A Review of Ruthenium-catalyzed C-N Bond Formation Reactions for the Synthesis of Five-membered N-heterocycles

Author(s): Navjeet Kaur*, Neha Ahlawat, Yamini Verma, Pooja Grewal, Pranshu Bhardwaj.

Journal Name: Current Organic Chemistry

Volume 23 , Issue 18 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


The field of heterocyclic chemistry has been revolutionized using transition metal catalysts in recent years. Various research groups have focused on the development of general protocols to achieve better functional group compatibilities and greater levels of molecular complexity under mild reaction conditions, using easily available starting substrates. The methodologies used earlier for their synthesis were less approachable to organic chemists because of their high cost, highly specified instrumentation and inconvenient methods. For both stereoselective and regioselective synthesis of five-membered nitrogen- containing heterocycles, cyclic reactions that are Ru-catalyzed have known to be very efficient. These methods have many advantages as compared to alternative pathways involved in the synthesis of heterocyclic compounds. In this review article, we concentrated on the synthesis of nitrogen-containing five-membered heterocycles in the presence of a ruthenium catalyst. This review mostly covers the literature published during the period from 1977-2019.

Keywords: Ruthenium, catalysis, heterocycles, nitrogen, synthesis, five-membered heterocycles.

(a) Balaban, A.T.; Oniciu, D.C.; Katritzky, A.R. Aromaticity as a cornerstone of heterocyclic chemistry. Chem. Rev., 2004, 104(5), 2777-2812.
[http://dx.doi.org/10.1021/cr0306790] [PMID: 15137807]
(b) Gulevich, A.V.; Dudnik, A.S.; Chernyak, N.; Gevorgyan, V. Transition metal-mediated synthesis of monocyclic aromatic heterocycles. Chem. Rev., 2013, 113(5), 3084-3213.
[http://dx.doi.org/10.1021/cr300333u] [PMID: 23305185]
(c) Liu, Q.; Zhang, H.; Lei, A. Oxidative carbonylation reactions: organometallic compounds (R-M) or hydrocarbons (R-H) as nucleophiles. Angew. Chem. Int. Ed., 2011, 50, 10788-10799.
(d) Padwa, A.; Stengel, T. Transition metal catalyzed ring opening reactions of 2-phenyl-3-vinyl substituted 2H-azirines. Tetrahedron Lett., 2004, 45(31), 5991-5993.
(e) Kaur, N.; Verma, Y.; Grewal, P.; Bhardwaj, P.; Devi, M. Application of titanium catalysts for the syntheses of heterocycles. Synth. Commun., 2019, 49(15), 1847-1894.
(f) Kaur, N. Ionic liquid: An efficient and recyclable medium for the synthesis of fused six-membered oxygen heterocycles. Synth. Commun., 2019, 49(13), 1679-1707.
(g) Kaur, N. Multiple nitrogen-containing heterocycles: Metal and non-metal assisted synthesis. Synth. Commun., 2019, 49, 1633-1658.
(h) Kaur, N.; Grewal, P.; Bhardwaj, P.; Devi, M.; Verma, Y. Nickel-catalyzed synthesis of five-membered heterocycles. Synth. Commun., 2019, 49, 1543-1577.
(i)Kaur, N. Gold and silver assisted synthesis of five-membered oxygen and nitrogen containing heterocycles. Synth. Commun., 2019, 49(12), 1459-1485.
(j)Kaur, N. Synthesis of six- and seven-membered and larger heterocycles using Au and Ag catalysts. Inorg. Nano-Metal Chem., 2018, 48(11), 541-568.
(a) Martins, M.A.P.; Cunico, W.; Pereira, C.M.P.; Flores, A.F.C.; Bonacorso, H.G.; Zanatta, N. 4-Alkoxy-1,1,1-trichloro-3-alken-2-ones: preparation and applications in heterocyclic synthesis. Curr. Org. Synth., 2004, 1, 391-403.
(b) Majumdar, P.; Pati, A.; Patra, M.; Behera, R.K.; Behera, A.K. Acid hydrazides, potent reagents for synthesis of oxygen-, nitrogen-, and/or sulfur-containing heterocyclic rings. Chem. Rev., 2014, 114(5), 2942-2977.
[http://dx.doi.org/10.1021/cr300122t] [PMID: 24506477]
(c) Pellissier, H. Stereocontrolled domino reactions. Chem. Rev., 2013, 113(1), 442-524.
[http://dx.doi.org/10.1021/cr300271k] [PMID: 23157479]
(d) Deiters, A.; Martin, S.F. Synthesis of oxygen- and nitrogen-containing heterocycles by ring-closing metathesis. Chem. Rev., 2004, 104(5), 2199-2238.
[http://dx.doi.org/10.1021/cr0200872] [PMID: 15137789]
(e) Huo, H-H.; Xia, X-E.; Zhang, H-K.; Huang, P-Q. Enantioselective total syntheses of (-)-FR901483 and (+)-8-epi-FR901483. J. Org. Chem., 2013, 78(2), 455-465.
[http://dx.doi.org/10.1021/jo302362b] [PMID: 23214918]
(f) Kaur, N.; Bhardwaj, P.; Devi, M.; Verma, Y.; Grewal, P. Photochemical reactions in five and six-membered polyheterocycles synthesis. Synth. Commun., 2019, 49, 2281-2318.
(a) Dömling, A. Recent developments in isocyanide based multicomponent reactions in applied chemistry. Chem. Rev., 2006, 106(1), 17-89.
[http://dx.doi.org/10.1021/cr0505728] [PMID: 16402771]
(b) Kaur, N. Applications of palladium dibenzylideneacetone as catalyst in the synthesis of five-membered N-heterocycles. Synth. Commun., 2019, 49, 1205-1230.
(c) Kaur, N. Copper catalyzed synthesis of seven and higher-membered heterocycles. Synth. Commun., 2019, 49, 879-916.
(d) Kaur, N. Ionic liquid assisted synthesis of S-heterocycles. Phosphorus Sulfur Silicon Relat. Elem., 2019, 194, 165-185.
(e) Kaur, N. Nickel catalysis: six membered heterocycle syntheses. Synth. Commun., 2019, 49, 1103-1133.
(f) Kaur, N. Seven-membered N-heterocycles: metal and non-metal assisted synthesis. Synth. Commun., 2019, 49, 987-1030.
(g) Kaur, N.; Bhardwaj, P.; Devi, M.; Verma, Y.; Grewal, P. Synthesis of five-membered O, N-heterocycles using metal and non-metal. Synth. Commun., 2019, 49, 1345-1384.
(h) Kaur, N. Synthetic routes to seven and higher membered S-heterocycles by use of metal and nonmetal catalyzed reactions. Phosphorus Sulfur Silicon Relat. Elem., 2019, 194, 186-209.
(i)Kaur, N. Synthesis of six-membered N-heterocycles using ruthenium catalysts. Catal. Lett., 2019, 14, 1513-1539.
(a) Kaur, N. Benign approaches for the microwave-assisted synthesis of five-membered 1,2-N,N-heterocycles. J. Heterocycl. Chem., 2015, 52, 953-973.
(b) Kaur, N. Methods for metal and non-metal catalyzed synthesis of six-membered oxygen containing poly-heterocycles. Curr. Org. Synth., 2017, 14, 531-556.
(c) Kaur, N. Photochemical reactions: synthesis of six-membered N-heterocycles. Curr. Org. Synth., 2017, 14, 972-998.
(d) Kaur, N. Ionic liquids: promising but challenging solvents for the synthesis of N-heterocycles. Mini Rev. Org. Chem., 2017, 14, 3-23.
(e) Kaur, N. Metal catalysts for the formation of six-membered N-polyheterocycles. Synth. React. Inorg. Met.-Org. Nano-Met. Chem., 2016, 46, 983-1020.
(f) Kaur, N. Applications of gold catalysts for the synthesis of five-membered O-heterocycles. Inorg. Nano-Met. Chem, 2017, 47, 163-187.
(g) Orru, R.V.A.; de Greef, M. Recent advances in solution-phase multi-component methodology for the synthesis of heterocyclic compounds. Synthesis, 2003, 10, 1471-1499.
(a) Kaur, N. Palladium-catalyzed approach to the synthesis of five-membered O-heterocycles. Inorg. Chem. Commun., 2014, 49, 86-119.
(b) Kaur, N.; Kishore, D. Nitrogen-containing six-membered heterocycles: solid-phase synthesis. Synth. Commun., 2014, 44, 1173-1211.
(c) Kaur, N.; Kishore, D. Solid-phase synthetic approach toward the synthesis of oxygen containing heterocycles. Synth. Commun., 2014, 44, 1019-1042.
(d) Kaur, N. Microwave-assisted synthesis of five membered O-heterocycles. Synth. Commun., 2014, 44, 3483-3508.
(e) Kaur, N. Microwave-assisted synthesis of five membered O,N-heterocycles. Synth. Commun., 2014, 44, 3509-3537.
(f) Kaur, N. Microwave-assisted synthesis of five membered O,N,N-heterocycles. Synth. Commun., 2014, 44, 3229-3247.
(g) Kaur, N. Synthesis of six and seven-membered heterocycles under ultrasound irradiation. Synth. Commun., 2018, 48, 1235-1258.
(h) Kaur, N. Photochemical reactions as key steps in five-membered N-heterocycles synthesis. Synth. Commun., 2018, 48, 1259-1284.
(i)Kaur, N. Solid-phase synthesis of sulfur containing heterocycles. J. Sulfur Chem., 2018, 39(5), 544-577.
(a) Kaur, N. Metal catalysts: Applications in higher membered N-heterocycles synthesis. J. Iran. Chem. Soc., 2015, 12, 9-45.
(b) Kaur, N. Insight into microwave-assisted synthesis of benzo derivatives of five membered N, N-heterocycles. Synth. Commun., 2015, 45, 1269-1300.
(c) Kaur, N. Synthesis of fused five-membered N, N-heterocycles using microwave irradiation. Synth. Commun., 2015, 45, 1379-1410.
(d) Kaur, N. Microwave-assisted synthesis of seven membered Sheterocycles. Synth. Commun, 2014, 44, 3201-3228.
e Kaur, N. Six membered N-heterocycles: Microwave-assisted synthesis. Synth. Commun, 2015, 45, 1- 34.
(f) Kaur, N. Polycyclic six membered N-heterocycles: Microwave-assisted synthesis. Synth. Commun, 2015, 45, 35-69.
(g) Kaur, N. Palladium-catalyzed approach to the synthesis of S-heterocycles. Catal. Rev, 2015, 57, 478-564.
(h) Kaur, N. Ruthenium catalysis in six-membered O-heterocycles synthesis. Synth. Commun, 2018, 48, 1551-1587.
(i) Kaur, N. Green synthesis of three to five-membered O-heterocycles using ionic liquids. Synth. Commun, 2018, 48, 1588-1613.
(j) Kaur, N. Ultrasound-assisted green synthesis of five-membered O- and Sheterocycles. Synth. Commun, 2018, 48, 1715-1738.
(k) Kaur, N. Photochemical mediated reactions in five-membered Oheterocycles synthesis. Synth. Commun, 2018, 48, 2119-2149.
(l) Kaur, N. Mercury-catalyzed synthesis of heterocycles. Synth. Commun, 2018, 48, 2715-2749.
(m) Kaur, N. Photochemical irradiation: Seven and higher membered Oheterocycles. Synth. Commun, 2018, 48, 2935-2964.
(n) Kaur, N. Synthesis of seven and higher membered nitrogen containing heterocycles using photochemical irradiation. Synth. Commun, 2018, 48, 2815-2849.
(o) Kaur, N. Ruthenium catalyzed synthesis of five-membered Oheterocycles. Inorg. Chem. Commun, 2018, 99, 82-107.
(a) Kaur, N. Microwave-assisted synthesis: fused five membered N-heterocycles. Synth. Commun., 2015, 45, 789-823.
(b) Kaur, N. Six membered heterocycles with three and four N-heteroatoms: microwave-assisted synthesis. Synth. Commun., 2015, 45, 151-172.
(c) Kaur, N. Application of microwave-assisted synthesis in the synthesis of fused six-membered heterocycles with N-heteroatom. Synth. Commun., 2015, 45, 173-201.
(d) Kaur, N. Microwave-assisted synthesis of fused polycyclic six membered N-heterocycles. Synth. Commun., 2015, 45, 273-299.
(e) Kaur, N. Review of microwave-assisted synthesis of benzo fused six-membered N,N-heterocycles. Synth. Commun., 2015, 45, 300-330.
(f) Kaur, N.; Kishore, D. Synthetic strategies applicable in the synthesis of privileged scaffold: 1,4-benzodiazepine. Synth. Commun., 2014, 44, 1375-1413.
(g) Kaur, N. Copper catalysts in the synthesis of five-membered N-polyheterocycles. Curr. Org. Synth., 2018, 15, 940-971.
(h) Kaur, N. Recent developments in the synthesis of nitrogen containing five-membered polyheterocycles using rhodium catalysts. Synth. Commun., 2018, 48, 2457-2474.
(a) Kaur, N. Environmentally benign synthesis of five membered 1,3-N,N-heterocycles by microwave irradiation. Synth. Commun., 2015, 45, 909-943.
(b) Kaur, N. Advances in microwave-assisted synthesis for five membered N-heterocycles synthesis. Synth. Commun., 2015, 45, 432-457.
(c) Kaur, N.J. Microwave-assisted synthesis of five membered S-heterocycles. Iranian Chem. Soc., 2014, 11, 523-564.
(d) Kaur, N. Review on the synthesis of six membered N, N-heterocycles by microwave irradiation. Synth. Commun., 2015, 45, 1145-1182.
(e) Kaur, N. Greener and expeditious synthesis of fused six-membered N,N-heterocycles using microwave irradiation. Synth. Commun., 2015, 45, 1493-1519.
(f) Kaur, N. Applications of microwaves in the synthesis of polycyclic six membered N, N-heterocycles. Synth. Commun., 2015, 45, 1599-1631.
(g) Kaur, N. Synthesis of five-membered N,N,N- and N,N,N,N-heterocyclic compounds: applications of microwaves. Synth. Commun., 2015, 45, 1711-1742.
(h) Kaur, N. Palladium acetate and phosphine assisted synthesis of five-membered N-heterocycles. Synth. Commun., 2019, 49, 483-514.
(i)Kaur, N. Application of silver-promoted reactions in the synthesis of five-membered O-heterocycles. Synth. Commun., 2019, 49, 743-789.
(j) Kaur, N. Synthesis of seven and higher-membered heterocycles using ruthenium catalysts. Synth. Commun., 2019, 49, 617-661.
Patil, N.T.; Yamamoto, Y. Coinage metal-assisted synthesis of heterocycles. Chem. Rev., 2008, 108(8), 3395-3442.
[http://dx.doi.org/10.1021/cr050041j] [PMID: 18611054]
(a) Kaur, N. Role of microwaves in the synthesis of fused five membered heterocycles with three N-heteroatoms. Synth. Commun., 2015, 45, 403-431.
(b) Kaur, N. Recent impact of microwave-assisted synthesis on benzo derivatives of five membered N-heterocycles. Synth. Commun., 2015, 45, 539-568.
(c) Kaur, N.; Kishore, D. Microwave-assisted synthesis of seven and higher membered N-heterocycles. Synth. Commun., 2014, 44, 2577-2614.
(d) Kaur, N.; Kishore, D. Microwave-assisted synthesis of six-membered S-heterocycles. Synth. Commun., 2014, 44, 2615-2644.
(e) Kaur, N.; Kishore, D. Microwave-assisted synthesis of seven and higher membered O-heterocycles. Synth. Commun., 2014, 44, 2739-2755.
(a) Alberico, D.; Scott, M.E.; Lautens, M. Aryl-aryl bond formation by transition-metal-catalyzed direct arylation. Chem. Rev., 2007, 107(1), 174-238.
[http://dx.doi.org/10.1021/cr0509760] [PMID: 17212475]
(b) Kaur, N. Gold catalysts in the synthesis of five-membered N-heterocycles. Curr. Organocatal., 2017, 4, 122-154.
Dick, A.R.; Sanford, M.S. Transition metal catalyzed oxidative functionalization of carbon-hydrogen bonds. Tetrahedron, 2006, 62, 2439-2463.
(a) Kaur, N. Palladium catalysts: Synthesis of five-membered N-heterocycles fused with other heterocycles. Catal. Rev., 2015, 57, 1-78.
(b) Kaur, N.; Kishore, D. Microwave-assisted synthesis of six membered O,O-heterocycles. Synth. Commun., 2014, 44, 3082-3111.
(c) Kaur, N.; Kishore, D. Microwave-assisted synthesis of six membered O-heterocycles. Synth. Commun., 2014, 44, 3047-3081.
(d) Nakamura, I.; Yamamoto, Y. Transition-metal-catalyzed reactions in heterocyclic synthesis. Chem. Rev., 2004, 104(5), 2127-2198.
[http://dx.doi.org/10.1021/cr020095i] [PMID: 15137788]
(e) Zeni, G.; Larock, R.C. Synthesis of heterocycles via palladium-catalyzed oxidative addition. Chem. Rev., 2006, 106(11), 4644-4680.
[http://dx.doi.org/10.1021/cr0683966] [PMID: 17091931]
(a) Makgwane, P.R.; Ray, S.S. Nanosized ruthenium particles decorated carbon nanofibers as active catalysts for the oxidation of p-cymene by molecular oxygen. J. Mol. Catal. Chem., 2013, 373, 1-11.
(b) Naota, T.; Takaya, H.; Murahashi, S-I. Ruthenium-catalyzed reactions for organic synthesis. Chem. Rev., 1998, 98(7), 2599-2660.
[http://dx.doi.org/10.1021/cr9403695] [PMID: 11848973]
(c) Murahashi, S-I.; Takaya, H.; Naota, T. Ruthenium catalysis in organic synthesis. Pure Appl. Chem., 2002, 74, 19-24.
(d) Kim, Y-H.; Hwang, S-K.; Kim, J.W.; Lee, Y-S. Zirconia supported ruthenium catalyst for efficient aerobic oxidation of alcohols to aldehyde. Ind. Eng. Chem. Res., 2014, 53, 12548-12552.
(e) Murahashi, S-I.; Takaya, H. Low-valent ruthenium and iridium hydride complexes as alternatives to Lewis acid and base catalysts. Acc. Chem. Res., 2000, 33, 225-233.
(f) Murahashi, S-I.; Naota, T. A new way for efficient catalysis by using low valent ruthenium complexes as redox Lewis acid and base catalysts. Bull. Chem. Soc. Jpn., 1996, 69, 1805-1824.
(g) Grubbs, R.H. Olefin-metathesis catalysts for the preparation of molecules and materials (Nobel lecture). Angew. Chem. Int. Ed., 2006, 45, 3760-3765.
(h) Nguyen, S.T.; Grubbs, R.H.; Ziller, J.W. Synthesis and activities of new single-component, ruthenium-based olefin metathesis catalysts. J. Am. Chem. Soc., 1993, 115, 9858-9859.
(i)Schwab, P.; Grubbs, R.H.; Ziller, J.W. Synthesis and applications of RuCl2(CHR’)(PR3)2: The influence of the alkylidene moiety on metathesis activity. J. Am. Chem. Soc., 1996, 118, 100-110.
(j)Nguyen, S.T.; Johnson, L.K.; Grubbs, R.H.; Ziller, J.W. Ring-opening metathesis polymerization (ROMP) of norbornene by a group VIII carbene complex in protic media. J. Am. Chem. Soc., 1992, 114, 3974-3975.
(k)Ferguson, M.L.; O’Leary, D.J.; Grubbs, R.H.; Grubbs, R.H. Ring-closing metathesis synthesis of N-Boc-3-pyrroline. Org. Synth., 2003, 80, 85-92.
(l)Andrade, R.B.; Plante, O.J.; Melean, L.G.; Seeberger, P.H. Solid-phase oligosaccharide synthesis: preparation of complex structures using a novel linker and different glycosylating agents. Org. Lett., 1999, 1(11), 1811-1814.
[http://dx.doi.org/10.1021/ol991071+] [PMID: 10836038]
(m)Burdett, K.A.; Harris, L.D.; Margl, P.; Maughon, B.R.; Mokhtar-Zadeh, T.; Saucier, P.C.; Wasserman, E.P. Renewable monomer feedstocks via olefin metathesis: fundamental mechanistic studies of methyl oleate ethenolysis with the first-generation Grubbs catalyst. Organometallics, 2004, 23, 2027-2047.
(n)Blackwell, H.E.; O’Leary, D.J.; Chatterjee, A.K.; Washenfelder, R.A.; Bussmann, D.A.; Grubbs, R.H. New approaches to olefin cross-metathesis. J. Am. Chem. Soc., 2000, 122, 58-71.
(o)France, M.B.; Paciello, R.A.; Grubbs, R.H. Initiation of ring-opening metathesis polymerization in protic media. Extension of [Ru(H2O)6]2+ catalyzed polymerizations to less-strained cyclic monomers. Macromolecules, 1993, 26, 4739-4741.
(p)Johnson, L.K.; Grubbs, R.H.; Ziller, J.W. Synthesis of tungsten vinyl alkylidene complexes via the reactions of WCl2(NAr)(PX3)3 (X = R, OMe) precursors with 3,3-disubstituted cyclopropenes. J. Am. Chem. Soc., 1993, 115, 8130-8145.
(q)Dias, E.L.; Nguyen, S.T.; Grubbs, R.H. Well-defined ruthenium olefin metathesis catalysts: Mechanism and activity. J. Am. Chem. Soc., 1997, 119, 3887-3897.
(r)Binger, P.; Müller, P.; Benn, R.; Mynott, R. Vinylcarbene complexes of titanocene. Angew. Chem. Int. Ed. Engl., 1989, 28, 610-611.
(a) Jiménez-González, L.; García-Muñoz, S.; Alvarez-Corral, M.; Muñoz-Dorado, M.; Rodríguez-García, I. Silver-catalyzed asymmetric synthesis of 2,3-dihydrobenzofurans: A new chiral synthesis of pterocarpans. Chemistry, 2006, 12(34), 8762-8769.
[http://dx.doi.org/10.1002/chem.200600332] [PMID: 16953512]
(b) Azizi, M.; Maleki, A.; Hakimpoor, F.; Firouzi-Haji, R.; Ghassemi, M.; Rahimi, J. Green approach for highly efficient synthesis of polyhydroquinolines using Fe3O4@PEO-SO3H as a novel and recoverable magnetic nanocomposite catalyst. Lett. Org. Chem., 2018, 15, 753-759.
(c) Maleki, A.; Sarvary, A. Synthesis of tetrazoles via isocyanide-based reactions. RSC Advances, 2015, 5, 60938-60955.
(d) Sarvary, A.; Maleki, A. A review of syntheses of 1,5-disubstituted tetrazole derivatives. Mol. Divers., 2015, 19(1), 189-212.
[http://dx.doi.org/10.1007/s11030-014-9553-3] [PMID: 25273563]
(e) Maleki, A.; Eskandarpour, V.; Rahimi, J.; Hamidi, N. Cellulose matrix embedded copper decorated magnetic bionanocomposite as a green catalyst in the synthesis of dihydropyridines and polyhydroquinolines. Carbohydr. Polym., 2019, 208, 251-260.
[http://dx.doi.org/10.1016/j.carbpol.2018.12.069] [PMID: 30658798]
(f) Maleki, A.; Movahed, H.; Ravaghi, P. Magnetic cellulose/Ag as a novel eco-friendly nanobiocomposite to catalyze synthesis of chromene-linked nicotinonitriles. Carbohydr. Polym., 2017, 156, 259-267.
[http://dx.doi.org/10.1016/j.carbpol.2016.09.002] [PMID: 27842821]
(g) Maleki, A.; Jafari, A.A.; Yousefi, S. Green cellulose-based nanocomposite catalyst: Design and facile performance in aqueous synthesis of pyranopyrimidines and pyrazolopyranopyrimidines. Carbohydr. Polym., 2017, 175, 409-416.
[http://dx.doi.org/10.1016/j.carbpol.2017.08.019] [PMID: 28917883]
(h) Maleki, A. Fe3O4/SiO2 nanoparticles: an efficient and magnetically recoverable nanocatalyst for the one-pot multicomponent synthesis of diazepines. Tetrahedron, 2012, 68, 7827-7833.
(i)Maleki, A.; Rabbani, M.; Shahrokh, S. Preparation and characterization of a silica‐based magnetic nanocomposite and its application as a recoverable catalyst for the one‐pot multicomponent synthesis of quinazolinone derivatives. Appl. Organomet. Chem., 2015, 29, 809-814.
(a) Li, Z.; He, C. Recent advances in silver-catalyzed nitrene, carbene, and silylene-transfer reactions. Eur. J. Org. Chem., 2006, 4313-4322.
(b) Maleki, A. One-pot multicomponent synthesis of diazepine derivatives using terminal alkynes in the presence of silica-supported superparamagnetic iron oxide nanoparticles. Tetrahedron Lett., 2013, 54, 2055-2059.
(c) Maleki, A. Green oxidation protocol: Selective conversions of alcohols and alkenes to aldehydes, ketones and epoxides by using a new multiwall carbon nanotube-based hybrid nanocatalyst via ultrasound irradiation. Ultrason. Sonochem., 2018, 40, (Pt A), 460-464.
[http://dx.doi.org/10.1016/j.ultsonch.2017.07.020] [PMID: 28946446]
(d) Maleki, A. One-pot three-component synthesis of pyrido[2′,1′:2,3]imi-dazo[4,5-c]isoquinolines using Fe3O4@SiO2-OSO3H as an efficient heterogeneous nanocatalyst. RSC Advances, 2014, 4, 64169-64173.
(e) Maleki, A.; Firouzi-Haji, R. L-Proline functionalized magnetic nanoparticles: A novel magnetically reusable nanocatalyst for one-pot synthesis of 2,4,6-triarylpyridines. Sci. Rep., 2018, 8(1), 17303.
[http://dx.doi.org/10.1038/s41598-018-35676-x] [PMID: 30470821]
(f) Maleki, A.; Aghaei, M.; Ghamari, N. Facile synthesis of tetrahydrobenzoxanthenones via a one‐pot three‐component reaction using an eco‐friendly and magnetized biopolymer chitosan‐based heterogeneous nanocatalyst. Appl. Organomet. Chem., 2016, 30, 939-942.
(g) Maleki, A.; Kamalzare, M. An efficient synthesis of benzodiazepine derivatives via a one-pot, three-component reaction accelerated by a chitosan-supported superparamagnetic iron oxide nanocomposite. Tetrahedron Lett., 2014, 55, 6931-6934.
(h) Maleki, A.; Taheri-Ledari, R.; Rahimi, J.; Soroushnejad, M.; Hajizadeh, Z. Facile peptide bond formation: Effective interplay between isothiazolone rings and silanol groups at silver/iron oxide nanocomposite surfaces. ACS Omega, 2019, 4(6), 10629-10639.
[http://dx.doi.org/10.1021/acsomega.9b00986] [PMID: 31460161]
(i) Maleki, A.; Hajizadeh, Z.; Salehi, P. Mesoporous halloysite nanotubes modified by CuFe2O4 spinel ferrite nanoparticles and study of its application as a novel and efficient heterogeneous catalyst in the synthesis of pyrazolopyridine derivatives. Sci. Rep., 2019, 9(1), 5552.
[http://dx.doi.org/10.1038/s41598-019-42126-9] [PMID: 30944394]
(j) Maleki, A.; Ghassemi, M.; Firouzi-Haji, R. Green multicomponent synthesis of four different classes of six-membered N-containing and O-containing heterocycles catalyzed by an efficient chitosan-based magnetic bionanocomposite. Pure Appl. Chem., 2018, 90, 387-394.
Grigg, R.; Martin, W.; Morrisa, J.; Sridharana, V. Synthesis of Δ3-pyrrolines and Δ3-tetrahydropyridines via microwave-accelerated ring-closing metathesis. Tetrahedron Lett., 2003, 44, 4899-4901.
Balan, D.; Adolfsson, H. Efficient microwave-assisted formation of functionalized 2,5-dihydropyrroles using ruthenium-catalyzed ring-closing metathesis. Tetrahedron Lett., 2004, 45, 3089-3092.
(a) Declerck, V.; Ribière, P.; Martinez, J.; Lamaty, F. Sequential aza-Baylis-Hillman/ring closing metathesis/aromatization as a novel route for the synthesis of substituted pyrroles. J. Org. Chem., 2004, 69(24), 8372-8381.
[http://dx.doi.org/10.1021/jo048519r] [PMID: 15549809]
(b) Suna, E.; Mutule, I. Microwave-assisted heterocyclic chemistry. Top. Curr. Chem., 2006, 266, 49-101.
Semeril, D.; Le Notre, J.; Bruneau, C.; Dixneuf, P.H.; Kolomiets, A.F.; Osipov, S.N. Fluorine-containing α-alkynyl amino esters and access to a new family of 3,4-dehydroproline analogues. New J. Chem., 2001, 25, 16-18.
Diver, S.T.; Giessert, A.J. Enyne metathesis (enyne bond reorganization). Chem. Rev., 2004, 104, 1317-1382.
Stragies, R.; Schuster, M.; Blechert, S. A novel ruthenium-catalysed tandem diyne cycloisomerisation-cross metathesis process. Chem. Commun. (Camb.), 1999, 3, 237-238.
Stragies, R.; Schuster, M.; Blechert, S. A crossed yne-ene metathesis showing atom economy. Angew. Chem. Int. Ed. Engl., 1997, 36, 2518-2520.
Shaabani, A.; Maleki, A.; Rezayan, A.H.; Sarvary, A. Recent progress of isocyanide-based multicomponent reactions in Iran. Mol. Divers., 2011, 15(1), 41-68.
[http://dx.doi.org/10.1007/s11030-010-9258-1] [PMID: 20669047]
Randl, S.; Lucas, N.; Connon, S.J.; Blechert, S. A mechanism switch in enyne metathesis reactions involving rearrangement: influence of heteroatoms in the propargylic position. Adv. Synth. Catal., 2002, 344, 631-633.
Grigg, R.; Hodgson, A.; Morris, J.; Sridharan, V. Sequential Pd/Ru-catalyzed allenylation/olefin metathesis/1,3-dipolar cycloaddition route to novel heterocycles. Tetrahedron Lett., 2003, 44, 1023-1026.
(a) Majumdar, K.C.; Muhuri, S.; Islam, R.U.; Chattopadhyay, B. Synthesis of five- and six-membered heterocyclic compounds by the application of the metathesis reactions. Heterocycles, 2009, 78, 1109-1169.
(b) Majumdar, K.C.; Chattopadhyay, B.; Ray, K. Formation of five- and six-membered heterocyclic compounds by ring closing metathesis. Curr. Org. Synth., 2010, 7, 153-176.
Donohoe, T.J.; Orr, A.J.; Bingham, M. Ring-closing metathesis as a basis for the construction of aromatic compounds. Angew. Chem. Int. Ed., 2006, 45, 2664-2670.
Donohoe, T.J.; Orr, A.J.; Gosby, K.; Bingham, M. A metathesis approach to aromatic heterocycles. Eur. J. Org. Chem., 2005, 1969-1971.
Taillier, C.; Hameury, T.; Bellosta, V.; Cossy, J. Synthesis of 3-oxooxa- and 3-oxoazacycloalk-4-enes by ring-closing metathesis. Application to the synthesis of an inhibitor of cathepsin K. Tetrahedron, 2007, 63, 4472-4490.
Chippindale, A.M.; Davies, S.G.; Iwamoto, K.; Parkin, R.M.; Smethurst, C.A.P.; Smith, A.D.; Solla-Rodriguez, H. Asymmetric synthesis of cyclic β-amino acids and cyclic amines via sequential diastereoselective conjugate addition and ring closing metathesis. Tetrahedron, 2003, 59, 3253-3265.
Rutjes, F.P.J.T.; Schoemaker, H.E. Asymmetric synthesis of cyclic β-amino acids and cyclic amines via sequential diastereoselective conjugate addition and ring closing metathesis. Tetrahedron Lett., 1997, 38, 677-680.
Miller, S.J.; Blackwell, H.E.; Grubbs, R.H. Application of ring-closing metathesis to the synthesis of rigidified amino acids and peptides. J. Am. Chem. Soc., 1996, 118, 9606-9614.
Moonen, K.; Dieltiens, N.; Stevens, C.V. Synthesis of 2-phosphonopyrroles via a one-pot RCM/oxidation sequence. J. Org. Chem., 2006, 71(10), 4006-4009.
[http://dx.doi.org/10.1021/jo060160e] [PMID: 16674086]
Davis, A.S.; Gates, N.J.; Lindsay, K.B.; Tang, M.; Pyne, S.G. A new strategy for the diastereoselective synthesis of polyfunctionalized pyrrolidines. Synlett, 2004, 1, 49-52.
Trost, B.M.; Machacek, M.R. An efficient one-pot enantio- and diastereoselective synthesis of heterocycles. Angew. Chem. Int. Ed., 2002, 41, 4693-4697.
Trost, B.M.; Machacek, M.R.; Faulk, B.D. Sequential Ru-Pd catalysis: A two-catalyst one-pot protocol for the synthesis of N- and O-heterocycles. J. Am. Chem. Soc., 2006, 128(20), 6745-6754.
[http://dx.doi.org/10.1021/ja060812g] [PMID: 16704278]
Li, G-Y.; Chen, J.; Yu, W-Y.; Hong, W.; Che, C-M. Stereoselective synthesis of functionalized pyrrolidines by ruthenium porphyrin-catalyzed decomposition of alpha-diazo esters and cascade azomethine ylide formation/1,3-dipolar cycloaddition reactions. Org. Lett., 2003, 5(12), 2153-2156.
[http://dx.doi.org/10.1021/ol034614v] [PMID: 12790552]
Zuercher, W.J.; Hashimoto, M.; Grubbs, R.H. Tandem ring opening-ring closing metathesis of cyclic olefins. J. Am. Chem. Soc., 1996, 118, 6634-6640.
Choi, T-L.; Grubbs, R.H. Tandem ring-closing metathesis reaction with a ruthenium catalyst containing N-heterocyclic ligand. Chem. Commun. (Camb.), 2001, 24, 2648-2649.
Blechert, S.; Stapper, C. Enantioselective synthesis of (-)-anaferine dihydrochloride by a ruthenium-catalysed tandem ring rearrangement metathesis. Eur. J. Org. Chem., 2002, 16, 2855-2858.
Louie, J.; Bielawski, C.W.; Grubbs, R.H. Tandem catalysis: The sequential mediation of olefin metathesis, hydrogenation, and hydrogen transfer with single-component Ru complexes. J. Am. Chem. Soc., 2001, 123(45), 11312-11313.
[http://dx.doi.org/10.1021/ja016431e] [PMID: 11697983]
Kitamura, T.; Mori, M. Ruthenium-catalyzed ring-opening and ring-closing enyne metathesis. Org. Lett., 2001, 3(8), 1161-1163.
[http://dx.doi.org/10.1021/ol015606m] [PMID: 11348184]
Lautens, M.; Klute, W.; Tam, W. Transition metal-mediated cycloaddition reactions. Chem. Rev., 1996, 96(1), 49-92.
[http://dx.doi.org/10.1021/cr950016l] [PMID: 11848744]
Ojima, I.; Tzamarioudaki, M.; Li, Z.; Donovan, R.J. Transition metal-catalyzed carbocyclizations in organic synthesis. Chem. Rev., 1996, 96, 635-662.
Frühauf, H-W. Metal-assisted cycloaddition reactions in organotransition metal chemistry. Chem. Rev., 1997, 97(3), 523-596.
[http://dx.doi.org/10.1021/cr941164z] [PMID: 11848882]
Schmidt, B. Ruthenium-catalyzed cyclizations: More than just olefin metathesis. Angew. Chem. Int. Ed., 2003, 42, 4996-4999.
Yamamoto, Y.; Kitahara, H.; Ogawa, R.; Itoh, K. Cp*Ru(cod)Cl-catalyzed [2+2+2] cycloaddition of 1,6-heptadiynes with allylic ethers. A decisive role of coordination to the ether oxygen atom. J. Org. Chem., 1998, 63, 9610-9611.
Yamamoto, Y.; Kitahara, H.; Ogawa, R.; Kawaguchi, H.; Tatsumi, K.; Itoh, K. Ru(II)-catalyzed cycloadditions of 1,6-heptadiynes with alkenes: New synthetic potential of ruthenacyclopentatrienes as biscarbenoids in tandem cyclopropanation of bicycloalkenes and heteroatom-assisted cyclocotrimerization of 1,6-heptadiynes with heterocyclic alkenes. J. Am. Chem. Soc., 2000, 122, 4310-4319.
Kondo, T.; Okada, T.; Mitsudo, T-A. Ruthenium-catalyzed intramolecular oxidative amination of aminoalkenes enables rapid synthesis of cyclic imines. J. Am. Chem. Soc., 2002, 124(2), 186-187.
[http://dx.doi.org/10.1021/ja017012k] [PMID: 11782166]
Kondo, T.; Tsunawaki, F.; Sato, R.; Ura, Y.; Wada, K.; Mitsudo, T. Ruthenium complex-catalyzed oxidative cyclization of 4-penten-1-ols. Chem. Lett., 2003, 32, 24-25.
Trost, B.M.; Pinkerton, A.B. A ruthenium-catalyzed alkylative cycloetherification. J. Am. Chem. Soc., 1999, 121, 10842-10843.
Trost, B.M.; Pinkerton, A.; Kremzow, D. A ruthenium-catalyzed pyrrolidine and piperidine synthesis. J. Am. Chem. Soc., 2000, 122, 12007-12008.
Trost, B.M.; McClory, A. Ruthenium-catalyzed alkylative lactonization and carbocyclization. Org. Lett., 2006, 8(17), 3627-3629.
[http://dx.doi.org/10.1021/ol0610136] [PMID: 16898777]
Kuang, J.; Ma, S. An efficient synthesis of terminal allenes from terminal 1-alkynes. J. Org. Chem., 2009, 74(4), 1763-1765.
[http://dx.doi.org/10.1021/jo802391x] [PMID: 19123833]
Nakamura, H.; Sugiishi, T.; Tanaka, Y. Synthesis of allenes via CuBr-catalyzed homologation of alk-1-ynes accelerated by microwave. Tetrahedron Lett., 2008, 49, 7230-7233.
Kumar, V.; Chipeleme, A.; Chibale, K. Effect of varying the anionic component of a copper(I) catalyst on homologation of arylacetylenes to allenes by the Mannich reaction. Eur. J. Org. Chem., 2008, 1, 43-46.
Chatani, N.; Tobisu, M.; Asaumi, T.; Murai, S. Ru3(CO)12-catalyzed intermolecular [2+2+1] cyclocoupling of imines, alkenes or alkynes, and carbon monoxide: A new synthesis of functionalized γ-lactams. Synthesis, 2000, 7, 925-928.
Van den Hoven, B.G.; El Ali, B.; Alper, H. The Ru3(CO)12-catalyzed intermolecular [2+2+1] cyclocoupling of imines, alkenes or alkynes, and carbon monoxide: A new synthesis of functionalized γ-lactams. J. Org. Chem., 2000, 65, 4131-4137.
[http://dx.doi.org/10.1021/jo000230w] [PMID: 10866631]
Van den Hoven, B.G.; Alper, H. Innovative synthesis of 4-carbaldehydepyrrolin-2-ones by zwitterionic rhodium catalyzed chemo- and regioselective tandem cyclohydrocarbonylation/CO insertion of alpha-imino alkynes. J. Am. Chem. Soc., 2001, 123(42), 10214-10220.
[http://dx.doi.org/10.1021/ja011710n] [PMID: 11603971]
Imhof, W.; Berger, D.; Kotteritzsch, M.; Rost, M.; Schonecker, B. The stereoselective Ru3(CO)12-catalyzed synthesis of steroidal 1,3-dihydropyrrol-2-one derivatives from α, β-unsaturated imines, carbon monoxide and ethylene. Adv. Synth. Catal., 2001, 343, 795-801.
Chatani, N.; Kamitani, A.; Murai, S. Ruthenium-catalyzed reaction of alpha, beta-unsaturated imines with carbon monoxide and alkenes leading to beta,gamma-unsaturated gamma-butyrolactams: Involvement of direct carbonylation at olefinic C[bond]H Bonds as a key step. J. Org. Chem., 2002, 67(20), 7014-7018.
[http://dx.doi.org/10.1021/jo026001m] [PMID: 12353994]
(a) Mori, M.; Sakakibara, N.; Kinoshita, A. Remarkable effect of ethylene gas in the intramolecular enyne metathesis of terminal alkynes. J. Org. Chem., 1998, 63(18), 6082-6083.
[http://dx.doi.org/10.1021/jo980896e] [PMID: 11672225]
(b) Mori, M. Recent progress on enyne metathesis: its application to syntheses of natural products and related compounds. Materials (Basel), 2010, 3, 2087-2140.
(c) Mori, M. Synthesis of natural products and related compounds using enyne metathesis. Adv. Synth. Catal., 2007, 349, 121-135.
Kitamura, T.; Sato, Y.; Mori, M. Unexpected results of enyne metathesis using a ruthenium complex containing an N-heterocyclic carbene ligand. Chem. Commun. (Camb.), 2001, 14, 1258-1259.
Kitamura, T.; Sato, Y.; Mori, M. Effects of substituents on the multiple bonds on ring-closing metathesis of enynes. Adv. Synth. Catal., 2002, 344, 678-693.
Scholl, M.; Ding, S.; Lee, C.W.; Grubbs, R.H. Synthesis and activity of a new generation of ruthenium-based olefin metathesis catalysts coordinated with 1,3-dimesityl-4,5-dihydroimidazol-2-ylidene ligands. Org. Lett., 1999, 1(6), 953-956.
[http://dx.doi.org/10.1021/ol990909q] [PMID: 10823227]
Ackermann, L.; Furstner, A.; Weskamp, T.; Kohl, F.J.; Herrmann, W.A. Ruthenium carbene complexes with imidazolin-2-ylidene ligands allow the formation of tetrasubstituted cycloalkenes by RCM. Tetrahedron Lett., 1999, 40, 4787-4790.
Briot, A.; Bujard, M.; Gouverneur, V.; Nolan, S.P.; Mioskowski, C. Improvement in olefin metathesis using a new generation of ruthenium catalyst bearing an imidazolylidene ligand: synthesis of heterocycles. Org. Lett., 2000, 2(11), 1517-1519.
[http://dx.doi.org/10.1021/ol005651e] [PMID: 10841468]
Garber, S.B.; Kingsbury, J.S.; Gray, B.L.; Hoveyda, A.H. Efficient and recyclable monomeric and dendritic Ru-based metathesis catalysts. J. Am. Chem. Soc., 2000, 122, 8168-8179.
Paek, S-M. Synthesis of tetrasubstituted alkenes via metathesis. Molecules, 2012, 17(3), 3348-3358.
[http://dx.doi.org/10.3390/molecules17033348] [PMID: 22421789]
Boeda, F.; Clavier, H.; Jordaan, M.; Meyer, W.H.; Nolan, S.P. Phosphabicyclononane-containing Ru complexes: Efficient pre-catalysts for olefin metathesis reactions. J. Org. Chem., 2008, 73(1), 259-263.
[http://dx.doi.org/10.1021/jo702169p] [PMID: 18052392]
Rix, D.; Caijo, F.; Laurent, I.; Boeda, F.; Clavier, H.; Nolan, S.P.; Mauduit, M. Aminocarbonyl group containing Hoveyda-Grubbs-type complexes: Synthesis and activity in olefin metathesis transformations. J. Org. Chem., 2008, 73(11), 4225-4228.
[http://dx.doi.org/10.1021/jo800203d] [PMID: 18459814]
Dondas, H.A.; Clique, B.; Cetinkaya, B.; Grigg, R.; Kilner, C.; Morris, J.; Sridharan, V.Δ. 3-Aryl/heteroaryl substituted heterocycles via sequential Pd-catalyzed termolecular cascade/ring closing metathesis (RCM). Tetrahedron, 2005, 61, 10652-10666.
Fu, G.C.; Nguyen, S.T.; Grubbs, R.H. Catalytic ring-closing metathesis of functionalized dienes by a ruthenium carbene complex. J. Am. Chem. Soc., 1993, 115, 9856-9857.
Fu, G.C.; Grubbs, R.H. The synthesis of nitrogen heterocycles via catalytic ring-closing metathesis of dienes. J. Am. Chem. Soc., 1992, 114, 7324-7325.
Huwe, C.M.; Blechert, S. A novel approach to azasugars from vinyl glycine methyl ester via olefin metathesis. Tetrahedron Lett., 1995, 36, 1621-1624.
Huwe, C.M.; Blechert, S. Flexible synthesis of azasugars and homoazasugars via olefin metathesis. Synthesis, 1997, 1, 61-67.
Wakamatsu, H.; Saito, Y.; Masubuchi, M.; Fujita, R. Synthesis of imidazolium-tagged ruthenium carbene complex: remarkable activity and reusability in regard to olefin metathesis in ionic liquids. Synlett, 2008, 12, 1805-1808.
Castarlenas, R.; Vovard, C.; Fischmeister, C.; Dixneuf, P.H. Allenylidene-to-indenylidene rearrangement in arene-ruthenium complexes: A key step to highly active catalysts for olefin metathesis reactions. J. Am. Chem. Soc., 2006, 128(12), 4079-4089.
[http://dx.doi.org/10.1021/ja0579762] [PMID: 16551117]
Bieniek, M.; Bujok, R.; Cabaj, M.; Lugan, N.; Lavigne, G.; Arlt, D.; Grela, K. Advanced fine-tuning of grubbs/hoveyda olefin metathesis catalysts: A further step toward an optimum balance between antinomic properties. J. Am. Chem. Soc., 2006, 128(42), 13652-13653.
[http://dx.doi.org/10.1021/ja063186w] [PMID: 17044669]
Lipshutz, B.H.; Ghorai, S. PQS: A new platform for micellar catalysis. RCM reactions in water, with catalyst recycling. Org. Lett., 2009, 11(3), 705-708.
[http://dx.doi.org/10.1021/ol8027829] [PMID: 19105682]
Polshettiwar, V.; Varma, R.S. Olefin ring closing metathesis and hydrosilylation reaction in aqueous medium by Grubbs second generation ruthenium catalyst. J. Org. Chem., 2008, 73(18), 7417-7419.
[http://dx.doi.org/10.1021/jo801330c] [PMID: 18722404]
Aitken, S.; Abell, A.D. Olefin metathesis: Catalyst development, microwave catalysis, and domino applications. Aust. J. Chem., 2005, 58, 3-13.
Mayo, K.; Nearhoof, E.H.; Kiddle, J. Microwave-accelerated ruthenium-catalyzed olefin metathesis. Org. Lett., 2002, 4, 1567-1570.
[http://dx.doi.org/10.1021/ol025789s] [PMID: 11975630]
Fustero, S.; Jiménez, D.; Sanchez-Roselló, M.; del Pozo, C. Microwave-assisted tandem cross metathesis intramolecular Aza-Michael reaction: An easy entry to cyclic beta-amino carbonyl derivatives. J. Am. Chem. Soc., 2007, 129(21), 6700-6701.
[http://dx.doi.org/10.1021/ja0709829] [PMID: 17480078]
Yang, C.; Murray, W.V.; Wilson, L.J. Microwave enabled external carboxymethyl substituents in the ring-closing metathesis. Tetrahedron Lett., 2003, 44, 1783-1786.
Thanh, G.V.; Loupy, A. Microwave-assisted ruthenium-catalyzed olefin metathesis under solvent-free conditions. Tetrahedron Lett., 2003, 44, 9091-9094.
Garbacia, S.; Desai, B.; Lavastre, O.; Kappe, C.O. Microwave-assisted ring-closing metathesis revisited. On the question of the nonthermal microwave effect. J. Org. Chem., 2003, 68(23), 9136-9139.
[http://dx.doi.org/10.1021/jo035135c] [PMID: 14604397]
Varray, S.; Gauzy, C.; Lamaty, F.; Lazaro, R.; Martinez, J. Synthesis of cyclic amino acid derivatives via ring closing metathesis on a poly (ethylene glycol) supported substrate. J. Org. Chem., 2000, 65(20), 6787-6790.
[http://dx.doi.org/10.1021/jo000898a] [PMID: 11052139]
Heerding, D.A.; Takata, D.T.; Kwon, C.; Huffman, W.F.; Samanen, J. Use of an intramolecular ruthenium catalyzed olefin/alkyne metathesis reaction in tandem with a Diels-Alder cycloaddition reaction to construct functionalized hexahydroisoindoles. Tetrahedron Lett., 1998, 39, 6815-6818.
Ackermann, L.; Bruneau, C.; Dixneuf, P.H. Simple new three-component catalytic system for enyne metathesis. Synlett, 2001, 3, 397-399.
Yang, Q.; Xiao, W-J.Yu. Z. Lewis acid assisted ring-closing metathesis of chiral diallylamines: An efficient approach to enantiopure pyrrolidine derivatives. Org. Lett., 2005, 7, 871-874.
Chaterjee, A.K.; Morgan, J.P.; Scholl, M.; Grubbs, R.H. Synthesis of functionalized olefins by cross and ring-closing metatheses. J. Am. Chem. Soc., 2000, 122, 3783-3784.
Marhold, M.; Buer, A.; Hiemstra, H.; van Maarseveen, J.H.; Haufe, G. Synthesis of vinyl fluorides by ring-closing metathesis. Tetrahedron Lett., 2004, 45, 57-60.
Honda, T.; Ushiwata, M.; Mizutani, H. Novel stereoselective synthesis of enantiopure (+)-N-Boc-norpandamarilactonine-A, the intermediate for pandamarilactonines. Tetrahedron Lett., 2006, 47, 6251-6254.
Kim, J.M.; Lee, K.Y.; Lee, S.; Kim, J.N. Ring-closing metathesis toward the synthesis of 2,5-dihydrofuran and 2,5-dihydropyrrole skeletons from Baylis-Hillman adducts. Tetrahedron Lett., 2004, 45, 2805-2808.
Ji, J.; Lu, X. Facile synthesis of 2,5-disubstituted furans via palladium complex and perfluorinated resinsulfonic acid catalysed isomerization-dehydration of alkynediols. J. Chem. Soc. Chem. Commun., 1993, 9, 764-765.
Tsuji, Y.; Yokoyama, Y.; Huh, K-T.; Watanabe, Y. Ruthenium complex-catalyzed N-heterocyclization. Synthesis of n-substituted pyrroles and pyrrolidines from 1,4-diols and primary amines. Bull. Chem. Soc. Jpn., 1987, 60, 3456-3458.
Pridmore, S.J.; Slatford, P.A.; Williams, J.M.J. 2,5-Disubstituted furans from 1,4-alkynediols. Tetrahedron Lett., 2007, 48, 5111-5114.
Pridmore, S.J.; Slatford, P.A.; Daniel, A.; Whittlesey, M.K.; Williams, J.M.J. Ruthenium-catalysed conversion of 1,4-alkynediols into pyrroles. Tetrahedron Lett., 2007, 48, 5115-5120.
Nixon, T.D.; Whittlesey, M.K.; Williams, J.M. Transition metal catalysed reactions of alcohols using borrowing hydrogen methodology. Dalton Trans., 2009, (5), 753-762.
[http://dx.doi.org/10.1039/B813383B] [PMID: 19156265]
Lee, H-Y.; Kim, H.Y.; Tae, H.; Kim, B.G.; Lee, J. One-pot three-component tandem metathesis/Diels-Alder reaction. Org. Lett., 2003, 5, 3439-3442.
[http://dx.doi.org/10.1002/sim.1354] [PMID: 12652565]
D’Souza, D.M.; Muller, T.J. Multi-component syntheses of heterocycles by transition-metal catalysis. J. Chem. Soc. Rev., 2007, 36, 1095-1108.
Nishibayashi, Y.; Yoshikawa, M.; Inada, Y.; Milton, M.D.; Hidai, M.; Uemura, S. Novel ruthenium- and platinum-catalyzed sequential reactions: Synthesis of tri- and tetrasubstituted furans and pyrroles from propargylic alcohols and ketones. Angew. Chem. Int. Ed., 2003, 42, 2681-2684.
Cass, W.E. 2-Phenyloxazole and ortho-substituted derivatives. J. Am. Chem. Soc., 1942, 64, 785-787.
Trost, B.M.; Maulide, N.; Livingston, R.C. A ruthenium-catalyzed, atom-economical synthesis of nitrogen heterocycles. J. Am. Chem. Soc., 2008, 130(49), 16502-16503.
[http://dx.doi.org/10.1021/ja807696e] [PMID: 19554686]
Shafi, S.; Kędziorek, M.; Grela, K. Cross metathesis of N-allylamines and α,β-unsaturated carbonyl compounds: A one-pot synthesis of substituted pyrroles. Synlett, 2011, 1, 124-128.
Hamid, M.H.S.A.; Allen, C.L.; Lamb, G.W.; Maxwell, A.C.; Maytum, H.C.; Watson, A.J.A.; Williams, J.M.J. Ruthenium-catalyzed N-alkylation of amines and sulfonamides using borrowing hydrogen methodology. J. Am. Chem. Soc., 2009, 131(5), 1766-1774.
[http://dx.doi.org/10.1021/ja807323a] [PMID: 19191700]
Terada, Y.; Arisawa, M.; Nishida, A. Cycloisomerization promoted by the combination of a ruthenium-carbene catalyst and trimethylsilyl vinyl ether, and its application in the synthesis of heterocyclic compounds: 3-methylene-2,3-dihydroindoles and 3-methylene-2,3-dihydrobenzofurans. Angew. Chem. Int. Ed., 2004, 43, 4063-4067.
Mori, M.; Saito, N.; Tanaka, D.; Takimoto, M.; Sato, Y. Novel alkenylative cyclization using a ruthenium catalyst. J. Am. Chem. Soc., 2003, 125(19), 5606-5607.
[http://dx.doi.org/10.1021/ja029747a] [PMID: 12733879]
Monnier, F.; Bray, C.V.; Castillo, D.; Aubert, V.; Dérien, S.; Dixneuf, P.H.; Toupet, L.; Ienco, A.; Mealli, C. Selective ruthenium-catalyzed transformations of enynes with diazoalkanes into alkenylbicyclo[3.1.0]hexanes. J. Am. Chem. Soc., 2007, 129(18), 6037-6049.
[http://dx.doi.org/10.1021/ja0700146] [PMID: 17429974]
Ackermann, L.; Althammer, A. One-pot 2-aryl/vinylindole synthesis consisting of a ruthenium-catalyzed hydroamination and a palladium-catalyzed Heck reaction using 2-chloroaniline. Synlett, 2006, 18, 3125-3129.
Ackermann, L. Kaspar, L.T.; Gschrei, C.J. Hydroamination/Heck reaction sequence for a highly regioselective one-pot synthesis of indoles using 2-chloroaniline. Chem. Commun. (Camb.), 2004, 24, 2824-2825.
[http://dx.doi.org/10.1039/b411571f] [PMID: 15599425]
Kasahara, A.; Izumi, T.; Murakami, S.; Yanai, H.; Takatori, M. Synthesis of 3-substituted indoles by a palladium-assisted reaction. Bull. Chem. Soc. Jpn., 1986, 59, 927-928.
Grigg, R.; Savic, V. Palladium catalysed synthesis of pyrroles from enamines. Chem. Commun. (Camb.), 2000, 10, 873-874.
Saito, N.; Sato, Y.; Mori, M. Synthesis of cyclic dienamide using ruthenium-catalyzed ring-closing metathesis of ene-ynamide. Org. Lett., 2002, 4(5), 803-805.
[http://dx.doi.org/10.1021/ol017298y] [PMID: 11869132]
Mori, M.; Wakamatsu, H.; Saito, N.; Sato, Y.; Narita, R.; Sato, Y.; Fujita, R. Synthesis of cyclic dienamide using ruthenium-catalyzed ring-closing metathesis of ene-ynamide. Tetrahedron, 2006, 62, 3872-3881.
Liu, Z.; Rainier, J.D. Ring-opening/ring-closing metathesis (RORCM) reactions of 7-Azanorbornene derivatives. An entry into perhydroindolines. Org. Lett., 2006, 8(3), 459-462.
[http://dx.doi.org/10.1021/ol052741g] [PMID: 16435859]
Jones, W.D.; Kosar, W.P. Carbon-hydrogen bond activation by ruthenium for the catalytic synthesis of indoles. J. Am. Chem. Soc., 1986, 108, 5640-5641.
Hsu, G.C.; Kosar, W.P.; Jones, W.D. Functionalization of benzylic carbon-hydrogen bonds. Mechanism and scope of the catalytic synthesis of indoles with [Ru(dmpe)2]. Organometallics, 1994, 13, 385-396.
Shinji, M. Transition metal catalyzed manipulation of non-polar carbon-hydrogen bonds for synthetic purpose. Proc. Jpn. Acad., Ser. B,, 2011, 87, 230-241.
Chatani, N.; Fukumoto, Y.; Ida, T.; Murai, S. Ruthenium-catalyzed reaction of 1,6-diynes with hydrosilanes and carbon monoxide: a third way of incorporating CO. J. Am. Chem. Soc., 1993, 115, 11614-11615.
Airiau, E.; Spangenberg, T.; Girard, N.; Schoenfelder, A.; Salvadori, J.; Taddei, M.; Mann, A. A general approach to aza-heterocycles by means of domino sequences driven by hydroformylation. Chemistry, 2008, 14(35), 10938-10948.
[http://dx.doi.org/10.1002/chem.200801795] [PMID: 19009576]
Shou, W.G.; Li, J.; Guo, T.; Lin, Z.; Jia, G. Ruthenium-catalyzed intramolecular amination reactions of aryl- and vinylazides. Organometallics, 2009, 28, 6847-6854.
Driver, T.G. Recent advances in transition metal-catalyzed N-atom transfer reactions of azides. Org. Biomol. Chem., 2010, 8(17), 3831-3846.
[http://dx.doi.org/10.1039/c005219c] [PMID: 20617243]
Inoue, S.; Shiota, H.; Fukumoto, Y.; Chatani, N. Ruthenium-catalyzed carbonylation at ortho C-H bonds in aromatic amides leading to phthalimides: C-H bond activation utilizing a bidentate system. J. Am. Chem. Soc., 2009, 131(20), 6898-6899.
[http://dx.doi.org/10.1021/ja900046z] [PMID: 19413322]
Adriaenssens, L.; Severa, L.; Vavra, J.; Salova, T.; Hyvl, J.; Cizkova, M.; Pohl, R.; Saman, D.; Teply, F. Bio- and air-tolerant carbon-carbon bond formations via organometallic ruthenium catalysis. Collect. Czech. Chem. Commun., 2009, 74, 1023-1034.
Nag, S.; Batra, S. Applications of allylamines for the syntheses of aza-heterocycles. Tetrahedron, 2011, 67, 8959-9061.
Nagashima, H.; Ara, K.; Wakamatsu, H.; Itoh, K. Stereoselective preparation of bicyclic lactams by copper- or ruthenium-catalysed cyclization of N-allyltrichloroacetamides: A novel entry to pyrrolidine alkaloid skeletons. J. Chem. Soc. Chem. Commun., 1985, 8, 518-519.
Seigal, B.A.; Fajardo, C.; Snapper, M.L. Tandem catalysis: Generating multiple contiguous carbon-carbon bonds through a ruthenium-catalyzed ring-closing metathesis/Kharasch addition. J. Am. Chem. Soc., 2005, 127(46), 16329-16332.
[http://dx.doi.org/10.1021/ja055806j] [PMID: 16287328]
Trost, B.M.; Chang, V.K. An approach to botrydianes: On the steric demands of a metal catalyzed enyne metathesis. Synthesis, 1993, 8, 824-832.
Méndez, M.; Muñoz, M.P.; Nevado, C.; Cárdenas, D.J.; Echavarren, A.M. Cyclizations of enynes catalyzed by PtCl2 or other transition metal chlorides: Divergent reaction pathways. J. Am. Chem. Soc., 2001, 123(43), 10511-10520.
[http://dx.doi.org/10.1021/ja0112184] [PMID: 11673982]
Imhof, S.; Blechert, S. Enyne ring-rearrangement/cross-metathesis reactions of cyclic enones. Synlett, 2003, 5, 609-614.
Kumagai, N.; Muncipinto, G.; Schreiber, S.L. Short synthesis of skeletally and stereochemically diverse small molecules by coupling petasis condensation reactions to cyclization reactions. Angew. Chem. Int. Ed., 2006, 45, 3635-3638.
Mori, M.; Kuzuba, Y.; Kitamura, T.; Sato, Y. Ruthenium-catalyzed ROM-RCM of cycloalkene-yne. Org. Lett., 2002, 4(22), 3855-3858.
[http://dx.doi.org/10.1021/ol026696d] [PMID: 12599476]
Kitamura, T.; Kuzuba, Y.; Sato, Y.; Wakamatsu, H.; Fujita, R.; Mori, M. ROM-RCM of cycloalkene-yne. Tetrahedron, 2004, 60, 7375-7389.
Varela, J.A.; Castedo, L.; Saá, C. “Formal” ruthenium-catalyzed [4+2+2] cycloaddition of 1,6-diynes to 1,3-dienes: formation of cyclooctatrienes vs vinylcyclohexadienes. Org. Lett., 2003, 5(16), 2841-2844.
[http://dx.doi.org/10.1021/ol0348710] [PMID: 12889888]
Yu, Z-X.; Wang, Y.; Wang, Y. Transition-metal-catalyzed cycloadditions for the synthesis of eight-membered carbocycles. Chem. Asian J., 2010, 5(5), 1072-1088.
[http://dx.doi.org/10.1002/asia.200900712] [PMID: 20432504]
Barrett, A.G.M.; Baugh, S.P.D.; Braddock, D.C.; Flack, K.; Gibson, V.C.; Giles, M.R.; Marshall, E.L.; Procopiou, P.A.; White, A.J.P.; Williams, D.J. Rapid entry into mono-, bi-, and tricyclic beta-lactam arrays via alkene metathesis. J. Org. Chem., 1998, 63, 7893-7907.
Duboc, R.; Henaut, C.; Savignac, M.; Genet, J-P.; Bhatnagar, N. Synthetic approach to tricyclic β-lactams using metathesis and Diels-Alder reactions. Tetrahedron Lett., 2001, 42, 2461-2464.
(a) Alcaide, B.; de Murga, R.M.; Pardo, C.; Rodriguez-Ranera, C. Access to enantiopure polycyclic β-lactams by Diels-Alder reaction of novel inner-outer-ring 2-(silyloxy)dienes with a carbacepham skeleton. Tetrahedron Lett., 2004, 45, 7255-7259.
(b) Alcaide, B.; Almendros, P. Novel aspects on the preparation of spirocyclic and fused unsual β-lactams. Top. Heterocycl. Chem., 2010, 22, 1-48.
Xu, H-W.; Li, G-Y.; Wong, M-K.; Che, C-M. Asymmetric synthesis of multifunctionalized pyrrolines by a ruthenium porphyrin-catalyzed three-component coupling reaction. Org. Lett., 2005, 7(24), 5349-5352.
[http://dx.doi.org/10.1021/ol050819n] [PMID: 16288503]
Trost, B.M.; Shen, H.C. Constructing tricyclic compounds containing a seven-membered ring by ruthenium-catalyzed intramolecular [5+2] cycloaddition. Angew. Chem. Int. Ed., 2001, 40, 2313-2316.
Chang, M-Y.; Hsu, R-T.; Tseng, T-W.; Sun, P-P.; Chang, N-C. Synthesis of psudoheliotridane via formal [3+2] annulation and ring-closing metathesis. Tetrahedron, 2004, 60, 5545-5550.
Kang, S-K.; Kim, K-J.; Hong, Y-T. Synthesis of α-methylene-γ-butyrolactones: Ru-catalyzed cyclocarbonylation of allenyl aldehydes and allenyl ketones. Angew. Chem. Int. Ed., 2002, 41, 1584-1586.
Honda, T.; Namiki, H.; Kaneda, K.; Mizutani, H. First diastereoselective chiral synthesis of (-)-securinine. Org. Lett., 2004, 6(1), 87-89.
[http://dx.doi.org/10.1021/ol0361251] [PMID: 14703357]
Honda, T.; Namiki, H.; Watanabe, M.; Mizutani, H. First total synthesis of (+)-viroallosecurinine. Tetrahedron Lett., 2004, 45, 5211-5213.
Michrowska, A.; Bujok, R.; Harutyunyan, S.; Sashuk, V.; Dolgonos, G.; Grela, K. Nitro-substituted Hoveyda-Grubbs ruthenium carbenes: Enhancement of catalyst activity through electronic activation. J. Am. Chem. Soc., 2004, 126(30), 9318-9325.
[http://dx.doi.org/10.1021/ja048794v] [PMID: 15281822]
Trost, B.M.; Brown, R.E.; Toste, F.D. A ruthenium-catalyzed hydrative cyclization and [4+2] cycloaddition of yne-enones. J. Am. Chem. Soc., 2000, 122, 5877-5878.
Diederen, J.H.; Pfeffer, M.; Fruhauf, H-W.; Hiemstra, H.; Vrieze, K. Synthesis of new N-heterocycles; intramolecular ring closure with imines. Tetrahedron Lett., 1998, 39, 4111-4114.
[http://dx.doi.org/10.1021/cr941164z] [PMID: 11848882]
Geis, O.; Schmalz, H-G. New developments in the Pauson-Khand reaction. Angew. Chem. Int. Ed. Engl., 1998, 37(7), 911-914.
[http://dx.doi.org/10.1002/(SICI)1521-3773(19980420)37:7<911:AID-ANIE911>3.0.CO;2-O] [PMID: 29711489]
Chung, Y.K. Transition metal alkyne complexes: The Pauson-Khand reaction. Coord. Chem. Rev., 1999, 188, 297-341.
Kim, S-W.; Son, S.U.; Lee, S.I.; Hyeon, T.; Chung, Y.K. Cobalt on mesoporous silica: The first heterogeneous Pauson-Khand catalyst. J. Am. Chem. Soc., 2000, 122, 1550-1551.
Comely, A.C.; Gibson, S.E.; Hales, N.J. Polymer-supported cobalt carbonyl complexes as novel solid-phase catalysts of the Pauson-Khand reaction. Chem. Commun. (Camb.), 2000, 4, 305-306.
Hayashi, M.; Hashimoto, Y.; Yamamoto, Y.; Usuki, J.; Saigo, K. Phosphane sulfide/octacarbonyldicobalt-catalyzed Pauson-Khand reaction under an atmospheric pressure of carbon monoxide. Angew. Chem. Int. Ed., 2000, 39, 631-633.
Pagenkopf, B.L.; Belanger, D.B.; O’Mahony, D.J.R.; Livinghouse, T. (Alkylthio)alkynes as addends in the Co(0) catalyzed intramolecular Pauson-Khand reaction. Substituent driven enhancements of annulation efficiency and stereoselectivity. Synthesis, 2000, 7, 1009-1019.
Krafft, M.E.; Bonaga, L.V.R. Dodecacarbonyltetracobalt catalysis in the thermal Pauson-Khand reaction. Angew. Chem. Int. Ed., 2000, 39, 3676-3680.
Son, S.U.; Lee, S.I.; Chung, Y.K. Cobalt on charcoal: A convenient and inexpensive heterogeneous Pauson-Khand catalyst. Angew. Chem. Int. Ed., 2000, 39, 4158-4160.
Krafft, M.E.; Boñaga, L.V.R.; Hirosawa, C. Practical cobalt carbonyl catalysis in the thermal Pauson-Khand reaction: Efficiency enhancement using Lewis bases. J. Org. Chem., 2001, 66(9), 3004-3020.
[http://dx.doi.org/10.1021/jo0057708] [PMID: 11325265]
Kim, S-W.; Son, S.U.; Lee, S.S.; Hyeon, T.; Chung, Y.K. Colloidal cobalt nanoparticles: A highly active and reusable Pauson-Khand catalyst. Chem. Commun. (Camb.), 2001, (21), 2212-2213.
[http://dx.doi.org/10.1039/b107577m] [PMID: 12240116]
Comely, A.C.; Gibson, S.E.; Stevenazzi, A.; Hales, N.J. New stable catalysts of the Pauson-Khand annelation. Tetrahedron Lett., 2001, 42, 1183-1185.
Shibata, T.; Toshida, N.; Takagi, K. Catalytic Pauson-Khand-type reaction using aldehydes as a CO source. Org. Lett., 2002, 4(9), 1619-1621.
[http://dx.doi.org/10.1021/ol025836g] [PMID: 11975643]
Gibson, S.E.; Johnstone, C.; Stevenazzi, A. A stable catalyst of the Pauson-Khand annelation. Tetrahedron, 2002, 58, 4937-4942.
Shibata, T.; Toshida, N.; Takagi, K. Rhodium complex-catalyzed Pauson-Khand-type reaction with aldehydes as a CO source. J. Org. Chem., 2002, 67(21), 7446-7450.
[http://dx.doi.org/10.1021/jo0262661] [PMID: 12375978]
Ishizaki, M.; Satoh, H.; Hoshino, O. Intramolecular Pauson-Khand reaction of various 2-aryl-1,6-enynes: Synthesis of bicyclic compounds bearing quaternary carbon center. Chem. Lett., 2002, 31, 1040-1041.
Jiang, B.; Xu, M. Catalytic diastereoselective Pauson-Khand reaction: An efficient route to enantiopure cyclopenta[c]proline derivatives. Org. Lett., 2002, 4(23), 4077-4080.
[http://dx.doi.org/10.1021/ol026826i] [PMID: 12423090]
Park, K.H.; Son, S.U.; Chung, Y.K. Immobilized heterobimetallic Ru/Co nanoparticle-catalyzed Pauson-Khand-type reactions in the presence of pyridylmethyl formate. Chem. Commun., 2003, 15, 1898-1899.
Arjona, O.; Csaky, A.G.; Murcia, M.C.; Plumet, J. Regioselective domino metathesis of 7-oxanorbornene derivatives as a new stereoselective entry into 2,6-dioxabicyclo[4.3.0]nonenes. Tetrahedron Lett., 2000, 41, 9777-9779.
Arjona, O.; Csaky, A.G.; Leon, V.; Medel, R.; Plumet, J. Control of product distribution in the domino metathesis reactions of N-alkynyl 2-azabicyclo[2.2.1]hept-5-en-3-ones. A convenient synthesis of functionalized γ-lactams and indolizidinones. Tetrahedron Lett., 2004, 45, 565-567.
Mori, M.; Wakamatsu, H.; Sato, Y.; Fujita, R. ROM-RCM of azabicycloheptene derivatives: Study of products distribution by the substituent on alkyne. J. Mol. Cat. A: Chem., 2006, 254, 64-67.
Liddel, J.R. Pyrrolizidine alkaloids. Nat. Prod. Rep., 1997, 14, 653-660.
Ma, S.; Ni, B.; Liang, Z. Highly selective synthesis of bicyclic quinolizidine alkaloids and their analogues via double RCM reaction of N-alkynyl-N-(1,omega)-alkadienyl acrylamides. J. Org. Chem., 2004, 69(19), 6305-6309.
[http://dx.doi.org/10.1021/jo0493121] [PMID: 15357589]
Kim, S.; Lee, T.; Lee, E.; Lee, J.; Fan, G-J.; Lee, S.K.; Kim, D. Asymmetric total syntheses of (-)-antofine and (-)-cryptopleurine using (R)-(E)-4-(tributylstannyl)but-3-en-2-ol. J. Org. Chem., 2004, 69(9), 3144-3149.
[http://dx.doi.org/10.1021/jo049820a] [PMID: 15104454]
Negishi, E. Magical power of transition metals: Past, present, and future (nobel lecture). Angew. Chem. Int. Ed., 2011, 50, 6738-6764.
(a) Suzuki, A. Cross-coupling reactions of organoboranes: an easy way to construct C-C bonds (Nobel Lecture). Angew. Chem. Int. Ed., 2011, 50, 6723-6737.
(b) Ascic, E.; Jensen, J.F.; Nielsen, T.E. Synthesis of heterocycles through a ruthenium-catalyzed tandem ring-closing metathesis/isomerization/N-acyliminium cyclization sequence. Angew. Chem. Int. Ed., 2011, 50, 5188-5191.
Yu, C.; Zhang, Y.; Zhang, S.; Li, H.; Wang, W. Cu(II) catalyzed oxidation-[3+2] cycloaddition-aromatization cascade: Efficient synthesis of pyrrolo [2, 1-a] isoquinolines. Chem. Commun. (Camb.), 2011, 47(3), 1036-1038.
[http://dx.doi.org/10.1039/C0CC03186K] [PMID: 21072421]
Zou, Y-Q.; Lu, L-Q.; Fu, L.; Chang, N-J.; Rong, J.; Chen, J-R.; Xiao, W-J. Visible-light-induced oxidation/[3+2] cycloaddition/oxidative aromatization sequence: A photocatalytic strategy to construct pyrrolo[2,1-a]isoquinolines. Angew. Chem. Int. Ed., 2011, 50, 7171-7175.
Shi, Z.; Zhang, C.; Tang, C.; Jiao, N. Recent advances in transition-metal catalyzed reactions using molecular oxygen as the oxidant. Chem. Soc. Rev., 2012, 41(8), 3381-3430.
[http://dx.doi.org/10.1039/c2cs15224j] [PMID: 22358177]
Hong, P.; Yamazaki, H. Synthesis of 2-oxo-1,2-dihydropyridines by the reaction of cobaltacylopentadiene complexes with isocyanates. Synthesis, 1977, 1, 50-52.
Hoberg, H.; Oster, B.W. Modellkomplex des nickels für die C-C verknüpfung von alkinen mit isocyanaten. J. Organomet. Chem., 1982, 234, C35-C38.
Hoberg, H.; Oster, B.W. Nickelaverbindungen als zwischenkomplexe der [2+2+2′]-cycloaddition von alkinen mit isocyanaten zu 2-pyridonen. J. Organomet. Chem., 1983, 252, 359-364.
Earl, R.A.; Vollhardt, K.P.C. Cobalt-catalyzed cocyclizations of isocyanato alkynes: a regiocontrolled entry into 5-indolizinones. Application to the total synthesis of camptothecin. J. Am. Chem. Soc., 1983, 105, 6991-6993.
Yamamoto, Y.; Kinpara, K.; Saigoku, T.; Takagishi, H.; Okuda, S.; Nishiyama, H.; Itoh, K. Selective preparation of pyridines, pyridones, and iminopyridines from two different alkynes via azazirconacycles. J. Am. Chem. Soc., 2005, 124, 5059-5067.
Tanaka, K.; Takahashi, Y.; Suda, T.; Hirano, M. Synthesis of enantioenriched N-aryl-2-pyridones with chiral C-N axes by rhodium-catalyzed [2+2+2] cycloaddition of alkynes with isocyanates. Synlett, 2008, 11, 1724-1728.
Tanaka, K.; Wada, A.; Noguchi, K. Rhodium-catalyzed chemo-, regio-, and enantioselective [2 + 2 + 2] cycloaddition of alkynes with isocyanates. Org. Lett., 2005, 7(21), 4737-4739.
[http://dx.doi.org/10.1021/ol052041b] [PMID: 16209523]
Friedman, R.K.; Oberg, K.M.; Dalton, D.M.; Rovis, T. Phosphoramidite-Rhodium complexes as catalysts for the asymmetric [2+2+2] cycloaddition of alkenyl isocyanates and alkynes. Pure Appl. Chem., 2009, 82(7), 1353-1364.
[http://dx.doi.org/10.1351/PAC-CON-09-12-09] [PMID: 20622923]
Bentz, D.; Laschat, S. Synthesis of perhydroindenes and perhydroisoindoles via one-pot enyne metathesis/Diels-alder reaction; remarkable stability of Grubbs catalyst under Lewis acidic conditions. Synthesis, 2000, 12, 1766-1773.
Watanuki, S.; Ochifuji, N.; Mori, M. Chromium-catalyzed intramolecular enyne metathesis. Organometallics, 1994, 13, 4129-4130.
Watanuki, S.; Ochifuji, N.; Mori, M. Chromium-catalyzed intramolecular enyne metathesis. Organometallics, 1995, 14, 5062-5067.
Maynard, H.D.; Grubbs, R.H. Purification technique for the removal of ruthenium from olefin metathesis reaction products. Tetrahedron Lett., 1999, 40, 4137-4140.
Paquette, L.A.; Schloss, J.D.; Efremov, I.; Fabris, F.; Gallou, F.; Mendez-Andino, J. Yang. J. A convenient method for removing all highly-colored by products generated during olefin metathesis reactions. Org. Lett., 2000, 2, 1259-1261.
Ahn, Y.M.; Yang, K.; Georg, G.I. A convenient method for the efficient removal of ruthenium byproducts generated during olefin metathesis reactions. Org. Lett., 2001, 3(9), 1411-1413.
[http://dx.doi.org/10.1021/ol010045k] [PMID: 11348247]
Shimizu, K.; Takimoto, M.; Mori, M. Novel synthesis of heterocycles having a functionalized carbon center via nickel-mediated carboxylation: Total synthesis of erythrocarine. Org. Lett., 2003, 5(13), 2323-2325.
[http://dx.doi.org/10.1021/ol034670w] [PMID: 12816439]
Benakki, H.; Colacino, E.; Andre, C.; Guenoun, F.; Martinez, J.; Lamaty, F. Microwave-assisted multi-step synthesis of novel pyrrolo-[3,2-c]quinoline derivatives. Tetrahedron, 2008, 64, 5949-5955.
Kitamura, T.; Sato, Y.; Mori, M. Synthetic study of (+)-anthramycin using ring-closing enyne metathesis and cross-metathesis. Tetrahedron, 2004, 60, 9649-9657.
Wakamatsu, H.; Blechert, S. A new highly efficient ruthenium metathesis catalyst. Angew. Chem. Int. Ed., 2002, 41, 2403-2405.
Zaja, M.; Connon, S.J.; Dunne, A.M.; Rivard, M.; Buschmann, N.; Jiricek, J.; Blechert, S. Ruthenium olefin metathesis catalysts with modified styrene ethers: Influence of steric and electronic effects. Tetrahedron, 2003, 59, 6545-6558.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2019
Page: [1901 - 1944]
Pages: 44
DOI: 10.2174/1385272823666191021104118
Price: $58

Article Metrics

PDF: 29