Generic placeholder image

Current Computer-Aided Drug Design

Editor-in-Chief

ISSN (Print): 1573-4099
ISSN (Online): 1875-6697

Research Article

Alteration of ssRNA Torsion and Water Influx into ssRNA Pocket in K309A and S247A Mutations

Author(s): Omotuyi I. Olaposi*

Volume 17, Issue 1, 2021

Published on: 18 October, 2019

Page: [32 - 37] Pages: 6

DOI: 10.2174/1573409915666191018124340

Price: $65

Abstract

Background: Lassa Virus (LV) infection is an endemic disease from West Africa posing threat to the entire world. A thorough understanding of the mechanistic workings of the genome products of LV may be a key to develop drug candidates for the treatment of LV infection.

Methods: Molecular dynamic simulation has been used to provide insight into the mechanistic basis for total loss of ssRNA interaction in Nucleoprotein (NP) K309A, partial loss in S247A, and no loss in S237A by following the hydrogen bond interaction, water influx into the ssRNA pocket and glycosidic torsion angle (χ) of the ssRNA.

Results: The results revealed that K309A mutation is associated with a complete loss of saltbridge interaction between lysine e-amino and U4-O2P phosphodiester linkage but not in S237A where S247-OG atom played a redundant role. S247A is also associated with partial loss of hydrogen bond between OG atom of S247 and C5-O2P phosphodiester bond as T178-OG1 group seems to have a seemingly redundant interaction with C5-O2P. While S247A is only associated with the alteration of χ rotation in U6/C7, both K309A and S247 but not S237A is associated with increased water influx into the ssRNA binding pocket.

Conclusion: K309A mutation may result in non-viable Lassa viron as a loss of ssRNA interaction may negatively affect genome biochemistry, semi-viable Lassa viron in S247A mutation may be due to the loss of 3D arrangement of ssRNA due to splayed out nucleotides.

Keywords: Lassa virus, nucleoprotein, ssRNA-pocket, mutagenesis, torsional angles, hydrogen bond.

Graphical Abstract
[1]
Yun, N.E.; Walker, D.H. Pathogenesis of Lassa fever. Viruses, 2012, 4(10), 2031-2048.
[http://dx.doi.org/10.3390/v4102031] [PMID: 23202452]
[2]
Brosh-Nissimov, T. Lassa fever: another threat from West Africa. Disaster Mil. Med., 2016, 2, 8.
[http://dx.doi.org/10.1186/s40696-016-0018-3] [PMID: 28265442]
[3]
Oestereich, L.; Rieger, T.; Lüdtke, A.; Ruibal, P.; Wurr, S.; Pallasch, E.; Bockholt, S.; Krasemann, S.; Muñoz-Fontela, C.; Günther, S. Efficacy of favipiravir alone and in combination with ribavirin in a lethal, immunocompetent mouse model of lassa fever. J. Infect. Dis., 2016, 213(6), 934-938.
[http://dx.doi.org/10.1093/infdis/jiv522] [PMID: 26531247]
[4]
Raabe, V.N.; Kann, G.; Ribner, B.S.; Morales, A.; Varkey, J.B.; Mehta, A.K.; Lyon, G.M.; Vanairsdale, S.; Faber, K.; Becker, S.; Eickmann, M.; Strecker, T.; Brown, S.; Patel, K.; De Leuw, P.; Schuettfort, G.; Stephan, C.; Rabenau, H.; Klena, J.D.; Rollin, P.E.; McElroy, A.; Ströher, U.; Nichol, S.; Kraft, C.S.; Wolf, T. Emory serious communicable diseases, u. favipiravir and ribavirin treatment of epidemiologically linked cases of lassa fever. Clin. Infect. Dis., 2017, 65(5), 855-859.
[http://dx.doi.org/10.1093/cid/cix406] [PMID: 29017278]
[5]
Sangawa, H.; Komeno, T.; Nishikawa, H.; Yoshida, A.; Takahashi, K.; Nomura, N.; Furuta, Y. Mechanism of action of T-705 ribosyl triphosphate against influenza virus RNA polymerase. Antimicrob. Agents Chemother., 2013, 57(11), 5202-5208.
[http://dx.doi.org/10.1128/AAC.00649-13] [PMID: 23917318]
[6]
Furuta, Y.; Komeno, T.; Nakamura, T. Favipiravir (T-705), a broad spectrum inhibitor of viral RNA polymerase. Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci., 2017, 93(7), 449-463.
[http://dx.doi.org/10.2183/pjab.93.027] [PMID: 28769016]
[7]
Brunotte, L.; Kerber, R.; Shang, W.; Hauer, F.; Hass, M.; Gabriel, M.; Lelke, M.; Busch, C.; Stark, H.; Svergun, D.I.; Betzel, C.; Perbandt, M.; Günther, S. Structure of the Lassa virus nucleoprotein revealed by X-ray crystallography, small-angle X-ray scattering, and electron microscopy. J. Biol. Chem., 2011, 286(44), 38748-38756.
[http://dx.doi.org/10.1074/jbc.M111.278838] [PMID: 21917929]
[8]
Hastie, K.M.; Kimberlin, C.R.; Zandonatti, M.A.; MacRae, I.J.; Saphire, E.O. Structure of the Lassa virus nucleoprotein reveals a dsRNA-specific 3′ to 5′ exonuclease activity essential for immune suppression. Proc. Natl. Acad. Sci. USA, 2011, 108(6), 2396-2401.
[http://dx.doi.org/10.1073/pnas.1016404108] [PMID: 21262835]
[9]
Omotuyi, O.I.; Nash, O.; Safronetz, D.; Ojo, A.A.; Ogunwa, T.H.; Adelakun, N.S. T-705-modified ssRNA in complex with Lassa virus nucleoprotein exhibits nucleotide splaying and increased water influx into the RNA-binding pocket. Chem. Biol. Drug Des., 2019, 93(4), 544-555.
[http://dx.doi.org/10.1111/cbdd.13451] [PMID: 30536557]
[10]
DeLano, W.L. Pymol: an open-source molecular graphics tool, CCP4 newsletter on protein crystallography. 2002, 40, 82-92..
[11]
Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A.E.; Berendsen, H.J. GROMACS: fast, flexible, and free. J. Comput. Chem., 2005, 26(16), 1701-1718.
[http://dx.doi.org/10.1002/jcc.20291] [PMID: 16211538]
[12]
Omotuyi, O.I.; Ueda, H. Molecular dynamics study-based mechanism of nefiracetam-induced NMDA receptor potentiation. Comput. Biol. Chem., 2015, 55, 14-22.
[http://dx.doi.org/10.1016/j.compbiolchem.2015.01.004] [PMID: 25659913]
[13]
Quigley, D.; Probert, M.I. Langevin dynamics in constant pressure extended systems. J. Chem. Phys., 2004, 120(24), 11432-11441.
[http://dx.doi.org/10.1063/1.1755657] [PMID: 15268177]
[14]
Yong, X.; Zhang, L.T. Thermostats and thermostat strategies for molecular dynamics simulations of nanofluidics. J. Chem. Phys., 2013, 138(8)084503
[http://dx.doi.org/10.1063/1.4792202] [PMID: 23464156]
[15]
Hess, B. P-LINCS: a parallel linear constraint solver for molecular simulation. J. Chem. Theory Comput., 2008, 4(1), 116-122.
[http://dx.doi.org/10.1021/ct700200b] [PMID: 26619985]
[16]
Humphrey, W.; Dalke, A.; Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph., 1996, 14(1), 27-33.
[17]
Lu, X.J.; Olson, W.K. 3DNA: a software package for the analysis, rebuilding and visualization of three-dimensional nucleic acid structures. Nucleic Acids Res., 2003, 31(17), 5108-5121.
[http://dx.doi.org/10.1093/nar/gkg680] [PMID: 12930962]
[18]
Sychrovsky, V.; Foldynova-Trantirkova, S.; Spackova, N.; Robeyns, K.; Van Meervelt, L.; Blankenfeldt, W.; Vokacova, Z.; Sponer, J.; Trantirek, L. Revisiting the planarity of nucleic acid bases: Pyramidilization at glycosidic nitrogen in purine bases is modulated by orientation of glycosidic torsion. Nucleic Acids Res., 2009, 37(21), 7321-7331.
[http://dx.doi.org/10.1093/nar/gkp783] [PMID: 19786496]
[19]
Wang, Y.; Zirbel, C.L.; Leontis, N.B.; Ding, B. RNA 3-dimensional structural motifs as a critical constraint of viroid RNA evolution. PLoS Pathog., 2018, 14(2)e1006801
[http://dx.doi.org/10.1371/journal.ppat.1006801] [PMID: 29470541]
[20]
Qi, X.; Lan, S.; Wang, W.; Schelde, L.M.; Dong, H.; Wallat, G.D.; Ly, H.; Liang, Y.; Dong, C. Cap binding and immune evasion revealed by Lassa nucleoprotein structure. Nature, 2010, 468(7325), 779-783.
[http://dx.doi.org/10.1038/nature09605] [PMID: 21085117]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy