Underutilization of Cardiac Therapies in Patients with Acute Ischemic Stroke and Elevated Troponin

Author(s): Michael He*, Subhasree Panchangam, Benjamin Cruz, Debabrata Mukherjee.

Journal Name: Cardiovascular & Hematological Agents in Medicinal Chemistry
(Formerly Current Medicinal Chemistry - Cardiovascular & Hematological Agents)

Volume 17 , Issue 2 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Introduction: Recent findings have shown that in Acute Ischemic Stroke (AIS) patients, elevated troponin is associated with increased mortality. However, due to concerns of cerebral hypoperfusion and hemorrhagic transformation, current practice has been slow to apply proven cardiac therapies to these patients. This study aims to determine this rate of utilization.

Materials and Methods: A single-center review of 83 patients with AIS and measured troponin was conducted. Patients were stratified based on elevated and non-elevated troponin. Between groups, we measured the utilization of evidence-based cardiac therapies and used a univariate logistic regression to compare outcomes of mortality, re-hospitalization, recurrent acute ischemic stroke, recurrent acute myocardial infarction, and a composite of these outcomes.

Results: Of 83 patients, 25 had elevated troponin and 58 had non-elevated troponin. There was no statistical difference in the use of cardiac therapies between the two groups. Adenosine diphosphate P2Y12 antagonists were infrequently used in both elevated and non-elevated troponin groups at 32% vs. 24% (p = 0.64), as were Angiotensin-Converting Enzyme Inhibitors (ACE-I) and angiotensin II receptor blockers (ARB) at 56% vs. 69% (p = 0.38). Those in the elevated troponin group encountered a statistically significant increase in composite endpoint 64% vs. 33% (Odds Ratio [OR] 7.28, 95% Confidence interval [CI] 2.19-28.88, p<0.01).

Conclusion: Cardiac therapies are underutilized in patients with acute ischemic stroke and elevated troponin levels. In turn, this low usage may explain the increase in morbidity and mortality seen in these patients and the use of such therapies should be considered when treating this subset of patients as the cardio protective nature of these therapies may outweigh the risks associated with them in AIS patients.

Keywords: Cardiac biomarker, cardiac therapy, cerebrovascular disease, infarction, ischemic stroke, troponin.

[1]
Bogousslavsky, J.; Cachin, C.; Regli, F.; Despland, P.A.; Van Melle, G.; Kappenberger, L. Cardiac sources of embolism and cerebral infarction--clinical consequences and vascular concomitants: the Lausanne Stroke Registry. Neurology, 1991, 41(6), 855-859.
[http://dx.doi.org/10.1212/WNL.41.6.855] [PMID: 2046930]
[2]
Prosser, J.; MacGregor, L.; Lees, K.R.; Diener, H.C.; Hacke, W.; Davis, S. Predictors of early cardiac morbidity and mortality after ischemic stroke. Stroke, 2007, 38(8), 2295-2302.
[http://dx.doi.org/10.1161/STROKEAHA.106.471813] [PMID: 17569877]
[3]
Diez, M.; Talavera, M.L.; Conde, D.G.; Campos, R.; Acosta, A.; Trivi, M.S. High-sensitivity troponin is associated with high risk clinical profile and outcome in acute heart failure. Cardiol. J., 2016, 23(1), 78-83.
[http://dx.doi.org/10.5603/CJ.a2015.0058] [PMID: 26412605]
[4]
Wrigley, P.; Khoury, J.; Eckerle, B.; Alwell, K.; Moomaw, C.J.; Woo, D.; Flaherty, M.L.; De Los Rios la Rosa, F.; Mackey, J.; Adeoye, O.; Martini, S.; Ferioli, S.; Kissela, B.M.; Kleindorfer, D.O. Prevalence of positive troponin and echocardiogram findings and association with mortality in acute ischemic stroke. Stroke, 2017, 48(5), 1226-1232.
[http://dx.doi.org/10.1161/STROKEAHA.116.014561] [PMID: 28381647]
[5]
Merkler, A.E.; Gialdini, G.; Murthy, S.B.; Salehi Omran, S.; Moya, A.; Lerario, M.P.; Chong, J.; Okin, P.M.; Weinsaft, J.W.; Safford, M.M.; Fink, M.E.; Navi, B.B.; Iadecola, C.; Kamel, H. Association between troponin levels and embolic stroke of undetermined source. J. Am. Heart Assoc., 2017, 6(9), 1-7.
[http://dx.doi.org/10.1161/JAHA.117.005905] [PMID: 28939703]
[6]
Amsterdam, E.A.; Wenger, N.K.; Brindis, R.G.; Casey, D.E., Jr; Ganiats, T.G.; Holmes, D.R., Jr; Jaffe, A.S.; Jneid, H.; Kelly, R.F.; Kontos, M.C.; Levine, G.N.; Liebson, P.R.; Mukherjee, D.; Peterson, E.D.; Sabatine, M.S.; Smalling, R.W.; Zieman, S.J. 2014 AHA/ACC Guideline for the Management of Patients with Non-ST-Elevation Acute Coronary Syndromes: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J. Am. Coll. Cardiol., 2014, 64(24), e139-e228.
[http://dx.doi.org/10.1016/j.jacc.2014.09.017] [PMID: 25260718]
[7]
Mendis, S.; Thygesen, K.; Kuulasmaa, K.; Giampaoli, S.; Mähönen, M.; Ngu Blackett, K.; Lisheng, L. World Health Organization definition of myocardial infarction: 2008-09 revision. Int. J. Epidemiol., 2011, 40(1), 139-146.
[http://dx.doi.org/10.1093/ije/dyq165] [PMID: 20926369]
[8]
Britton, M.; Carlsson, A.; de Faire, U. Blood pressure course in patients with acute stroke and matched controls. Stroke, 1986, 17(5), 861-864.
[http://dx.doi.org/10.1161/01.STR.17.5.861] [PMID: 3764955]
[9]
Leonardi-Bee, J.; Bath, P.M.; Phillips, S.J.; Sandercock, P.A. Blood pressure and clinical outcomes in the international stroke trial. Stroke, 2002, 33(5), 1315-1320.
[http://dx.doi.org/10.1161/01.STR.0000014509.11540.66] [PMID: 11988609]
[10]
Aiyagari, V.; Gorelick, P.B. Management of blood pressure for acute and recurrent stroke. Stroke, 2009, 40(6), 2251-2256.
[http://dx.doi.org/10.1161/STROKEAHA.108.531574] [PMID: 19390077]
[11]
Powers, W.J.; Rabinstein, A.A.; Ackerson, T.; Adeoye, O.M.; Bambakidis, N.C.; Becker, K.; Biller, J.; Brown, M.; Demaerschalk, B.M.; Hoh, B.; Jauch, E.C.; Kidwell, C.S.; Leslie-Mazwi, T.M.; Ovbiagele, B.; Scott, P.A.; Sheth, K.N.; Southerland, A.M.; Summers, D.V.; Tirschwell, D.L. 2018 guidelines for the early management of patients with acute ischemic stroke. Stroke, 2018, 49(3), e46-e110.
[http://dx.doi.org/10.1161/STR.0000000000000158] [PMID: 29367334]
[12]
Wong, K.S.L.; Chen, C.; Fu, J.; Chang, H.M.; Suwanwela, N.C.; Huang, Y.N.; Han, Z.; Tan, K.S.; Ratanakorn, D.; Chollate, P.; Zhao, Y.; Koh, A.; Hao, Q.; Markus, H.S. Clopidogrel plus aspirin versus aspirin alone for reducing embolisation in patients with acute symptomatic cerebral or carotid artery stenosis (CLAIR study): A randomised, open-label, blinded-endpoint trial. Lancet Neurol., 2010, 9(5), 489-497.
[http://dx.doi.org/10.1016/S1474-4422(10)70060-0] [PMID: 20335070]
[13]
Markus, H.S.; Droste, D.W.; Kaps, M.; Larrue, V.; Lees, K.R.; Siebler, M.; Ringelstein, E.B. Dual antiplatelet therapy with clopidogrel and aspirin in symptomatic carotid stenosis evaluated using doppler embolic signal detection: The Clopidogrel and Aspirin for Reduction of Emboli in Symptomatic Carotid Stenosis (CARESS) trial. Circulation, 2005, 111(17), 2233-2240.
[http://dx.doi.org/10.1161/01.CIR.0000163561.90680.1C] [PMID: 15851601]
[14]
Randomized trial of intravenous streptokinase, oral aspirin, both, or neither among 17,187 cases of suspected acute myocardial infarction: ISIS-2. Lancet, 1988, 2(8607), 349-360.
[PMID: 2899772]
[15]
Mehta, S.R.; Bassand, J.P.; Chrolavicius, S.; Diaz, R.; Eikelboom, J.W.; Fox, K.A.; Granger, C.B.; Jolly, S.; Joyner, C.D.; Rupprecht, H.J.; Widimsky, P.; Afzal, R.; Pogue, J.; Yusuf, S.; Macaya, C.; Di Pasquale, G.; Niemela, K.; Ajani, A.E.; White, H.D.; Chrolavicius, S.; Gao, P.; Fox, K.A.; Yusuf, S. Dose comparisons of clopidogrel and aspirin in acute coronary syndromes. N. Engl. J. Med., 2010, 363(10), 930-942.
[http://dx.doi.org/10.1056/NEJMoa0909475] [PMID: 20818903]
[16]
Fitchett, D.H.; Goodman, S.G.; Langer, A. Ischemic stroke: A cardiovascular risk equivalent? Lessons learned from the Stroke Prevention by Aggressive Reduction in Cholesterol Levels (SPARCL) trial. Can. J. Cardiol., 2008, 24(9), 705-708.
[http://dx.doi.org/10.1016/S0828-282X(08)70669-X] [PMID: 18787721]
[17]
Wang, Y.; Wang, Y.; Zhao, X.; Liu, L.; Wang, D.; Wang, C.; Wang, C.; Li, H.; Meng, X.; Cui, L.; Jia, J.; Dong, Q.; Xu, A.; Zeng, J.; Li, Y.; Wang, Z.; Xia, H.; Johnston, S.C. Clopidogrel with aspirin in acute minor stroke or transient ischemic attack. N. Engl. J. Med., 2013, 369(1), 11-19.
[http://dx.doi.org/10.1056/NEJMoa1215340] [PMID: 23803136]
[18]
Lee, M.; Saver, J.L.; Hong, K.S.; Rao, N.M.; Wu, Y.L.; Ovbiagele, B. Risk-benefit profile of long-term dual- versus single-antiplatelet therapy among patients with ischemic stroke: a systematic review and meta-analysis. Ann. Intern. Med., 2013, 159(7), 463-470.
[http://dx.doi.org/10.7326/0003-4819-159-7-201310010-00006] [PMID: 24081287]
[19]
Johnston, S.C.; Easton, J.D.; Farrant, M.; Barsan, W.; Conwit, R.A.; Elm, J.J.; Kim, A.S.; Lindblad, A.S.; Palesch, Y.Y. Clopidogrel and aspirin in acute ischemic stroke and high-risk TIA. N. Engl. J. Med., 2018, 379(3), 215-225.
[http://dx.doi.org/10.1056/NEJMoa1800410] [PMID: 29766750]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 17
ISSUE: 2
Year: 2019
Page: [144 - 151]
Pages: 8
DOI: 10.2174/1871525717666191019115338

Article Metrics

PDF: 17
HTML: 4

Special-new-year-discount