, Tuazon JP, Ehrhart J, Sanberg PR, Borlongan CV. Gutting the brain of inflammation: A key role of gut microbiome in human umbilical cord blood plasma therapy in Parkinson’s disease model. J Cell Mol Med 2019; 23(8): 5466-74.
[http://dx.doi.org/10.1111/jcmm.14429] [PMID: 31148353]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 18
ISSUE: 9
Year: 2019
Page: [687 - 694]
Pages: 8
DOI: 10.2174/1871527318666191021145252
Price: $65

Article Metrics

PDF: 28
HTML: 5