Impacts of Pseudo Amino Acid Components and 5-steps Rule to Proteomics and Proteome Analysis

Author(s): Kuo-Chen Chou*.

Journal Name: Current Topics in Medicinal Chemistry

Volume 19 , Issue 25 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Stimulated by the 5-steps rule during the last decade or so, computational proteomics has achieved remarkable progresses in the following three areas: (1) protein structural class prediction; (2) protein subcellular location prediction; (3) post-translational modification (PTM) site prediction. The results obtained by these predictions are very useful not only for an in-depth study of the functions of proteins and their biological processes in a cell, but also for developing novel drugs against major diseases such as cancers, Alzheimer’s, and Parkinson’s. Moreover, since the targets to be predicted may have the multi-label feature, two sets of metrics are introduced: one is for inspecting the global prediction quality, while the other for the local prediction quality. All the predictors covered in this review have a userfriendly web-server, through which the majority of experimental scientists can easily obtain their desired data without the need to go through the complicated mathematics.

Keywords: Five-steps rules, Protein structural classes, Protein subcellular localization, Post-translational modifications, Webserver, Global and local metrics.

[1]
Chou, J.J.; Matsuo, H.; Duan, H.; Wagner, G. Solution structure of the RAIDD CARD and model for CARD/CARD interaction in caspase-2 and caspase-9 recruitment. Cell, 1998, 94(2), 171-180.
[http://dx.doi.org/10.1016/S0092-8674(00)81417-8] [PMID: 9695946]
[2]
Oxenoid, K.; Dong, Y.; Cao, C.; Cui, T.; Sancak, Y.; Markhard, A.L.; Grabarek, Z.; Kong, L.; Liu, Z.; Ouyang, B.; Cong, Y.; Mootha, V.K.; Chou, J.J. Architecture of the mitochondrial calcium uniporter. Nature, 2016, 533(7602), 269-273.
[http://dx.doi.org/10.1038/nature17656] [PMID: 27135929]
[3]
Dev, J.; Park, D.; Fu, Q.; Chen, J.; Ha, H.J.; Ghantous, F.; Herrmann, T.; Chang, W.; Liu, Z.; Frey, G.; Seaman, M.S.; Chen, B.; Chou, J.J. Structural basis for membrane anchoring of HIV-1 envelope spike. Science, 2016, 353(6295), 172-175.
[http://dx.doi.org/10.1126/science.aaf7066] [PMID: 27338706]
[4]
Schnell, J.R.; Chou, J.J. Structure and mechanism of the M2 proton channel of influenza A virus. Nature, 2008, 451(7178), 591-595.
[http://dx.doi.org/10.1038/nature06531] [PMID: 18235503]
[5]
Berardi, M.J.; Shih, W.M.; Harrison, S.C.; Chou, J.J. Mitochondrial uncoupling protein 2 structure determined by NMR molecular fragment searching. Nature, 2011, 476(7358), 109-113.
[http://dx.doi.org/10.1038/nature10257] [PMID: 21785437]
[6]
Chou, J.J.; Li, S.; Klee, C.B.; Bax, A. Solution structure of Ca(2+)-calmodulin reveals flexible hand-like properties of its domains. Nat. Struct. Biol., 2001, 8(11), 990-997.
[http://dx.doi.org/10.1038/nsb1101-990] [PMID: 11685248]
[7]
OuYang, B.; Xie, S.; Berardi, M.J.; Zhao, X.; Dev, J.; Yu, W.; Sun, B.; Chou, J.J. Unusual architecture of the p7 channel from hepatitis C virus. Nature, 2013, 498(7455), 521-525.
[http://dx.doi.org/10.1038/nature12283] [PMID: 23739335]
[8]
Wang, J.; Pielak, R.M.; McClintock, M.A.; Chou, J.J. Solution structure and functional analysis of the influenza B proton channel. Nat. Struct. Mol. Biol., 2009, 16(12), 1267-1271.
[http://dx.doi.org/10.1038/nsmb.1707] [PMID: 19898475]
[9]
Fu, Q.; Fu, T.M.; Cruz, A.C.; Sengupta, P.; Thomas, S.K.; Wang, S.; Siegel, R.M.; Wu, H.; Chou, J.J. Structural basis and functional role of intramembrane trimerization of the Fas/CD95 death receptor. Mol. Cell, 2016, 61(4), 602-613.
[http://dx.doi.org/10.1016/j.molcel.2016.01.009] [PMID: 26853147]
[10]
Chou, J.J.; Li, H.; Salvesen, G.S.; Yuan, J.; Wagner, G. Solution structure of BID, an intracellular amplifier of apoptotic signaling. Cell, 1999, 96(5), 615-624.
[http://dx.doi.org/10.1016/S0092-8674(00)80572-3] [PMID: 10089877]
[11]
Oxenoid, K.; Chou, J.J. The structure of phospholamban pentamer reveals a channel-like architecture in membranes. Proc. Natl. Acad. Sci. USA, 2005, 102(31), 10870-10875.
[http://dx.doi.org/10.1073/pnas.0504920102] [PMID: 16043693]
[12]
Call, M.E.; Schnell, J.R.; Xu, C.; Lutz, R.A.; Chou, J.J.; Wucherpfennig, K.W. The structure of the zetazeta transmembrane dimer reveals features essential for its assembly with the T cell receptor. Cell, 2006, 127(2), 355-368.
[http://dx.doi.org/10.1016/j.cell.2006.08.044] [PMID: 17055436]
[13]
Call, M.E.; Wucherpfennig, K.W.; Chou, J.J. The structural basis for intramembrane assembly of an activating immunoreceptor complex. Nat. Immunol., 2010, 11(11), 1023-1029.
[http://dx.doi.org/10.1038/ni.1943] [PMID: 20890284]
[14]
Gagnon, E.; Xu, C.; Yang, W.; Chu, H.H.; Call, M.E.; Chou, J.J.; Wucherpfennig, K.W. Response multilayered control of T cell receptor phosphorylation. Cell, 2010, 142(5), 669-671.
[http://dx.doi.org/10.1016/j.cell.2010.08.019] [PMID: 20813252]
[15]
Brüschweiler, S.; Yang, Q.; Run, C.; Chou, J.J. Substrate-modulated ADP/ATP-transporter dynamics revealed by NMR relaxation dispersion. Nat. Struct. Mol. Biol., 2015, 22(8), 636-641.
[http://dx.doi.org/10.1038/nsmb.3059] [PMID: 26167881]
[16]
Cao, C.; Wang, S.; Cui, T.; Su, X.C.; Chou, J.J. Ion and inhibitor binding of the double-ring ion selectivity filter of the mitochondrial calcium uniporter. Proc. Natl. Acad. Sci. USA, 2017, 114(14), E2846-E2851.
[http://dx.doi.org/10.1073/pnas.1620316114] [PMID: 28325874]
[17]
Piai, A.; Dev, J.; Fu, Q.; Chou, J.J. Stability and water accessibility of the trimeric membrane anchors of the HIV-1 envelope spikes. J. Am. Chem. Soc., 2017, 139(51), 18432-18435.
[http://dx.doi.org/10.1021/jacs.7b09352] [PMID: 29193965]
[18]
Pan, L.; Fu, T.M.; Zhao, W.; Zhao, L.; Chen, W.; Qiu, C.; Liu, W.; Liu, Z.; Piai, A.; Fu, Q.; Chen, S.; Wu, H.; Chou, J.J. Higher-order clustering of the transmembrane anchor of DR5 drives signaling., 2019.
[19]
Chou, K.C.; Tomasselli, A.G.; Heinrikson, R.L. Prediction of the tertiary structure of a caspase-9/inhibitor complex. FEBS Lett., 2000, 470(3), 249-256.
[http://dx.doi.org/10.1016/S0014-5793(00)01333-8] [PMID: 10745077]
[20]
Chou, K.C.; Jones, D.; Heinrikson, R.L. Prediction of the tertiary structure and substrate binding site of caspase-8. FEBS Lett., 1997, 419(1), 49-54.
[http://dx.doi.org/10.1016/S0014-5793(97)01246-5] [PMID: 9426218]
[21]
Chou, K.C. Insights from modelling the 3D structure of the extracellular domain of alpha7 nicotinic acetylcholine receptor. Biochem. Biophys. Res. Commun., 2004, 319(2), 433-438. [BBRC]
[http://dx.doi.org/[http://10.1016/j.bbrc.2004.05.016] [PMID: 15178425]
[22]
Chou, K.C. Coupling interaction between thromboxane A2 receptor and alpha-13 subunit of guanine nucleotide-binding protein. J. Proteome Res., 2005, 4(5), 1681-1686.
[http://dx.doi.org/10.1021/pr050145a] [PMID: 16212421]
[23]
Chou, K.C.; Howe, W.J. Prediction of the tertiary structure of the beta-secretase zymogen. Biochem. Biophys. Res. Commun., 2002, 292(3), 702-708. [BBRC].
[http://dx.doi.org/10.1006/bbrc.2002.6686] [PMID: 11922623]
[24]
Chou, K.C. Insights from modeling the tertiary structure of human BACE2. J. Proteome Res., 2004, 3(5), 1069-1072.
[http://dx.doi.org/10.1021/pr049905s] [PMID: 15473697]
[25]
Chou, K.C. Insights from modeling three-dimensional structures of the human potassium and sodium channels. J. Proteome Res., 2004, 3(4), 856-861.
[http://dx.doi.org/10.1021/pr049931q] [PMID: 15359741]
[26]
Chou, K.C. Modeling the tertiary structure of human cathepsin-E. Biochem. Biophys. Res. Commun., 2005, 331(1), 56-60.
[http://dx.doi.org/10.1016/j.bbrc.2005.03.123] [PMID: 15845357]
[27]
Chou, K.C. Insights from modeling the 3D structure of DNA-CBF3b complex. J. Proteome Res., 2005, 4(5), 1657-1660.
[http://dx.doi.org/10.1021/pr050135+] [PMID: 16212418]
[28]
Wang, S.Q.; Du, Q.S.; Chou, K.C. Study of drug resistance of chicken influenza A virus (H5N1) from homology-modeled 3D structures of neuraminidases. Biochem. Biophys. Res. Commun., 2007, 354(3), 634-640.
[http://dx.doi.org/10.1016/j.bbrc.2006.12.235] [PMID: 17266937]
[29]
Wang, S.Q.; Du, Q.S.; Huang, R.B.; Zhang, D.W.; Chou, K.C. Insights from investigating the interaction of oseltamivir (Tamiflu) with neuraminidase of the 2009 H1N1 swine flu virus. Biochem. Biophys. Res. Commun., 2009, 386(3), 432-436.
[http://dx.doi.org/10.1016/j.bbrc.2009.06.016] [PMID: 19523442]
[30]
Li, X.B.; Wang, S.Q.; Xu, W.R.; Wang, R.L.; Chou, K.C. Novel inhibitor design for hemagglutinin against H1N1 influenza virus by core hopping method. PLoS One, 2011, 6(11)e28111
[http://dx.doi.org/10.1371/journal.pone.0028111] [PMID: 22140516]
[31]
Ma, Y.; Wang, S.Q.; Xu, W.R.; Wang, R.L.; Chou, K.C. Design novel dual agonists for treating type-2 diabetes by targeting peroxisome proliferator-activated receptors with core hopping approach. PLoS One, 2012, 7(6)e38546
[http://dx.doi.org/10.1371/journal.pone.0038546] [PMID: 22685582]
[32]
Chen, W.; Feng, P.M.; Lin, H.; Chou, K.C. iRSpot-PseDNC: identify recombination spots with pseudo dinucleotide composition. Nucleic Acids Res., 2013, 41(6)e68
[http://dx.doi.org/10.1093/nar/gks1450] [PMID: 23303794]
[33]
Feng, P.M.; Chen, W.; Lin, H.; Chou, K.C. iHSP-PseRAAAC: Identifying the heat shock protein families using pseudo reduced amino acid alphabet composition. Anal. Biochem., 2013, 442(1), 118-125.
[http://dx.doi.org/10.1016/j.ab.2013.05.024] [PMID: 23756733]
[34]
Lin, H.; Deng, E.Z.; Ding, H.; Chen, W.; Chou, K.C. iPro54-PseKNC: a sequence-based predictor for identifying sigma-54 promoters in prokaryote with pseudo k-tuple nucleotide composition. Nucleic Acids Res., 2014, 42(21), 12961-12972.
[http://dx.doi.org/10.1093/nar/gku1019] [PMID: 25361964]
[35]
Chen, W.; Feng, P.M.; Deng, E.Z.; Lin, H.; Chou, K.C. iTIS-PseTNC: a sequence-based predictor for identifying translation initiation site in human genes using pseudo trinucleotide composition. Anal. Biochem., 2014, 462, 76-83.
[http://dx.doi.org/10.1016/j.ab.2014.06.022] [PMID: 25016190]
[36]
Ding, H.; Deng, E.Z.; Yuan, L.F.; Liu, L.; Lin, H.; Chen, W.; Chou, K.C. iCTX-type: a sequence-based predictor for identifying the types of conotoxins in targeting ion channels. BioMed Res. Int., 2014, 2014286419
[http://dx.doi.org/10.1155/2014/286419] [PMID: 24991545]
[37]
Liu, B.; Fang, L.; Wang, S.; Wang, X.; Li, H.; Chou, K.C. Identification of microRNA precursor with the degenerate K-tuple or Kmer strategy. J. Theor. Biol., 2015, 385, 153-159.
[http://dx.doi.org/10.1016/j.jtbi.2015.08.025] [PMID: 26362104]
[38]
Liu, Z.; Xiao, X.; Qiu, W.R.; Chou, K.C. iDNA-Methyl: identifying DNA methylation sites via pseudo trinucleotide composition. Anal. Biochem., 2015, 474, 69-77.
[http://dx.doi.org/10.1016/j.ab.2014.12.009] [PMID: 25596338]
[39]
Xiao, X.; Min, J.L.; Lin, W.Z.; Liu, Z.; Cheng, X.; Chou, K.C. iDrug-Target: predicting the interactions between drug compounds and target proteins in cellular networking via benchmark dataset optimization approach. J. Biomol. Struct. Dyn., 2015, 33(10), 2221-2233. [JBSD]
[http://dx.doi.org/10.1080/07391102.2014.998710] [PMID: 25513722]
[40]
Jia, J.; Liu, Z.; Xiao, X.; Liu, B.; Chou, K.C. iSuc-PseOpt: Identifying lysine succinylation sites in proteins by incorporating sequence-coupling effects into pseudo components and optimizing imbalanced training dataset. Anal. Biochem., 2016, 497, 48-56.
[http://dx.doi.org/10.1016/j.ab.2015.12.009] [PMID: 26723495]
[41]
Jia, J.; Zhang, L.; Liu, Z.; Xiao, X.; Chou, K.C. pSumo-CD: predicting sumoylation sites in proteins with covariance discriminant algorithm by incorporating sequence-coupled effects into general PseAAC. Bioinformatics, 2016, 32(20), 3133-3141.
[http://dx.doi.org/10.1093/bioinformatics/btw387] [PMID: 27354696]
[42]
Liu, B.; Fang, L.; Long, R.; Lan, X.; Chou, K.C. iEnhancer-2L: a two-layer predictor for identifying enhancers and their strength by pseudo k-tuple nucleotide composition. Bioinformatics, 2016, 32(3), 362-369.
[http://dx.doi.org/10.1093/bioinformatics/btv604] [PMID: 26476782]
[43]
Chen, W.; Feng, P.; Yang, H.; Ding, H.; Lin, H.; Chou, K.C. iRNA-AI: identifying the adenosine to inosine editing sites in RNA sequences. Oncotarget, 2017, 8(3), 4208-4217.
[http://dx.doi.org/10.18632/oncotarget.13758] [PMID: 27926534]
[44]
Chen, W.; Ding, H.; Zhou, X.; Lin, H.; Chou, K.C. iRNA(m6A)-PseDNC: Identifying N6-methyladenosine sites using pseudo dinucleotide composition. Anal. Biochem., 2018, 561-562, 59-65.
[http://dx.doi.org/10.1016/j.ab.2018.09.002] [PMID: 30201554]
[45]
Chen, W.; Feng, P.; Yang, H.; Ding, H.; Lin, H.; Chou, K.C. iRNA-3typeA: identifying 3-types of modification at RNA’s adenosine sites. Mol. Ther. Nucleic Acids, 2018, 11, 468-474.
[http://dx.doi.org/10.1016/j.omtn.2018.03.012] [PMID: 29858081]
[46]
Qiu, W.R.; Sun, B.Q.; Xiao, X.; Xu, Z.C.; Jia, J.H.; Chou, K.C. iKcr-PseEns: Identify lysine crotonylation sites in histone proteins with pseudo components and ensemble classifier. Genomics, 2018, 110(5), 239-246.
[http://dx.doi.org/10.1016/j.ygeno.2017.10.008] [PMID: 29107015]
[47]
Feng, P.; Yang, H.; Ding, H.; Lin, H.; Chen, W.; Chou, K.C. iDNA6mA-PseKNC: Identifying DNA N6-methyladenosine sites by incorporating nucleotide physicochemical properties into PseKNC. Genomics, 2019, 111(1), 96-102.
[http://dx.doi.org/10.1016/j.ygeno.2018.01.005] [PMID: 29360500]
[48]
Hussain, W.; Khan, Y.D.; Rasool, N.; Khan, S.A.; Chou, K.C. SPalmitoylC-PseAAC: A sequence-based model developed via Chou’s 5-steps rule and general PseAAC for identifying S-palmitoylation sites in proteins. Anal. Biochem., 2019, 568, 14-23.
[http://dx.doi.org/10.1016/j.ab.2018.12.019] [PMID: 30593778]
[49]
Hussain, W.; Khan, Y.D.; Rasool, N.; Khan, S.A.; Chou, K.C. SPrenylC-PseAAC: A sequence-based model developed via Chou’s 5-steps rule and general PseAAC for identifying S-prenylation sites in proteins. J. Theor. Biol., 2019, 468, 1-11.
[http://dx.doi.org/10.1016/j.jtbi.2019.02.007] [PMID: 30768975]
[50]
Jia, J.; Li, X.; Qiu, W.; Xiao, X.; Chou, K.C. iPPI-PseAAC(CGR): Identify protein-protein interactions by incorporating chaos game representation into PseAAC. J. Theor. Biol., 2019, 460, 195-203.
[http://dx.doi.org/10.1016/j.jtbi.2018.10.021] [PMID: 30312687]
[51]
Khan, Y.D.; Jamil, M.; Hussain, W.; Rasool, N.; Khan, S.A.; Chou, K.C. pSSbond-PseAAC: Prediction of disulfide bonding sites by integration of PseAAC and statistical moments. J. Theor. Biol., 2019, 463, 47-55.
[http://dx.doi.org/10.1016/j.jtbi.2018.12.015] [PMID: 30550863]
[52]
Lu, Y.; Wang, S.; Wang, J.; Zhou, G.; Zhang, Q.; Zhou, X.; Niu, B.; Chen, Q. An Epidemic Avian Influenza Prediction Model Based on Google Trends. Lett. Org. Chem., 2019, 16, 303-310.
[http://dx.doi.org/10.2174/1570178615666180724103325]
[53]
Khan, Y.D.; Batool, A.; Rasool, N.; Khan, A. Prediction of nitrosocysteine sites using position and composition variant features. Lett. Org. Chem., 2019, 16, 283-293.
[http://dx.doi.org/10.2174/1570178615666180802122953]
[54]
Cheng, X.; Xiao, X.; Chou, K.C. pLoc_bal-mPlant: predict subcellular localization of plant proteins by general PseAAC and balancing training dataset. Curr. Pharm. Des., 2018, 24(34), 4013-4022.
[http://dx.doi.org/10.2174/1381612824666181119145030] [PMID: 30451108]
[55]
Li, J.X.; Wang, S.Q.; Du, Q.S.; Wei, H.; Li, X.M.; Meng, J.Z.; Wang, Q.Y.; Xie, N.Z.; Huang, R.B.; Chou, K.C. Simulated protein thermal detection (SPTD) for enzyme thermostability study and an application example for pullulanase from Bacillus deramificans. Curr. Pharm. Des., 2018, 24(34), 4023-4033.
[http://dx.doi.org/10.2174/1381612824666181113120948] [PMID: 30421671]
[56]
Ghauri, A.W.; Khan, Y.D.; Rasool, N.; Khan, S.A.; Chou, K.C. pNitro-Tyr-PseAAC: Predict nitrotyrosine sites in proteins by incorporating five features into Chou’s general PseAAC. Curr. Pharm. Des., 2018, 24(34), 4034-4043.
[http://dx.doi.org/10.2174/1381612825666181127101039] [PMID: 30479209]
[57]
Chou, K.C. Advance in predicting subcellular localization of multi-label proteins and its implication for developing multi-target drugs. Curr. Med. Chem., 2019. [ePub Ahead of print
[http://dx.doi.org/10.2174/0929867326666190507082559] [PMID: 31060481]
[58]
Xiao, X.; Cheng, X.; Chen, G.; Mao, Q.; Chou, K.C. pLoc_bal-mGpos: Predict subcellular localization of Gram-positive bacterial proteins by quasi-balancing training dataset and PseAAC. Genomics, 2019, 111(4), 886-892.
[http://dx.doi.org/10.1016/j.ygeno.2018.05.017] [PMID: 29842950]
[59]
Zhang, M.; Li, F.; Marquez-Lago, T.T.; Leier, A.; Fan, C.; Kwoh, C.K.; Chou, K.C.; Song, J.; Jia, C. MULTiPly: a novel multi-layer predictor for discovering general and specific types of promoters. Bioinformatics, 2019, 35(17), 2957-2965.
[http://dx.doi.org/10.1093/bioinformatics/btz016] [PMID: 30649179]
[60]
Chen, Z.; Zhao, P.; Li, F.; Marquez-Lago, T.T.; Leier, A.; Revote, J.; Zhu, Y.; Powell, D.R.; Akutsu, T.; Webb, G.I.; Chou, K.C.; Smith, A.I.; Daly, R.J.; Li, J.; Song, J. iLearn: an integrated platform and meta-learner for feature engineering, machine-learning analysis and modeling of DNA, RNA and protein sequence data. Brief. Bioinform., 2019.bbz041
[http://dx.doi.org/10.1093/bib/bbz041] [PMID: 31067315]
[61]
Zhang, Y.; Xie, R.; Wang, J.; Leier, A.; Marquez-Lago, T.T.; Akutsu, T.; Webb, G.I.; Chou, K.C.; Song, J. Computational analysis and prediction of lysine malonylation sites by exploiting informative features in an integrative machine-learning framework. Brief. Bioinform., 2018. [Epub Ahead of Print
[http://dx.doi.org/10.1093/bib/bby079] [PMID: 30351377]
[62]
Song, J.; Wang, Y.; Li, F.; Akutsu, T.; Rawlings, N.D.; Webb, G.I.; Chou, K.C. iProt-Sub: a comprehensive package for accurately mapping and predicting protease-specific substrates and cleavage sites. Brief. Bioinform., 2019, 20(2), 638-658.
[http://dx.doi.org/10.1093/bib/bby028] [PMID: 29897410]
[63]
Song, J.; Li, F.; Takemoto, K.; Haffari, G.; Akutsu, T.; Chou, K.C.; Webb, G.I. PREvaIL, an integrative approach for inferring catalytic residues using sequence, structural, and network features in a machine-learning framework. J. Theor. Biol., 2018, 443, 125-137.
[http://dx.doi.org/10.1016/j.jtbi.2018.01.023] [PMID: 29408627]
[64]
Li, F.; Wang, Y.; Li, C.; Marquez-Lago, T.T.; Leier, A.; Rawlings, N.D.; Haffari, G.; Revote, J.; Akutsu, T.; Chou, K.C.; Purcell, A.W.; Pike, R.N.; Webb, G.I.; Ian Smith, A.; Lithgow, T.; Daly, R.J.; Whisstock, J.C.; Song, J. Twenty years of bioinformatics research for protease-specific substrate and cleavage site prediction: a comprehensive revisit and benchmarking of existing methods. Brief. Bioinform., 2018. [Epub Ahead of Print
[http://dx.doi.org/10.1093/bib/bby077] [PMID: 30184176]
[65]
Li, F.; Li, C.; Marquez-Lago, T.T.; Leier, A.; Akutsu, T.; Purcell, A.W.; Ian Smith, A.; Lithgow, T.; Daly, R.J.; Song, J.; Chou, K.C. Quokka: a comprehensive tool for rapid and accurate prediction of kinase family-specific phosphorylation sites in the human proteome. Bioinformatics, 2018, 34(24), 4223-4231.
[http://dx.doi.org/10.1093/bioinformatics/bty522] [PMID: 29947803]
[66]
Kabir, M.; Ahmad, S.; Iqbal, M.; Hayat, M. iNR-2L: A two-level sequence-based predictor developed via Chou’s 5-steps rule and general PseAAC for identifying nuclear receptors and their families. Genomics, 2019, pii. S0888-7543(18), 30694-3.
[http://dx.doi.org/10.1016/j.ygeno.2019.02.006] [PMID: 30779939]
[67]
Le, N.Q.K. iN6-methylat (5-step): identifying DNA N(6)-methyladenine sites in rice genome using continuous bag of nucleobases via Chou’s 5-step rule. Mol. Gen. Genet., 2019, 294(5), 1173-1182.
[http://dx.doi.org/10.1007/s00438-019-01570-y]
[68]
Le, N.Q.K.; Yapp, E.K.Y.; Ho, Q.T.; Nagasundaram, N.; Ou, Y.Y.; Yeh, H.Y. iEnhancer-5Step: Identifying enhancers using hidden information of DNA sequences via Chou’s 5-step rule and word embedding. Anal. Biochem., 2019, 571, 53-61.
[http://dx.doi.org/10.1016/j.ab.2019.02.017] [PMID: 30822398]
[69]
Le, N.Q.K.; Yapp, E.K.Y.; Ou, Y.Y.; Yeh, H.Y. iMotor-CNN: Identifying molecular functions of cytoskeleton motor proteins using 2D convolutional neural network via Chou’s 5-step rule. Anal. Biochem., 2019, 575, 17-26.
[http://dx.doi.org/10.1016/j.ab.2019.03.017] [PMID: 30930199]
[70]
Ning, Q.; Ma, Z.; Zhao, X. dForml(KNN)-PseAAC: Detecting formylation sites from protein sequences using K-nearest neighbor algorithm via Chou’s 5-step rule and pseudo components. J. Theor. Biol., 2019, 470, 43-49.
[http://dx.doi.org/10.1016/j.jtbi.2019.03.011] [PMID: 30880183]
[71]
Tahir, M.; Tayara, H.; Chong, K.T. iDNA6mA (5-step rule): Identification of DNA N6-methyladenine sites in the rice genome by intelligent computational model via Chou’s 5-step rule. CHEMOLAB, 2019, 189, 96-101.
[http://dx.doi.org/10.1016/j.chemolab.2019.04.007]
[72]
Ehsan, A.; Mahmood, M.K.; Khan, Y.D.; Barukab, O.M.; Khan, S.A.; Chou, K.C. iHyd-PseAAC (EPSV): Identify hydroxylation sites in proteins by extracting enhanced position and sequence variant feature via Chou’s 5-step rule and general pseudo amino acid composition. Curr. Genomics, 2019, 20(2), 124-133.
[http://dx.doi.org/10.2174/1389202920666190325162307] [PMID: 31555063]
[73]
Wang, L.; Zhang, R.; Mu, Y. Fu-SulfPred: Identification of protein s-sulfenylation sites by fusing forests via chou’s general PseAAC. J. Theor. Biol., 2019, 461, 51-58.
[http://dx.doi.org/10.1016/j.jtbi.2018.10.046] [PMID: 30365947]
[74]
Chou, K.C. Some remarks on protein attribute prediction and pseudo amino acid composition. J. Theor. Biol., 2011, 273(1), 236-247.
[http://dx.doi.org/10.1016/j.jtbi.2010.12.024] [PMID: 21168420]
[75]
Zhai, X.; Chen, M.; Lu, W. Accelerated search for perovskite materials with higher Curie temperature based on the machine learning methods. Comput. Mater. Sci., 2018, 151, 41-48.
[http://dx.doi.org/10.1016/j.commatsci.2018.04.031]
[76]
Chou, K.C.; Zhang, C.T. A correlation-coefficient method to predicting protein-structural classes from amino acid compositions. Eur. J. Biochem., 1992, 207(2), 429-3.
[http://dx.doi.org/10.1111/j.1432-1033.1992.tb17067.x] [PMID: 1633801]
[77]
Zhang, C.T.; Chou, K.C. Monte Carlo simulation studies on the prediction of protein folding types from amino acid composition. Biophys. J., 1992, 63(6), 1523-1529.
[http://dx.doi.org/10.1016/S0006-3495(92)81728-9] [PMID: 1297323]
[78]
Chou, J.J.; Zhang, C.T. A joint prediction of the folding types of 1490 human proteins from their genetic codons. J. Theor. Biol., 1993, 161(2), 251-262.
[http://dx.doi.org/10.1006/jtbi.1993.1053] [PMID: 8331952]
[79]
Chou, K.C. Prediction of protein folding types from amino acid composition by correlation angles. Amino Acids, 1994, 6(3), 231-246.
[http://dx.doi.org/10.1007/BF00813744] [PMID: 24189732]
[80]
Chou, K.C.; Zhang, C.T. A new approach to predicting protein folding types. J. Protein Chem., 1993, 12(2), 169-178.
[http://dx.doi.org/10.1007/BF01026038] [PMID: 8489703]
[81]
Chou, K.C.; Zhang, C.T. Predicting protein folding types by distance functions that make allowances for amino acid interactions. J. Biol. Chem., 1994, 269(35), 22014-22020.
[PMID: 8071322]
[82]
Zhang, C.T.; Chou, K.C. Monte Carlo simulation studies on the prediction of protein folding types from amino acid composition. II. Correlative effect. J. Protein Chem., 1995, 14(4), 251-258.
[http://dx.doi.org/10.1007/BF01886766] [PMID: 7662113]
[83]
Zhang, C.T.; Chou, K.C. An eigenvalue-eigenvector approach to predicting protein folding types. J. Protein Chem., 1995, 14(5), 309-326.
[http://dx.doi.org/10.1007/BF01886788] [PMID: 8590599]
[84]
Kikuchi, T. Discrimination of folding types of globular proteins based on average distance maps constructed from their sequences. J. Protein Chem., 1993, 12(5), 515-523.
[http://dx.doi.org/10.1007/BF01025116] [PMID: 8141996]
[85]
Chou, K.C. Does the folding type of a protein depend on its amino acid composition? FEBS Lett., 1995, 363(1-2), 127-131.
[http://dx.doi.org/10.1016/0014-5793(95)00245-5] [PMID: 7729532]
[86]
Zhang, C.T.; Chou, K.C. An analysis of protein folding type prediction by seed-propagated sampling and jackknife test. J. Protein Chem., 1995, 14(7), 583-593.
[http://dx.doi.org/10.1007/BF01886884] [PMID: 8561854]
[87]
Zhang, C.T.; Chou, K.C.; Maggiora, G.M. Predicting protein structural classes from amino acid composition: application of fuzzy clustering. Protein Eng., 1995, 8(5), 425-435.
[http://dx.doi.org/10.1093/protein/8.5.425] [PMID: 8532663]
[88]
Devillers, J. In neural networks in qsar and drug design, 1st Ed.;; Elsevier: Amsterdam, 1996.
[http://dx.doi.org/10.1016/B978-0-12-213815-7.X5000-6]
[89]
Liu, W.M.; Chou, K.C. Prediction of protein structural classes by modified mahalanobis discriminant algorithm. J. Protein Chem., 1998, 17(3), 209-217.
[http://dx.doi.org/10.1023/A:1022576400291] [PMID: 9588944]
[90]
Chou, K.C. A key driving force in determination of protein structural classes. Biochem. Biophys. Res. Commun., 1999, 264(1), 216-224.
[http://dx.doi.org/10.1006/bbrc.1999.1325] [PMID: 10527868]
[91]
Chou, K.C. Prediction of protein structural classes and subcellular locations. Curr. Protein Pept. Sci., 2000, 1(2), 171-208.
[http://dx.doi.org/10.2174/1389203003381379] [PMID: 12369916]
[92]
Cai, Y.D.; Liu, X.J.; Xu, X.B.; Chou, K.C. Prediction of protein structural classes by support vector machines. Comput. Chem., 2002, 26(3), 293-296.
[http://dx.doi.org/10.1016/S0097-8485(01)00113-9] [PMID: 11868916]
[93]
Shen, H.B.; Yang, J.; Liu, X.J.; Chou, K.C. Using supervised fuzzy clustering to predict protein structural classes. Biochem. Biophys. Res. Commun., 2005, 334(2), 577-581.
[http://dx.doi.org/10.1016/j.bbrc.2005.06.128] [PMID: 16023077]
[94]
Du, Q.S.; Jiang, Z.Q.; He, W.Z.; Li, D.P.; Chou, K.C. Amino Acid Principal Component Analysis (AAPCA) and its applications in protein structural class prediction. J. Biomol. Struct. Dyn., 2006, 23(6), 635-640.
[http://dx.doi.org/10.1080/07391102.2006.10507088] [PMID: 16615809]
[95]
Xiao, X.; Wang, P.; Chou, K.C. Predicting protein structural classes with pseudo amino acid composition: an approach using geometric moments of cellular automaton image. J. Theor. Biol., 2008, 254(3), 691-696.
[http://dx.doi.org/10.1016/j.jtbi.2008.06.016] [PMID: 18634802]
[96]
Zhang, T.L.; Ding, Y.S.; Chou, K.C. Prediction protein structural classes with pseudo-amino acid composition: approximate entropy and hydrophobicity pattern. J. Theor. Biol., 2008, 250(1), 186-193.
[http://dx.doi.org/10.1016/j.jtbi.2007.09.014] [PMID: 17959199]
[97]
Chou, K.C.; Liu, W.M.; Maggiora, G.M.; Zhang, C.T. Prediction and classification of domain structural classes. Proteins, 1998, 31(1), 97-103.
[http://dx.doi.org/10.1002/(SICI)1097-0134(19980401)31:1<97:AID-PROT8>3.0.CO;2-E] [PMID: 9552161]
[98]
Chen, C.; Tian, Y.X.; Zou, X.Y.; Cai, P.X.; Mo, J.Y. Using pseudo-amino acid composition and support vector machine to predict protein structural class. J. Theor. Biol., 2006, 243(3), 444-448.
[http://dx.doi.org/10.1016/j.jtbi.2006.06.025] [PMID: 16908032]
[99]
Chen, C.; Zhou, X.; Tian, Y.; Zou, X.; Cai, P. Predicting protein structural class with pseudo-amino acid composition and support vector machine fusion network. Anal. Biochem., 2006, 357(1), 116-121.
[http://dx.doi.org/10.1016/j.ab.2006.07.022] [PMID: 16920060]
[100]
Xiao, X.; Shao, S.H.; Huang, Z.D.; Chou, K.C. Using pseudo amino acid composition to predict protein structural classes: approached with complexity measure factor. J. Comput. Chem., 2006, 27(4), 478-482.
[http://dx.doi.org/10.1002/jcc.20354] [PMID: 16429410]
[101]
Lin, H.; Li, Q.Z. Using pseudo amino acid composition to predict protein structural class: approached by incorporating 400 dipeptide components. J. Comput. Chem., 2007, 28(9), 1463-1466.
[http://dx.doi.org/10.1002/jcc.20554] [PMID: 17330882]
[102]
Zhang, T.L.; Ding, Y.S. Using pseudo amino acid composition and binary-tree support vector machines to predict protein structural classes. Amino Acids, 2007, 33(4), 623-629.
[http://dx.doi.org/10.1007/s00726-007-0496-1] [PMID: 17308864]
[103]
Xiao, X.; Lin, W.Z.; Chou, K.C. Using grey dynamic modeling and pseudo amino acid composition to predict protein structural classes. J. Comput. Chem., 2008, 29(12), 2018-2024.
[http://dx.doi.org/10.1002/jcc.20955] [PMID: 18381630]
[104]
Li, Z.C.; Zhou, X.B.; Dai, Z.; Zou, X.Y. Prediction of protein structural classes by Chou’s pseudo amino acid composition: approached using continuous wavelet transform and principal component analysis. Amino Acids, 2009, 37(2), 415-425.
[http://dx.doi.org/10.1007/s00726-008-0170-2] [PMID: 18726140]
[105]
Sahu, S.S.; Panda, G. A novel feature representation method based on Chou’s pseudo amino acid composition for protein structural class prediction. Comput. Biol. Chem., 2010, 34(5-6), 320-327.
[http://dx.doi.org/10.1016/j.compbiolchem.2010.09.002] [PMID: 21106461]
[106]
Wu, J.; Li, M.L.; Yu, L.Z.; Wang, C. An ensemble classifier of support vector machines used to predict protein structural classes by fusing auto covariance and pseudo-amino acid composition. Protein J., 2010, 29(1), 62-67.
[http://dx.doi.org/10.1007/s10930-009-9222-z] [PMID: 20049515]
[107]
Chen, C.; Shen, Z.B.; Zou, X.Y. Dual-layer wavelet SVM for predicting protein structural class via the general form of Chou’s pseudo amino acid composition. Protein Pept. Lett., 2012, 19(4), 422-429.
[http://dx.doi.org/10.2174/092986612799789332] [PMID: 22185506]
[108]
Kong, L.; Zhang, L.; Lv, J. Accurate prediction of protein structural classes by incorporating predicted secondary structure information into the general form of Chou’s pseudo amino acid composition. J. Theor. Biol., 2014, 344, 12-18.
[http://dx.doi.org/10.1016/j.jtbi.2013.11.021] [PMID: 24316044]
[109]
Zhang, L.; Zhao, X.; Kong, L. Predict protein structural class for low-similarity sequences by evolutionary difference information into the general form of Chou’s pseudo amino acid composition. J. Theor. Biol., 2014, 355, 105-110.
[http://dx.doi.org/10.1016/j.jtbi.2014.04.008] [PMID: 24735902]
[110]
Liang, Y.; Zhang, S. Predict protein structural class by incorporating two different modes of evolutionary information into Chou’s general pseudo amino acid composition. J. Mol. Graph. Model., 2017, 78, 110-117.
[http://dx.doi.org/10.1016/j.jmgm.2017.10.003] [PMID: 29055184]
[111]
Yu, B.; Lou, L.; Li, S.; Zhang, Y.; Qiu, W.; Wu, X.; Wang, M.; Tian, B. Prediction of protein structural class for low-similarity sequences using Chou’s pseudo amino acid composition and wavelet denoising. J. Mol. Graph. Model., 2017, 76, 260-273.
[http://dx.doi.org/10.1016/j.jmgm.2017.07.012] [PMID: 28743071]
[112]
Liao, B.; Xiang, Q.; Li, D. Incorporating secondary features into the general form of Chou’s PseAAC for predicting protein structural class. Protein Pept. Lett., 2012, 19(11), 1133-1138.
[http://dx.doi.org/10.2174/092986612803217051] [PMID: 22185510]
[113]
Qin, Y.F.; Wang, C.H.; Yu, X.Q.; Zhu, J.; Liu, T.G.; Zheng, X.Q. Predicting protein structural class by incorporating patterns of over-represented k-mers into the general form of Chou’s PseAAC. Protein Pept. Lett., 2012, 19(4), 388-397.
[http://dx.doi.org/10.2174/092986612799789350] [PMID: 22316305]
[114]
Zhang, S.L. Accurate prediction of protein structural classes by incorporating PSSS and PSSM into Chou’s general PseAAC. Chemom. Intell. Lab. Syst., 2015, 142, 28-35.
[http://dx.doi.org/10.1016/j.chemolab.2015.01.004]
[115]
Tripathi, P.; Pandey, P.N. A novel alignment-free method to classify protein folding types by combining spectral graph clustering with Chou’s pseudo amino acid composition. J. Theor. Biol., 2017, 424, 49-54.
[http://dx.doi.org/10.1016/j.jtbi.2017.04.027] [PMID: 28476562]
[116]
Contreras-Torres, E. Predicting structural classes of proteins by incorporating their global and local physicochemical and conformational properties into general Chou’s PseAAC. J. Theor. Biol., 2018, 454, 139-145.
[http://dx.doi.org/10.1016/j.jtbi.2018.05.033] [PMID: 29870696]
[117]
Carlacci, L.; Chou, K.C.; Maggiora, G.M. A heuristic approach to predicting the tertiary structure of bovine somatotropin. Biochemistry, 1991, 30(18), 4389-4398.
[http://dx.doi.org/10.1021/bi00232a004] [PMID: 2021631]
[118]
Zhang, C.T.; Chou, K.C. An optimization approach to predicting protein structural class from amino acid composition. Protein Sci., 1992, 1(3), 401-408.
[http://dx.doi.org/10.1002/pro.5560010312] [PMID: 1304347]
[119]
Chou, K.C.; Elrod, D.W. Bioinformatical analysis of G-protein-coupled receptors. J. Proteome Res., 2002, 1(5), 429-433.
[http://dx.doi.org/10.1021/pr025527k] [PMID: 12645914]
[120]
Chou, K.C.; Cai, Y.D. Prediction and classification of protein subcellular location: sequence-order effect and pseudo amino acid composition. J. Cell. Biochem., 2003, 90, 1250-1260.
[http://dx.doi.org/10.1002/jcb.10719]
[121]
Hu, L.; Huang, T.; Shi, X.; Lu, W.C.; Cai, Y.D.; Chou, K.C. Predicting functions of proteins in mouse based on weighted protein-protein interaction network and protein hybrid properties. PLoS One, 2011, 6(1)e14556
[http://dx.doi.org/10.1371/journal.pone.0014556] [PMID: 21283518]
[122]
Cai, Y.D.; Zhou, G.P.; Chou, K.C. Support vector machines for predicting membrane protein types by using functional domain composition. Biophys. J., 2003, 84(5), 3257-3263.
[http://dx.doi.org/10.1016/S0006-3495(03)70050-2] [PMID: 12719255]
[123]
Cai, Y.D.; Feng, K.Y.; Lu, W.C.; Chou, K.C. Using LogitBoost classifier to predict protein structural classes. J. Theor. Biol., 2006, 238(1), 172-176.
[http://dx.doi.org/10.1016/j.jtbi.2005.05.034] [PMID: 16043193]
[124]
Chou, K.C. Impacts of bioinformatics to medicinal chemistry. Med. Chem., 2015, 11(3), 218-234.
[http://dx.doi.org/10.2174/1573406411666141229162834] [PMID: 25548930]
[125]
Chou, K.C. Prediction of protein cellular attributes using pseudo amino acid composition. Proteins, 2001, 43, 246-255.
[126]
Chou, K.C. Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes. Bioinformatics, 2005, 21(1), 10-19.
[http://dx.doi.org/10.1093/bioinformatics/bth466] [PMID: 15308540]
[127]
Cai, Y.D.; Chou, K.C. Nearest neighbour algorithm for predicting protein subcellular location by combining functional domain composition and pseudo-amino acid composition. Biochem. Biophys. Res. Commun., 2003, 305(2), 407-411.
[http://dx.doi.org/10.1016/S0006-291X(03)00775-7] [PMID: 12745090]
[128]
Chou, K.C.; Cai, Y.D. Predicting protein quaternary structure by pseudo amino acid composition. Proteins, 2003, 53(2), 282-289.
[http://dx.doi.org/10.1002/prot.10500] [PMID: 14517979]
[129]
Chou, K.C.; Cai, Y.D. Predicting subcellular localization of proteins by hybridizing functional domain composition and pseudo-amino acid composition. J. Cell. Biochem., 2004, 91(6), 1197-1203.
[http://dx.doi.org/10.1002/jcb.10790] [PMID: 15048874]
[130]
Cai, Y.D.; Chou, K.C. Predicting enzyme subclass by functional domain composition and pseudo amino acid composition. J. Proteome Res., 2005, 4(3), 967-971.
[http://dx.doi.org/10.1021/pr0500399] [PMID: 15952744]
[131]
Cai, Y.D.; Zhou, G.P.; Chou, K.C. Predicting enzyme family classes by hybridizing gene product composition and pseudo-amino acid composition. J. Theor. Biol., 2005, 234(1), 145-149.
[http://dx.doi.org/10.1016/j.jtbi.2004.11.017] [PMID: 15721043]
[132]
Cai, Y.D.; Chou, K.C. Predicting membrane protein type by functional domain composition and pseudo-amino acid composition. J. Theor. Biol., 2006, 238(2), 395-400.
[http://dx.doi.org/10.1016/j.jtbi.2005.05.035] [PMID: 16040052]
[133]
Chou, K.C.; Cai, Y.D. Prediction of protease types in a hybridization space. Biochem. Biophys. Res. Commun., 2006, 339(3), 1015-1020. [BBRC]
[http://dx.doi.org/10.1016/j.bbrc.2005.10.196] [PMID: 16325146]
[134]
Chou, K.C.; Cai, Y.D. Predicting protein-protein interactions from sequences in a hybridization space. J. Proteome Res., 2006, 5(2), 316-322.
[http://dx.doi.org/10.1021/pr050331g] [PMID: 16457597]
[135]
Chou, K.C.; Cai, Y.D.; Zhong, W.Z. Predicting networking couples for metabolic pathways of Arabidopsis. BMC Bioinformatics, 2010, 11, 293.
[136]
He, Z.; Zhang, J.; Shi, X.H.; Hu, L.L.; Kong, X.; Cai, Y.D.; Chou, K.C. Predicting drug-target interaction networks based on functional groups and biological features. PLoS One, 2010, 5(3)e9603
[http://dx.doi.org/10.1371/journal.pone.0009603] [PMID: 20300175]
[137]
Huang, T.; Shi, X.H.; Wang, P.; He, Z.; Feng, K.Y.; Hu, L.; Kong, X.; Li, Y.X.; Cai, Y.D.; Chou, K.C. Analysis and prediction of the metabolic stability of proteins based on their sequential features, subcellular locations and interaction networks. PLoS One, 2010, 5(6)e10972
[http://dx.doi.org/10.1371/journal.pone.0010972] [PMID: 20532046]
[138]
Li, B.Q.; Hu, L.L.; Niu, S.; Cai, Y.D.; Chou, K.C. Predict and analyze S-nitrosylation modification sites with the mRMR and IFS approaches. J. Proteomics, 2012, 75(5), 1654-1665.
[http://dx.doi.org/10.1016/j.jprot.2011.12.003] [PMID: 22178444]
[139]
Zheng, L.L.; Li, Y.X.; Ding, J.; Guo, X.K.; Feng, K.Y.; Wang, Y.J.; Hu, L.L.; Cai, Y.D.; Hao, P.; Chou, K.C. A comparison of computational methods for identifying virulence factors. PLoS One, 2012, 7(8)e42517
[http://dx.doi.org/10.1371/journal.pone.0042517] [PMID: 22880014]
[140]
Liu, B.; Zhang, D.; Xu, R.; Xu, J.; Wang, X.; Chen, Q.; Dong, Q.; Chou, K.C. Combining evolutionary information extracted from frequency profiles with sequence-based kernels for protein remote homology detection. Bioinformatics, 2014, 30(4), 472-479.
[http://dx.doi.org/10.1093/bioinformatics/btt709] [PMID: 24318998]
[141]
Xu, R.; Zhou, J.; Liu, B.; He, Y.; Zou, Q.; Wang, X.; Chou, K.C. Identification of DNA-binding proteins by incorporating evolutionary information into pseudo amino acid composition via the top-n-gram approach. J. Biomol. Struct. Dyn., 2015, 33(8), 1720-1730.
[http://dx.doi.org/10.1080/07391102.2014.968624] [PMID: 25252709]
[142]
Dehzangi, A.; Heffernan, R.; Sharma, A.; Lyons, J.; Paliwal, K.; Sattar, A. Gram-positive and Gram-negative protein subcellular localization by incorporating evolutionary-based descriptors into Chou׳s general PseAAC. J. Theor. Biol., 2015, 364, 284-294.
[http://dx.doi.org/10.1016/j.jtbi.2014.09.029] [PMID: 25264267]
[143]
Behbahani, M.; Mohabatkar, H.; Nosrati, M. Analysis and comparison of lignin peroxidases between fungi and bacteria using three different modes of Chou’s general pseudo amino acid composition. J. Theor. Biol., 2016, 411, 1-5.
[http://dx.doi.org/10.1016/j.jtbi.2016.09.001] [PMID: 27615149]
[144]
Kabir, M.; Hayat, M. iRSpot-GAEnsC: identifing recombination spots via ensemble classifier and extending the concept of Chou’s PseAAC to formulate DNA samples. Mol. Genet. Genomics, 2016, 291(1), 285-296.
[http://dx.doi.org/10.1007/s00438-015-1108-5] [PMID: 26319782]
[145]
Meher, P.K.; Sahu, T.K.; Saini, V.; Rao, A.R. Predicting antimicrobial peptides with improved accuracy by incorporating the compositional, physico-chemical and structural features into Chou’s general PseAAC. Sci. Rep., 2017, 7, 42362.
[http://dx.doi.org/10.1038/srep42362] [PMID: 28205576]
[146]
Ju, Z.; He, J.J. Prediction of lysine propionylation sites using biased SVM and incorporating four different sequence features into Chou’s PseAAC. J. Mol. Graph. Model., 2017, 76, 356-363.
[http://dx.doi.org/10.1016/j.jmgm.2017.07.022] [PMID: 28763688]
[147]
Yu, B.; Li, S.; Qiu, W.Y.; Chen, C.; Chen, R.X.; Wang, L.; Wang, M.H.; Zhang, Y. Accurate prediction of subcellular location of apoptosis proteins combining Chou’s PseAAC and PsePSSM based on wavelet denoising. Oncotarget, 2017, 8(64), 107640-107665.
[http://dx.doi.org/10.18632/oncotarget.22585] [PMID: 29296195]
[148]
Zhang, S.; Yang, K.; Lei, Y.; Song, K. iRSpot-DTS: Predict recombination spots by incorporating the dinucleotide-based sparecross covariance information into Chou’s pseudo components. Genomics, 2018, S0888-7543(18), 30491-304999.
[http://dx.doi.org/10.1016/j.ygeno.2018.11.031] [PMID: 30529702]
[149]
Ahmad, J.; Hayat, M. MFSC: Multi-voting based feature selection for classification of Golgi proteins by adopting the general form of Chou’s PseAAC components. J. Theor. Biol., 2019, 463, 99-109.
[http://dx.doi.org/10.1016/j.jtbi.2018.12.017] [PMID: 30562500]
[150]
Akbar, S.; Hayat, M. iMethyl-STTNC: Identification of N6-methyladenosine sites by extending the idea of SAAC into Chou’s PseAAC to formulate RNA sequences. J. Theor. Biol., 2018, 455, 205-211.
[http://dx.doi.org/10.1016/j.jtbi.2018.07.018] [PMID: 30031793]
[151]
Zhang, L.; Kong, L. iRSpot-ADPM: Identify recombination spots by incorporating the associated dinucleotide product model into Chou’s pseudo components. J. Theor. Biol., 2018, 441, 1-8.
[http://dx.doi.org/10.1016/j.jtbi.2017.12.025] [PMID: 29305179]
[152]
Zhang, S.; Liang, Y. Predicting apoptosis protein subcellular localization by integrating auto-cross correlation and PSSM into Chou’s PseAAC. J. Theor. Biol., 2018, 457, 163-169.
[http://dx.doi.org/10.1016/j.jtbi.2018.08.042] [PMID: 30179589]
[153]
Zhang, L.; Kong, L. iRSpot-PDI: Identification of recombination spots by incorporating dinucleotide property diversity information into Chou’s pseudo components. Genomics, 2019, 111(3), 457-464.
[http://dx.doi.org/10.1016/j.ygeno.2018.03.003] [PMID: 29548799]
[154]
Tahir, M.; Hayat, M.; Khan, S.A. iNuc-ext-PseTNC: an efficient ensemble model for identification of nucleosome positioning by extending the concept of Chou’s PseAAC to pseudo-tri-nucleotide composition. Mol. Genet. Genomics, 2019, 294(1), 199-210.
[http://dx.doi.org/10.1007/s00438-018-1498-2] [PMID: 30291426]
[155]
Chou, K.C. An unprecedented revolution in medicinal chemistry driven by the progress of biological science. Curr. Top. Med. Chem., 2017, 17(21), 2337-2358.
[http://dx.doi.org/10.2174/1568026617666170414145508] [PMID: 28413951]
[156]
Shen, H.B.; Chou, K.C. PseAAC: a flexible web server for generating various kinds of protein pseudo amino acid composition. Anal. Biochem., 2008, 373(2), 386-388.
[http://dx.doi.org/10.1016/j.ab.2007.10.012] [PMID: 17976365]
[157]
Du, P.; Wang, X.; Xu, C.; Gao, Y. PseAAC-Builder: a cross-platform stand-alone program for generating various special Chou’s pseudo-amino acid compositions. Anal. Biochem., 2012, 425(2), 117-119.
[http://dx.doi.org/10.1016/j.ab.2012.03.015] [PMID: 22459120]
[158]
Cao, D.S.; Xu, Q.S.; Liang, Y.Z. propy: a tool to generate various modes of Chou’s PseAAC. Bioinformatics, 2013, 29(7), 960-962.
[http://dx.doi.org/10.1093/bioinformatics/btt072] [PMID: 23426256]
[159]
Du, P.; Gu, S.; Jiao, Y. PseAAC-General: fast building various modes of general form of Chou’s pseudo-amino acid composition for large-scale protein datasets. Int. J. Mol. Sci., 2014, 15(3), 3495-3506.
[http://dx.doi.org/10.3390/ijms15033495] [PMID: 24577312]
[160]
Chou, K.C. Pseudo amino acid composition and its applications in bioinformatics, proteomics and system biology. Curr. Proteomics, 2009, 6, 262-274.
[http://dx.doi.org/10.2174/157016409789973707]
[161]
Chen, W.; Lei, T.Y.; Jin, D.C.; Lin, H.; Chou, K.C. PseKNC: a flexible web server for generating pseudo K-tuple nucleotide composition. Anal. Biochem., 2014, 456, 53-60.
[http://dx.doi.org/10.1016/j.ab.2014.04.001] [PMID: 24732113]
[162]
Chen, W.; Lin, H.; Chou, K.C. Pseudo nucleotide composition or PseKNC: an effective formulation for analyzing genomic sequences. Mol. Biosyst., 2015, 11(10), 2620-2634.
[http://dx.doi.org/10.1039/C5MB00155B] [PMID: 26099739]
[163]
Liu, B.; Yang, F.; Huang, D.S.; Chou, K.C. iPromoter-2L: a two-layer predictor for identifying promoters and their types by multi-window-based PseKNC. Bioinformatics, 2018, 34(1), 33-40.
[http://dx.doi.org/10.1093/bioinformatics/btx579] [PMID: 28968797]
[164]
Tahir, M.; Tayara, H.; Chong, K.T. iRNA-PseKNC(2methyl): Identify RNA 2′-O-methylation sites by convolution neural network and Chou’s pseudo components. J. Theor. Biol., 2019, 465, 1-6.
[http://dx.doi.org/10.1016/j.jtbi.2018.12.034] [PMID: 30590059]
[165]
Liu, B.; Liu, F.; Wang, X.; Chen, J.; Fang, L.; Chou, K.C. Pse-in-One: a web server for generating various modes of pseudo components of DNA, RNA, and protein sequences. Nucleic Acids Res., 2015, 43(W1)W65-71
[http://dx.doi.org/10.1093/nar/gkv458] [PMID: 25958395]
[166]
Liu, B.; Wu, H. Pse-in-One 2.0: An improved package of web servers for generating various modes of pseudo components of DNA, RNA, and protein sequences. Nat. Sci., 2017, 9, 67-91.
[http://dx.doi.org/10.4236/ns.2017.94007]
[167]
Chou, K.C.; Cai, Y.D. Using functional domain composition and support vector machines for prediction of protein subcellular location. J. Biol. Chem., 2002, 277(48), 45765-45769.
[http://dx.doi.org/10.1074/jbc.M204161200] [PMID: 12186861]
[168]
Chou, K.C.; Shen, H.B. Recent progress in protein subcellular location prediction. Anal. Biochem., 2007, 370(1), 1-16.
[http://dx.doi.org/10.1016/j.ab.2007.07.006] [PMID: 17698024]
[169]
Shen, H.B.; Chou, K.C. A top-down approach to enhance the power of predicting human protein subcellular localization: Hum-mPLoc 2.0. Anal. Biochem., 2009, 394(2), 269-274.
[http://dx.doi.org/10.1016/j.ab.2009.07.046] [PMID: 19651102]
[170]
Shen, H.B.; Chou, K.C. Gpos-mPLoc: a top-down approach to improve the quality of predicting subcellular localization of Gram-positive bacterial proteins. Protein Pept. Lett., 2009, 16(12), 1478-1484.
[http://dx.doi.org/10.2174/092986609789839322] [PMID: 20001911]
[171]
Chou, K.C.; Shen, H.B. A new method for predicting the subcellular localization of eukaryotic proteins with both single and multiple sites: Euk-mPLoc 2.0. PLoS One, 2010, 5(4)e9931
[http://dx.doi.org/10.1371/journal.pone.0009931] [PMID: 20368981]
[172]
Chou, K.C.; Shen, H.B. Plant-mPLoc: a top-down strategy to augment the power for predicting plant protein subcellular localization. PLoS One, 2010, 5(6)e11335
[http://dx.doi.org/10.1371/journal.pone.0011335] [PMID: 20596258]
[173]
Shen, H.B.; Chou, K.C. Gneg-mPLoc: a top-down strategy to enhance the quality of predicting subcellular localization of Gram-negative bacterial proteins. J. Theor. Biol., 2010, 264(2), 326-333.
[http://dx.doi.org/10.1016/j.jtbi.2010.01.018] [PMID: 20093124]
[174]
Shen, H.B.; Chou, K.C. Virus-mPLoc: a fusion classifier for viral protein subcellular location prediction by incorporating multiple sites. J. Biomol. Struct. Dyn., 2010, 28(2), 175-186.
[http://dx.doi.org/10.1080/07391102.2010.10507351] [PMID: 20645651]
[175]
Chou, K.C.; Wu, Z.C.; Xiao, X. iLoc-Euk: a multi-label classifier for predicting the subcellular localization of singleplex and multiplex eukaryotic proteins. PLoS One, 2011, 6(3)e18258
[http://dx.doi.org/10.1371/journal.pone.0018258] [PMID: 21483473]
[176]
Wu, Z.C.; Xiao, X.; Chou, K.C. iLoc-Plant: a multi-label classifier for predicting the subcellular localization of plant proteins with both single and multiple sites. Mol. Biosyst., 2011, 7(12), 3287-3297.
[http://dx.doi.org/10.1039/c1mb05232b] [PMID: 21984117]
[177]
Xiao, X.; Wu, Z.C.; Chou, K.C. iLoc-Virus: a multi-label learning classifier for identifying the subcellular localization of virus proteins with both single and multiple sites. J. Theor. Biol., 2011, 284(1), 42-51.
[http://dx.doi.org/10.1016/j.jtbi.2011.06.005] [PMID: 21684290]
[178]
Chou, K.C.; Wu, Z.C.; Xiao, X. iLoc-Hum: using the accumulation-label scale to predict subcellular locations of human proteins with both single and multiple sites. Mol. Biosyst., 2012, 8(2), 629-641.
[http://dx.doi.org/10.1039/C1MB05420A] [PMID: 22134333]
[179]
Xiao, X.; Wu, Z.C.; Chou, K.C. A multi-label classifier for predicting the subcellular localization of gram-negative bacterial proteins with both single and multiple sites. PLoS One, 2011, 6(6)e20592
[http://dx.doi.org/10.1371/journal.pone.0020592] [PMID: 21698097]
[180]
Wu, Z.C.; Xiao, X.; Chou, K.C. iLoc-Gpos: a multi-layer classifier for predicting the subcellular localization of singleplex and multiplex Gram-positive bacterial proteins. Protein Pept. Lett., 2012, 19(1), 4-14.
[http://dx.doi.org/10.2174/092986612798472839] [PMID: 21919865]
[181]
Lin, W.Z.; Fang, J.A.; Xiao, X.; Chou, K.C. iLoc-Animal: a multi-label learning classifier for predicting subcellular localization of animal proteins. Mol. Biosyst., 2013, 9(4), 634-644.
[http://dx.doi.org/10.1039/c3mb25466f] [PMID: 23370050]
[182]
Cheng, X.; Xiao, X.; Chou, K.C. pLoc-mPlant: predict subcellular localization of multi-location plant proteins by incorporating the optimal GO information into general PseAAC. Mol. Biosyst., 2017, 13(9), 1722-1727.
[http://dx.doi.org/10.1039/C7MB00267J] [PMID: 28702580]
[183]
Cheng, X.; Xiao, X. pLoc-mVirus: predict subcellular localization of multi-location virus proteins via incorporating the optimal GO information into general PseAAC. Gene, 2017, 628, 315-321.
[184]
Cheng, X.; Zhao, S.G.; Lin, W.Z.; Xiao, X.; Chou, K.C. pLoc-mAnimal: predict subcellular localization of animal proteins with both single and multiple sites. Bioinformatics, 2017, 33(22), 3524-3531.
[http://dx.doi.org/10.1093/bioinformatics/btx476] [PMID: 29036535]
[185]
Xiao, X.; Cheng, X.; Su, S.; Nao, Q. pLoc-mGpos: Incorporate key gene ontology information into general PseAAC for predicting subcellular localization of Gram-positive bacterial proteins. Nat. Sci., 2017, 9, 331-349.
[http://dx.doi.org/10.4236/ns.2017.99032]
[186]
Cheng, X.; Xiao, X.; Chou, K.C. pLoc-mEuk: Predict subcellular localization of multi-label eukaryotic proteins by extracting the key GO information into general PseAAC. Genomics, 2018, 110(1), 50-58.
[http://dx.doi.org/10.1016/j.ygeno.2017.08.005] [PMID: 28818512]
[187]
Cheng, X.; Xiao, X.; Chou, K.C. pLoc-mGneg: Predict subcellular localization of Gram-negative bacterial proteins by deep gene ontology learning via general PseAAC. Genomics, 2017, 110, 231-239.
[http://dx.doi.org/10.1016/j.ygeno.2017.10.002] [PMID: 28989035]
[188]
Cheng, X.; Xiao, X.; Chou, K.C. pLoc-mHum: predict subcellular localization of multi-location human proteins via general PseAAC to winnow out the crucial GO information. Bioinformatics, 2018, 34(9), 1448-1456.
[http://dx.doi.org/10.1093/bioinformatics/btx711] [PMID: 29106451]
[189]
Cheng, X.; Xiao, X.; Chou, K.C. pLoc_bal-mGneg: Predict subcellular localization of Gram-negative bacterial proteins by quasi-balancing training dataset and general PseAAC. J. Theor. Biol., 2018, 458, 92-102.
[http://dx.doi.org/10.1016/j.jtbi.2018.09.005] [PMID: 30201434]
[190]
Chou, K.C.; Cheng, X.; Xiao, X. pLoc_bal-mHum: Predict subcellular localization of human proteins by PseAAC and quasibalancing training dataset. Genomics, 2018, S0888-7543(18), 30276-3.
[http://dx.doi.org/10.1016/j.ygeno.2018.08.007] [PMID: 30179658]
[191]
Cheng, X.; Lin, W.Z.; Xiao, X.; Chou, K.C. pLoc_bal-mAnimal: predict subcellular localization of animal proteins by balancing training dataset and PseAAC. Bioinformatics, 2019, 35(3), 398-406.
[http://dx.doi.org/10.1093/bioinformatics/bty628] [PMID: 30010789]
[192]
Chou, K.C. Some remarks on predicting multi-label attributes in molecular biosystems. Mol. Biosyst., 2013, 9(6), 1092-1100.
[http://dx.doi.org/10.1039/c3mb25555g] [PMID: 23536215]
[193]
Shen, H.; Chou, K.C. Using optimized evidence-theoretic K-nearest neighbor classifier and pseudo-amino acid composition to predict membrane protein types. Biochem. Biophys. Res. Commun., 2005, 334(1), 288-292.
[http://dx.doi.org/10.1016/j.bbrc.2005.06.087] [PMID: 16002049]
[194]
Chou, K.C.; Shen, H.B. Euk-mPLoc: a fusion classifier for large-scale eukaryotic protein subcellular location prediction by incorporating multiple sites. J. Proteome Res., 2007, 6(5), 1728-1734.
[http://dx.doi.org/10.1021/pr060635i] [PMID: 17397210]
[195]
Shen, H.B.; Chou, K.C. QuatIdent: a web server for identifying protein quaternary structural attribute by fusing functional domain and sequential evolution information. J. Proteome Res., 2009, 8(3), 1577-1584.
[http://dx.doi.org/10.1021/pr800957q] [PMID: 19226167]
[196]
Xu, Y.; Ding, J.; Wu, L.Y.; Chou, K.C. iSNO-PseAAC: predict cysteine S-nitrosylation sites in proteins by incorporating position specific amino acid propensity into pseudo amino acid composition. PLoS One, 2013, 8(2)e55844
[http://dx.doi.org/10.1371/journal.pone.0055844] [PMID: 23409062]
[197]
Chou, K.C. Prediction of protein signal sequences and their cleavage sites. Proteins, 2001, 42(1), 136-139.
[http://dx.doi.org/10.1002/1097-0134(20010101)42:1<136:AID-PROT130>3.0.CO;2-F] [PMID: 11093267]
[198]
Chou, K.C. Using subsite coupling to predict signal peptides. Protein Eng., 2001, 14(2), 75-79.
[http://dx.doi.org/10.1093/protein/14.2.75] [PMID: 11297664]
[199]
Chou, K.C. Prediction of signal peptides using scaled window. Peptides, 2001, 22(12), 1973-1979.
[http://dx.doi.org/10.1016/S0196-9781(01)00540-X] [PMID: 11786179]
[200]
Chou, K.C.; Zhang, C.T. Prediction of protein structural classes. Crit. Rev. Biochem. Mol. Biol., 1995, 30(4), 275-349.
[http://dx.doi.org/10.3109/10409239509083488] [PMID: 7587280]
[201]
Chou, K.C.; Shen, H.B. Cell-PLoc: a package of Web servers for predicting subcellular localization of proteins in various organisms. Nat. Protoc., 2008, 3(2), 153-162.
[http://dx.doi.org/10.1038/nprot.2007.494] [PMID: 18274516]
[202]
Chou, K.C.; Shen, H.B. Cell-PLoc 2.0: An improved package of web-servers for predicting subcellular localization of proteins in various organisms. Nat. Sci., 2010, 2, 1090-1103.
[http://dx.doi.org/10.4236/ns.2010.210136]
[203]
Zhou, G.P.; Assa-Munt, N. Some insights into protein structural class prediction. Proteins, 2001, 44(1), 57-59.
[http://dx.doi.org/10.1002/prot.1071] [PMID: 11354006]
[204]
Mohabatkar, H. Prediction of cyclin proteins using Chou’s pseudo amino acid composition. Protein Pept. Lett., 2010, 17(10), 1207-1214.
[http://dx.doi.org/10.2174/092986610792231564] [PMID: 20450487]
[205]
Zhou, G.P.; Doctor, K. Subcellular location prediction of apoptosis proteins. Proteins, 2003, 50(1), 44-48.
[http://dx.doi.org/10.1002/prot.10251] [PMID: 12471598]
[206]
Zia-Ur-Rehman. Khan, A. Identifying GPCRs and their types with Chou’s pseudo amino acid composition: an approach from multi-scale energy representation and position specific scoring matrix. Protein Pept. Lett., 2012, 19(8), 890-903.
[http://dx.doi.org/10.2174/092986612801619589] [PMID: 22316312]
[207]
Fan, G.L.; Li, Q.Z. Discriminating bioluminescent proteins by incorporating average chemical shift and evolutionary information into the general form of Chou’s pseudo amino acid composition. J. Theor. Biol., 2013, 334, 45-51.
[http://dx.doi.org/10.1016/j.jtbi.2013.06.003] [PMID: 23770403]
[208]
Huang, C.; Yuan, J.Q. Predicting protein subchloroplast locations with both single and multiple sites via three different modes of Chou’s pseudo amino acid compositions. J. Theor. Biol., 2013, 335, 205-212.
[http://dx.doi.org/10.1016/j.jtbi.2013.06.034] [PMID: 23850480]
[209]
Hajisharifi, Z.; Piryaiee, M.; Mohammad Beigi, M.; Behbahani, M.; Mohabatkar, H. Predicting anticancer peptides with Chou’s pseudo amino acid composition and investigating their mutagenicity via Ames test. J. Theor. Biol., 2014, 341, 34-40.
[http://dx.doi.org/10.1016/j.jtbi.2013.08.037] [PMID: 24035842]
[210]
Xie, H.L.; Fu, L.; Nie, X.D. Using ensemble SVM to identify human GPCRs N-linked glycosylation sites based on the general form of Chou’s PseAAC. Protein Eng. Des. Sel., 2013, 26(11), 735-742.
[http://dx.doi.org/10.1093/protein/gzt042] [PMID: 24048266]
[211]
Xu, Y.; Shao, X.J.; Wu, L.Y.; Deng, N.Y.; Chou, K.C. iSNO-AAPair: incorporating amino acid pairwise coupling into PseAAC for predicting cysteine S-nitrosylation sites in proteins. PeerJ, 2013, 1e171
[http://dx.doi.org/10.7717/peerj.171] [PMID: 24109555]
[212]
Jia, C.; Lin, X.; Wang, Z. Prediction of protein S-nitrosylation sites based on adapted normal distribution bi-profile Bayes and Chou’s pseudo amino acid composition. Int. J. Mol. Sci., 2014, 15(6), 10410-10423.
[http://dx.doi.org/10.3390/ijms150610410] [PMID: 24918295]
[213]
Qiu, W.R.; Xiao, X.; Lin, W.Z.; Chou, K.C. iMethyl-PseAAC: identification of protein methylation sites via a pseudo amino acid composition approach. BioMed Res. Int., 2014, 2014947416
[http://dx.doi.org/10.1155/2014/947416] [PMID: 24977164]
[214]
Xu, Y.; Wen, X.; Shao, X.J.; Deng, N.Y.; Chou, K.C. iHyd-PseAAC: predicting hydroxyproline and hydroxylysine in proteins by incorporating dipeptide position-specific propensity into pseudo amino acid composition. Int. J. Mol. Sci., 2014, 15(5), 7594-7610.
[http://dx.doi.org/10.3390/ijms15057594] [PMID: 24857907]
[215]
Xu, Y.; Wen, X.; Wen, L.S.; Wu, L.Y.; Deng, N.Y.; Chou, K.C. iNitro-Tyr: prediction of nitrotyrosine sites in proteins with general pseudo amino acid composition. PLoS One, 2014, 9(8)e105018
[http://dx.doi.org/10.1371/journal.pone.0105018] [PMID: 25121969]
[216]
Zhang, J.; Zhao, X.; Sun, P.; Ma, Z. PSNO: predicting cysteine S-nitrosylation sites by incorporating various sequence-derived features into the general form of Chou’s PseAAC. Int. J. Mol. Sci., 2014, 15(7), 11204-11219.
[http://dx.doi.org/10.3390/ijms150711204] [PMID: 24968264]
[217]
Chen, W.; Feng, P.; Ding, H.; Lin, H.; Chou, K.C. iRNA-Methyl: Identifying N(6)-methyladenosine sites using pseudo nucleotide composition. Anal. Biochem., 2015, 490, 26-33.
[http://dx.doi.org/10.1016/j.ab.2015.08.021] [PMID: 26314792]
[218]
Qiu, W.R.; Xiao, X.; Lin, W.Z. iUbiq-Lys: Prediction of lysine ubiquitination sites in proteins by extracting sequence evolution information via a grey system model. J. Biomol. Struct. Dyn. (JBSD) , 2015, 33, 1731-1742.
[219]
Chen, W.; Tang, H.; Ye, J.; Lin, H.; Chou, K.C. iRNA-PseU: Identifying RNA pseudouridine sites. Mol. Ther. Nucleic Acids, 2016, 5e332
[PMID: 28427142]
[220]
Jia, J.; Liu, Z.; Xiao, X.; Liu, B.; Chou, K.C. pSuc-Lys: Predict lysine succinylation sites in proteins with PseAAC and ensemble random forest approach. J. Theor. Biol., 2016, 394, 223-230.
[http://dx.doi.org/10.1016/j.jtbi.2016.01.020] [PMID: 26807806]
[221]
Jia, J.; Liu, Z.; Xiao, X.; Liu, B.; Chou, K.C. iCar-PseCp: identify carbonylation sites in proteins by Monte Carlo sampling and incorporating sequence coupled effects into general PseAAC. Oncotarget, 2016, 7(23), 34558-34570.
[http://dx.doi.org/10.18632/oncotarget.9148] [PMID: 27153555]
[222]
Ju, Z.; Cao, J.Z.; Gu, H. Predicting lysine phosphoglycerylation with fuzzy SVM by incorporating k-spaced amino acid pairs into Chou׳s general PseAAC. J. Theor. Biol., 2016, 397, 145-150.
[http://dx.doi.org/10.1016/j.jtbi.2016.02.020] [PMID: 26908349]
[223]
Liu, Z.; Xiao, X.; Yu, D.J.; Jia, J.; Qiu, W.R.; Chou, K.C. pRNAm-PC: Predicting N(6)-methyladenosine sites in RNA sequences via physical-chemical properties. Anal. Biochem., 2016, 497, 60-67.
[http://dx.doi.org/10.1016/j.ab.2015.12.017] [PMID: 26748145]
[224]
Qiu, W.R.; Sun, B.Q.; Xiao, X.; Xu, Z.C.; Chou, K.C. iHyd-PseCp: Identify hydroxyproline and hydroxylysine in proteins by incorporating sequence-coupled effects into general PseAAC. Oncotarget, 2016, 7(28), 44310-44321.
[http://dx.doi.org/10.18632/oncotarget.10027] [PMID: 27322424]
[225]
Qiu, W.R.; Sun, B.Q.; Xiao, X.; Xu, Z.C.; Chou, K.C. iPTM-mLys: identifying multiple lysine PTM sites and their different types. Bioinformatics, 2016, 32(20), 3116-3123.
[http://dx.doi.org/10.1093/bioinformatics/btw380] [PMID: 27334473]
[226]
Qiu, W.R.; Xiao, X.; Xu, Z.C.; Chou, K.C. iPhos-PseEn: identifying phosphorylation sites in proteins by fusing different pseudo components into an ensemble classifier. Oncotarget, 2016, 7(32), 51270-51283.
[http://dx.doi.org/10.18632/oncotarget.9987] [PMID: 27323404]
[227]
Xu, Y.; Chou, K.C. Recent progress in predicting posttranslational modification sites in proteins. Curr. Top. Med. Chem., 2016, 16(6), 591-603.
[http://dx.doi.org/10.2174/1568026615666150819110421] [PMID: 26286211]
[228]
Feng, P.; Ding, H.; Yang, H.; Chen, W.; Lin, H.; Chou, K.C. iRNA-PseColl: Identifying the occurrence sites of different RNA modifications by incorporating collective effects of nucleotides into PseKNC. Mol. Ther. Nucleic Acids, 2017, 7, 155-163.
[http://dx.doi.org/10.1016/j.omtn.2017.03.006] [PMID: 28624191]
[229]
Ju, Z.; He, J.J. Prediction of lysine crotonylation sites by incorporating the composition of k-spaced amino acid pairs into Chou’s general PseAAC. J. Mol. Graph. Model., 2017, 77, 200-204.
[http://dx.doi.org/10.1016/j.jmgm.2017.08.020] [PMID: 28886434]
[230]
Liu, L.M.; Xu, Y.; Chou, K.C. iPGK-PseAAC: identify lysine phosphoglycerylation sites in proteins by incorporating four different tiers of amino acid pairwise coupling information into the general PseAAC. Med. Chem., 2017, 13(6), 552-559.
[http://dx.doi.org/10.2174/1573406413666170515120507] [PMID: 28521678]
[231]
Qiu, W.R.; Jiang, S.Y.; Sun, B.Q.; Xiao, X.; Cheng, X.; Chou, K.C. iRNA-2methyl: identify RNA 2′-O-methylation sites by incorporating sequence-coupled effects into general PseKNC and ensemble classifier. Med. Chem., 2017, 13(8), 734-743.
[http://dx.doi.org/10.2174/1573406413666170623082245] [PMID: 28641529]
[232]
Qiu, W.R.; Jiang, S.Y.; Xu, Z.C.; Xiao, X.; Chou, K.C. iRNAm5C-PseDNC: identifying RNA 5-methylcytosine sites by incorporating physical-chemical properties into pseudo dinucleotide composition. Oncotarget, 2017, 8(25), 41178-41188.
[http://dx.doi.org/10.18632/oncotarget.17104] [PMID: 28476023]
[233]
Qiu, W.R.; Sun, B.Q.; Xiao, X.; Xu, D. iPhos-PseEvo: Identifying human phosphorylated proteins by incorporating evolutionary information into general PseAAC via grey system theory. Mol. Inform., 2017, 36, 5-6.
[234]
Xu, Y.; Wang, Z.; Li, C.; Chou, K.C. iPreny-PseAAC: identify C-terminal cysteine prenylation sites in proteins by incorporating two tiers of sequence couplings into PseAAC. Med. Chem., 2017, 13(6), 544-551.
[http://dx.doi.org/10.2174/1573406413666170419150052] [PMID: 28425870]
[235]
Chandra, A.; Sharma, A.; Dehzangi, A.; Ranganathan, S.; Jokhan, A.; Chou, K.C.; Tsunoda, T. PhoglyStruct: Prediction of phosphoglycerylated lysine residues using structural properties of amino acids. Sci. Rep., 2018, 8(1), 17923.
[http://dx.doi.org/10.1038/s41598-018-36203-8] [PMID: 30560923]
[236]
Ju, Z.; Wang, S.Y. Prediction of citrullination sites by incorporating k-spaced amino acid pairs into Chou’s general pseudo amino acid composition. Gene, 2018, 664, 78-83.
[http://dx.doi.org/10.1016/j.gene.2018.04.055] [PMID: 29694908]
[237]
Khan, Y.D.; Rasool, N.; Hussain, W.; Khan, S.A.; Chou, K.C. iPhosT-PseAAC: Identify phosphothreonine sites by incorporating sequence statistical moments into PseAAC. Anal. Biochem., 2018, 550, 109-116.
[http://dx.doi.org/10.1016/j.ab.2018.04.021] [PMID: 29704476]
[238]
Khan, Y.D.; Rasool, N.; Hussain, W.; Khan, S.A.; Chou, K.C. iPhosY-PseAAC: identify phosphotyrosine sites by incorporating sequence statistical moments into PseAAC. Mol. Biol. Rep., 2018, 45(6), 2501-2509.
[http://dx.doi.org/10.1007/s11033-018-4417-z] [PMID: 30311130]
[239]
Sabooh, M.F.; Iqbal, N.; Khan, M.; Khan, M.; Maqbool, H.F. Identifying 5-methylcytosine sites in RNA sequence using composite encoding feature into Chou’s PseKNC. J. Theor. Biol., 2018, 452, 1-9.
[http://dx.doi.org/10.1016/j.jtbi.2018.04.037] [PMID: 29727634]
[240]
Li, F.; Zhang, Y.; Purcell, A.W.; Webb, G.I.; Chou, K.C.; Lithgow, T.; Li, C.; Song, J. Positive-unlabelled learning of glycosylation sites in the human proteome. BMC Bioinformatics, 2019, 20(1), 112.
[http://dx.doi.org/10.1186/s12859-019-2700-1] [PMID: 30841845]
[241]
Chou, K.C.; Shen, H.B. Recent advances in developing web-servers for predicting protein attributes. Nat. Sci., 2009, 1, 63-92.
[http://dx.doi.org/10.4236/ns.2009.12011]
[242]
Liu, B.; Xu, J.; Lan, X.; Xu, R.; Zhou, J.; Wang, X.; Chou, K.C. iDNA-Prot|dis: identifying DNA-binding proteins by incorporating amino acid distance-pairs and reduced alphabet profile into the general pseudo amino acid composition. PLoS One, 2014, 9(9)e106691
[http://dx.doi.org/10.1371/journal.pone.0106691] [PMID: 25184541]
[243]
Fan, Y.N.; Xiao, X.; Min, J.L.; Chou, K.C. iNR-Drug: predicting the interaction of drugs with nuclear receptors in cellular networking. Int. J. Mol. Sci., 2014, 15(3), 4915-4937.
[http://dx.doi.org/10.3390/ijms15034915] [PMID: 24651462]
[244]
Guo, S.H.; Deng, E.Z.; Xu, L.Q.; Ding, H.; Lin, H.; Chen, W.; Chou, K.C. iNuc-PseKNC: a sequence-based predictor for predicting nucleosome positioning in genomes with pseudo k-tuple nucleotide composition. Bioinformatics, 2014, 30(11), 1522-1529.
[http://dx.doi.org/10.1093/bioinformatics/btu083] [PMID: 24504871]
[245]
Qiu, W.R.; Xiao, X.; Chou, K.C. iRSpot-TNCPseAAC: identify recombination spots with trinucleotide composition and pseudo amino acid components. Int. J. Mol. Sci., 2014, 15(2), 1746-1766.
[http://dx.doi.org/10.3390/ijms15021746] [PMID: 24469313]
[246]
Chen, W.; Feng, P.M.; Lin, H.; Chou, K.C. iSS-PseDNC: identifying splicing sites using pseudo dinucleotide composition. BioMed Res. Int., 2014, 2014623149
[http://dx.doi.org/10.1155/2014/623149] [PMID: 24967386]
[247]
Jia, J.; Liu, Z.; Xiao, X.; Liu, B.; Chou, K.C. iPPI-Esml: An ensemble classifier for identifying the interactions of proteins by incorporating their physicochemical properties and wavelet transforms into PseAAC. J. Theor. Biol., 2015, 377, 47-56.
[http://dx.doi.org/10.1016/j.jtbi.2015.04.011] [PMID: 25908206]
[248]
Liu, B.; Fang, L.; Liu, F.; Wang, X.; Chen, J.; Chou, K.C. Identification of real microRNA precursors with a pseudo structure status composition approach. PLoS One, 2015, 10(3)e0121501
[http://dx.doi.org/10.1371/journal.pone.0121501] [PMID: 25821974]
[249]
Xiao, X.; Ye, H.X.; Liu, Z.; Jia, J.H.; Chou, K.C. iROS-gPseKNC: Predicting replication origin sites in DNA by incorporating dinucleotide position-specific propensity into general pseudo nucleotide composition. Oncotarget, 2016, 7(23), 34180-34189.
[http://dx.doi.org/10.18632/oncotarget.9057] [PMID: 27147572]
[250]
Jia, J.; Liu, Z.; Xiao, X.; Liu, B.; Chou, K.C. iPPBS-Opt: A sequence-based ensemble classifier for identifying protein-protein binding sites by optimizing imbalanced training datasets. Molecules, 2016, 21(1)E95
[http://dx.doi.org/10.3390/molecules21010095] [PMID: 26797600]
[251]
Zhang, C.J.; Tang, H.; Li, W.C.; Lin, H.; Chen, W.; Chou, K.C. iOri-Human: identify human origin of replication by incorporating dinucleotide physicochemical properties into pseudo nucleotide composition. Oncotarget, 2016, 7(43), 69783-69793.
[http://dx.doi.org/10.18632/oncotarget.11975] [PMID: 27626500]
[252]
Liu, B.; Fang, L.; Liu, F.; Wang, X.; Chou, K.C. iMiRNA-PseDPC: microRNA precursor identification with a pseudo distance-pair composition approach. J. Biomol. Struct. Dyn., 2016, 34(1), 223-235.
[http://dx.doi.org/10.1080/07391102.2015.1014422] [PMID: 25645238]
[253]
Liu, B.; Long, R.; Chou, K.C. iDHS-EL: identifying DNase I hypersensitive sites by fusing three different modes of pseudo nucleotide composition into an ensemble learning framework. Bioinformatics, 2016, 32(16), 2411-2418.
[http://dx.doi.org/10.1093/bioinformatics/btw186] [PMID: 27153623]
[254]
Jia, J.; Liu, Z.; Xiao, X.; Liu, B.; Chou, K.C. Identification of protein-protein binding sites by incorporating the physicochemical properties and stationary wavelet transforms into pseudo amino acid composition. J. Biomol. Struct. Dyn., 2016, 34(9), 1946-1961. [JBSD]
[http://dx.doi.org/10.1080/07391102.2015.1095116] [PMID: 26375780]
[255]
Chen, W.; Ding, H.; Feng, P.; Lin, H.; Chou, K.C. iACP: a sequence-based tool for identifying anticancer peptides. Oncotarget, 2016, 7(13), 16895-16909.
[http://dx.doi.org/10.18632/oncotarget.7815] [PMID: 26942877]
[256]
Chen, J.; Long, R.; Wang, X.L.; Liu, B.; Chou, K.C. dRHP-PseRA: detecting remote homology proteins using profile-based pseudo protein sequence and rank aggregation. Sci. Rep., 2016, 6, 32333.
[http://dx.doi.org/10.1038/srep32333] [PMID: 27581095]
[257]
Liu, B.; Wu, H.; Zhang, D.; Wang, X.; Chou, K.C. Pse-Analysis: a python package for DNA/RNA and protein/peptide sequence analysis based on pseudo components and kernel methods. Oncotarget, 2017, 8(8), 13338-13343.
[http://dx.doi.org/10.18632/oncotarget.14524] [PMID: 28076851]
[258]
Wang, J.; Yang, B.; Revote, J.; Leier, A.; Marquez-Lago, T.T.; Webb, G.; Song, J.; Chou, K.C.; Lithgow, T. POSSUM: a bioinformatics toolkit for generating numerical sequence feature descriptors based on PSSM profiles. Bioinformatics, 2017, 33(17), 2756-2758.
[http://dx.doi.org/10.1093/bioinformatics/btx302] [PMID: 28903538]
[259]
Liu, B.; Wang, S.; Long, R.; Chou, K.C. iRSpot-EL: identify recombination spots with an ensemble learning approach. Bioinformatics, 2017, 33(1), 35-41.
[http://dx.doi.org/10.1093/bioinformatics/btw539] [PMID: 27531102]
[260]
Cheng, X.; Zhao, S.G.; Xiao, X. iATC-mISF: a multi-label classifier for predicting the classes of anatomical therapeutic chemicals. Bioinformatics (Corrigendum, ibid., 2017, Vol.33, 2610), 2017, 33, 341-346.
[261]
Cheng, X.; Zhao, S.G.; Xiao, X.; Chou, K.C. iATC-mHyb: a hybrid multi-label classifier for predicting the classification of anatomical therapeutic chemicals. Oncotarget, 2017, 8(35), 58494-58503.
[http://dx.doi.org/10.18632/oncotarget.17028] [PMID: 28938573]
[262]
Liu, B.; Yang, F.; Chou, K.C. 2L-piRNA: A two-layer ensemble classifier for identifying piwi-interacting RNAs and their function. Mol. Ther. Nucleic Acids, 2017, 7, 267-277.
[http://dx.doi.org/10.1016/j.omtn.2017.04.008] [PMID: 28624202]
[263]
Wang, J.; Yang, B.; Leier, A.; Marquez-Lago, T.T.; Hayashida, M.; Rocker, A.; Zhang, Y.; Akutsu, T.; Chou, K.C.; Strugnell, R.A.; Song, J.; Lithgow, T. Bastion6: a bioinformatics approach for accurate prediction of type VI secreted effectors. Bioinformatics, 2018, 34(15), 2546-2555.
[http://dx.doi.org/10.1093/bioinformatics/bty155] [PMID: 29547915]
[264]
Liu, B.; Li, K.; Huang, D.S.; Chou, K.C. iEnhancer-EL: identifying enhancers and their strength with ensemble learning approach. Bioinformatics, 2018, 34(22), 3835-3842.
[http://dx.doi.org/10.1093/bioinformatics/bty458] [PMID: 29878118]
[265]
Chen, Z.; Zhao, P.; Li, F.; Leier, A.; Marquez-Lago, T.T.; Wang, Y.; Webb, G.I.; Smith, A.I.; Daly, R.J.; Chou, K.C.; Song, J. iFeature: a Python package and web server for features extraction and selection from protein and peptide sequences. Bioinformatics, 2018, 34(14), 2499-2502.
[http://dx.doi.org/10.1093/bioinformatics/bty140] [PMID: 29528364]
[266]
Su, Z.D.; Huang, Y.; Zhang, Z.Y.; Zhao, Y.W.; Wang, D.; Chen, W.; Chou, K.C.; Lin, H. iLoc-lncRNA: predict the subcellular location of lncRNAs by incorporating octamer composition into general PseKNC. Bioinformatics, 2018, 34(24), 4196-4204.
[http://dx.doi.org/10.1093/bioinformatics/bty508] [PMID: 29931187]
[267]
Liu, B.; Weng, F.; Huang, D.S.; Chou, K.C. iRO-3wPseKNC: identify DNA replication origins by three-window-based PseKNC. Bioinformatics, 2018, 34(18), 3086-3093.
[http://dx.doi.org/10.1093/bioinformatics/bty312] [PMID: 29684124]
[268]
Yang, H.; Qiu, W.R.; Liu, G.; Guo, F.B.; Chen, W.; Chou, K.C.; Lin, H. iRSpot-Pse6NC: Identifying recombination spots in Saccharomyces cerevisiae by incorporating hexamer composition into general PseKNC. Int. J. Biol. Sci., 2018, 14(8), 883-891.
[http://dx.doi.org/10.7150/ijbs.24616] [PMID: 29989083]
[269]
Song, J.; Li, F.; Leier, A.; Marquez-Lago, T.T.; Akutsu, T.; Haffari, G.; Chou, K.C.; Webb, G.I.; Pike, R.N.; Hancock, J. PROSPERous: high-throughput prediction of substrate cleavage sites for 90 proteases with improved accuracy. Bioinformatics, 2018, 34(4), 684-687.
[http://dx.doi.org/10.1093/bioinformatics/btx670] [PMID: 29069280]
[270]
Chou, K.C. Progress in protein structural class prediction and its impact to bioinformatics and proteomics. Curr. Protein Pept. Sci., 2005, 6(5), 423-436.
[http://dx.doi.org/10.2174/138920305774329368] [PMID: 16248794]
[271]
Liu, B.; Liu, F.; Fang, L.; Wang, X.; Chou, K.C. repDNA: a Python package to generate various modes of feature vectors for DNA sequences by incorporating user-defined physicochemical properties and sequence-order effects. Bioinformatics, 2015, 31(8), 1307-1309.
[http://dx.doi.org/10.1093/bioinformatics/btu820] [PMID: 25504848]
[272]
Liu, B.; Liu, F.; Fang, L.; Wang, X.; Chou, K.C. repRNA: a web server for generating various feature vectors of RNA sequences. Mol. Genet. Genomics, 2016, 291(1), 473-481.
[http://dx.doi.org/10.1007/s00438-015-1078-7] [PMID: 26085220]
[273]
Shyamili, V.K.; Vellaichamy, A. Sequence and structure-based characterization of human and yeast ubiquitination sites by using Chou’s sample formulation. Proteins, 2019, 87(4)
[http://dx.doi.org/10.1002/prot.25689] [PMID: 30958587]
[274]
Awais, M.; Hussain, W.; Khan, Y.D.; Rasool, N.; Khan, S.A. iPhosH- PseAAC: Identify phosphohistidine sites in proteins by blending statistical moments and position relative features according to the Chou's 5-step rule and general pseudo amino acid composition. IEEE/ACM Trans Comput. Biol. Bioinform., 2019. [Epub ahead of print]
[http://dx.doi.org/10.1109/TCBB.2019.2919025]
[275]
Lu, F.; Zhu, M.; Lin, Y.; Zhong, H.; Cai, L.; He, L.; Chou, K.C. The preliminary efficacy evaluation of the CTLA-4-Ig treatment against Lupus nephritis through in-silico analyses. J. Theor. Biol., 2019, 471, 74-81.
[http://dx.doi.org/10.1016/j.jtbi.2019.03.017] [PMID: 30928350]
[276]
Niu, B.; Liang, C.; Lu, Y.; Zhao, M.; Chen, Q.; Zhang, Y.; Zheng, L.; Chou, K.C. Glioma stages prediction based on machine learning algorithm combined with protein-protein interaction networks. Genomics, 2019, S0888-7543(19), 30174-0.,
[http://dx.doi.org/10.1016/j.ygeno.2019.05.024] [PMID: 31150762]
[277]
Chou, K.C.; Forsén, S. Diffusion-controlled effects in reversible enzymatic fast reaction systems--critical spherical shell and proximity rate constant. Biophys. Chem., 1980, 12(3-4), 255-263.
[http://dx.doi.org/10.1016/0301-4622(80)80002-0] [PMID: 7225518]
[278]
Chou, K.C.; Li, T.T.; Forsén, S. The critical spherical shell in enzymatic fast reaction systems. Biophys. Chem., 1980, 12(3-4), 265-269.
[http://dx.doi.org/10.1016/0301-4622(80)80003-2] [PMID: 7225519]
[279]
Li, T.T.; Forsen, S. The flow of substrate molecules in fast enzyme-catalyzed reaction systems. Chem. Scr., 1980, 16, 192-196.
[280]
Chou, K.C.; Forsén, S. Graphical rules for enzyme-catalysed rate laws. Biochem. J., 1980, 187(3), 829-835.
[http://dx.doi.org/10.1042/bj1870829] [PMID: 7188428]
[281]
Forsen, S.; Zhou, G.Q. Three schematic rules for deriving apparent rate constants. Chem. Scr., 1980, 16, 109-113.
[282]
Carter, R.E.; Forsen, S. A new graphical method for deriving rate equations for complicated mechanisms. Chem. Scr., 1981, 18, 82-86.
[283]
Chou, K.C.; Forsen, S. Graphical rules of steady-state reaction systems. Can. J. Chem., 1981, 59, 737-755.
[http://dx.doi.org/10.1139/v81-107]
[284]
Chen, N.Y.; Forsen, S. The biological functions of low-frequency phonons: 2. Cooperative effects. Chem. Scr., 1981, 18, 126-132.
[285]
Chou, K.C.; Chen, N.Y. The biological functions of low-frequency phonons. Sci. Sin., 1977, 20, 447-457.
[PMID: 6487745]
[286]
Chou, K.C.; Jiang, S.P.; Liu, W.M.; Fee, C.H. Graph theory of enzyme kinetics: 1. Steady-state reaction system. Sci. Sin., 1979, 22, 341-358.
[287]
Chou, K.C. Low-frequency vibrations of helical structures in protein molecules. Biochem. J., 1983, 209(3), 573-580.
[http://dx.doi.org/10.1042/bj2090573] [PMID: 6870784]
[288]
Chou, K.C. Identification of low-frequency modes in protein molecules. Biochem. J., 1983, 215(3), 465-469.
[http://dx.doi.org/10.1042/bj2150465] [PMID: 6362659]
[289]
Zhou, G.P.; Deng, M.H. An extension of Chou’s graphic rules for deriving enzyme kinetic equations to systems involving parallel reaction pathways. Biochem. J., 1984, 222(1), 169-176.
[http://dx.doi.org/10.1042/bj2220169] [PMID: 6477507]
[290]
Chou, K.C. Biological functions of low-frequency vibrations (phonons). Helical structures and microenvironment. Biophys. J., 1984, 45(5), 881-889.
[http://dx.doi.org/10.1016/S0006-3495(84)84234-4] [PMID: 6428481]
[291]
Chou, K.C. The biological functions of low-frequency vibrations (phonons). Resonance effects and allosteric transition. Biophys. Chem., 1984, 20(1-2), 61-71.
[http://dx.doi.org/10.1016/0301-4622(84)80005-8] [PMID: 6487745]
[292]
Chou, K.C. Low-frequency vibrations of DNA molecules. Biochem. J., 1984, 221(1), 27-31.
[http://dx.doi.org/10.1042/bj2210027] [PMID: 6466317]
[293]
Chou, K.C. Prediction of a low-frequency mode in BPTI. Int. J. Biol. Macromol., 1985, 7, 77-80.
[http://dx.doi.org/10.1016/0141-8130(85)90035-2]
[294]
Chou, K.C. Low-frequency motions in protein molecules. Beta-sheet and beta-barrel. Biophys. J., 1985, 48(2), 289-297.
[http://dx.doi.org/10.1016/S0006-3495(85)83782-6] [PMID: 4052563]
[295]
Chou, K.C. Prediction of a low-frequency mode in bovine pancreatic trypsin inhibitor molecule. Int. J. Biol. Macromol., 1985, 7, 77-80.
[http://dx.doi.org/10.1016/0141-8130(85)90035-2]
[296]
Chou, K.C.; Kiang, Y.S. The biological functions of low-frequency vibrations (phonons). A phenomenological theory. Biophys. Chem., 1985, 22(3), 219-235.
[http://dx.doi.org/10.1016/0301-4622(85)80045-4] [PMID: 4052576]
[297]
Chou, K.C. Origin of low-frequency motions in biological macromolecules. A view of recent progress in the quasi-continuity model. Biophys. Chem., 1986, 25(2), 105-116.
[http://dx.doi.org/10.1016/0301-4622(86)87001-6] [PMID: 3101760]
[298]
Chou, K.C. The biological functions of low-frequency vibrations (phonons). A possible dynamic mechanism of allosteric transition in antibody molecules. Biopolymers, 1987, 26(2), 285-295.
[http://dx.doi.org/10.1002/bip.360260209] [PMID: 3828475]
[299]
Chou, K.C. Low-frequency collective motion in biomacromolecules and its biological functions. Biophys. Chem., 1988, 30(1), 3-48.
[http://dx.doi.org/10.1016/0301-4622(88)85002-6] [PMID: 3046672]
[300]
Maggiora, G.M. The biological functions of low-frequency phonons: The impetus for DNA to accommodate intercalators. Br. Polym. J., 1988, 20, 143-148.
[http://dx.doi.org/10.1002/pi.4980200209]
[301]
Chou, K.C. Low-frequency resonance and cooperativity of hemoglobin. Trends Biochem. Sci., 1989, 14(6), 212-213.
[http://dx.doi.org/10.1016/0968-0004(89)90026-1] [PMID: 2763333]
[302]
Chou, K.C.; Maggiora, G.M.; Mao, B. Quasi-continuum models of twist-like and accordion-like low-frequency motions in DNA. Biophys. J., 1989, 56(2), 295-305.
[http://dx.doi.org/10.1016/S0006-3495(89)82676-1] [PMID: 2775828]
[303]
Chou, K.C. Graphic rules in steady and non-steady state enzyme kinetics. J. Biol. Chem., 1989, 264(20), 12074-12079.
[PMID: 2745429]
[304]
Chou, K.C. Applications of graph theory to enzyme kinetics and protein folding kinetics. Steady and non-steady-state systems. Biophys. Chem., 1990, 35(1), 1-24.
[http://dx.doi.org/10.1016/0301-4622(90)80056-D] [PMID: 2183882]
[305]
Althaus, I.W.; Chou, J.J.; Gonzales, A.J.; Deibel, M.R.; Chou, K.C.; Kezdy, F.J.; Romero, D.L.; Aristoff, P.A.; Tarpley, W.G.; Reusser, F. Steady-state kinetic studies with the non-nucleoside HIV-1 reverse transcriptase inhibitor U-87201E. J. Biol. Chem., 1993, 268(9), 6119-6124.
[PMID: 7681060]
[306]
Althaus, I.W.; Gonzales, A.J.; Chou, J.J.; Romero, D.L.; Deibel, M.R.; Chou, K.C.; Kezdy, F.J.; Resnick, L.; Busso, M.E.; So, A.G. The quinoline U-78036 is a potent inhibitor of HIV-1 reverse transcriptase. J. Biol. Chem., 1993, 268(20), 14875-14880.
[PMID: 7686907]
[307]
Althaus, I.W.; Chou, J.J.; Gonzales, A.J.; Deibel, M.R.; Chou, K.C.; Kezdy, F.J.; Romero, D.L.; Palmer, J.R.; Thomas, R.C.; Aristoff, P.A. Kinetic studies with the non-nucleoside HIV-1 reverse transcriptase inhibitor U-88204E. Biochemistry, 1993, 32(26), 6548-6554.
[http://dx.doi.org/10.1021/bi00077a008] [PMID: 7687145]
[308]
Althaus, I.W.; Chou, J.J.; Gonzales, A.J.; LeMay, R.J.; Deibel, M.R.; Chou, K.C.; Kezdy, F.J.; Romero, D.L.; Thomas, R.C.; Aristoff, P.A. Steady-state kinetic studies with the polysulfonate U-9843, an HIV reverse transcriptase inhibitor. Experientia, 1994, 50(1), 23-28.
[http://dx.doi.org/10.1007/BF01992044] [PMID: 7507441]
[309]
Althaus, I.W.; Chou, J.J.; Gonzales, A.J.; Deibel, M.R.; Chou, K.C.; Kezdy, F.J.; Romero, D.L.; Thomas, R.C.; Aristoff, P.A.; Tarpley, W.G. Kinetic studies with the non-nucleoside human immunodeficiency virus type-1 reverse transcriptase inhibitor U-90152E. Biochem. Pharmacol., 1994, 47(11), 2017-2028.
[http://dx.doi.org/10.1016/0006-2952(94)90077-9] [PMID: 7516658]
[310]
Chou, K.C.; Kézdy, F.J.; Reusser, F. Kinetics of processive nucleic acid polymerases and nucleases. Anal. Biochem., 1994, 221(2), 217-230.
[http://dx.doi.org/10.1006/abio.1994.1405] [PMID: 7529005]
[311]
Chou, K.C.; Zhang, C.T.; Maggiora, G.M. Solitary wave dynamics as a mechanism for explaining the internal motion during microtubule growth. Biopolymers, 1994, 34(1), 143-153.
[http://dx.doi.org/10.1002/bip.360340114] [PMID: 8110966]
[312]
Althaus, I.W.; Chou, K.C.; Lemay, R.J.; Franks, K.M.; Deibel, M.R.; Kezdy, F.J.; Resnick, L.; Busso, M.E.; So, A.G.; Downey, K.M.; Romero, D.L.; Thomas, R.C.; Aristoff, P.A.; Tarpley, W.G.; Reusser, F. The benzylthio-pyrimidine U-31,355, a potent inhibitor of HIV-1 reverse transcriptase. Biochem. Pharmacol., 1996, 51(6), 743-750.
[http://dx.doi.org/10.1016/0006-2952(95)02390-9] [PMID: 8602869]
[313]
Liu, H.; Wang, M.; Chou, K.C. Low-frequency Fourier spectrum for predicting membrane protein types. Biochem. Biophys. Res. Commun., 2005, 336(3), 737-739.
[http://dx.doi.org/10.1016/j.bbrc.2005.08.160] [PMID: 16140260]
[314]
Gordon, G.A. Designed electromagnetic pulsed therapy: clinical applications. J. Cell. Physiol., 2007, 212(3), 579-582.
[http://dx.doi.org/10.1002/jcp.21025] [PMID: 17577213]
[315]
Andraos, J. Kinetic plasticity and the determination of product ratios for kinetic schemes leading to multiple products without rate laws: new methods based on directed graphs. Can. J. Chem., 2008, 86, 342-357.
[http://dx.doi.org/10.1139/v08-020]
[316]
Chou, K.C.; Shen, H.B. FoldRate: A web-server for predicting protein folding rates from primary sequence. Open Bioinform. J., 2009, 3, 31-50.
[http://dx.doi.org/10.2174/1875036200903010031]
[317]
Shen, H.B.; Song, J.N. Prediction of protein folding rates from primary sequence by fusing multiple sequential features. J. Biomed. Sci. Eng., 2009, 2, 136-143.
[318]
Wang, J.F.; Chou, K.C. Insight into the molecular switch mechanism of human Rab5a from molecular dynamics simulations. Biochem. Biophys. Res. Commun., 2009, 390(3), 608-612.
[http://dx.doi.org/10.1016/j.bbrc.2009.10.014] [PMID: 19819222]
[319]
Gordon, G. Extrinsic electromagnetic fields, low frequency (phonon) vibrations, and control of cell function: a non-linear resonance system. J. Biomed. Sci. Eng., 2008, 1, 152-156.
[http://dx.doi.org/10.4236/jbise.2008.13025]
[320]
Madkan, A.; Blank, M.; Elson, E.; Geddis, M.S.; Goodman, R. Steps to the clinic with ELF EMF. Nat. Sci., 2009, 1, 157-165.
[http://dx.doi.org/10.4236/ns.2009.13020]
[321]
Chou, K.C. Graphic rule for drug metabolism systems. Curr. Drug Metab., 2010, 11(4), 369-378.
[http://dx.doi.org/10.2174/138920010791514261] [PMID: 20446902]
[322]
Lin, W.Z.; Xiao, X. Wenxiang: a web-server for drawing wenxiang diagrams. Nat. Sci., 2011, 3, 862-865.
[323]
Lian, P.; Wei, D.Q.; Wang, J.F.; Chou, K.C. An allosteric mechanism inferred from molecular dynamics simulations on phospholamban pentamer in lipid membranes. PLoS One, 2011, 6(4)e18587
[http://dx.doi.org/10.1371/journal.pone.0018587] [PMID: 21525996]
[324]
Liao, Q.H.; Gao, Q.Z.; Wei, J.; Chou, K.C. Docking and molecular dynamics study on the inhibitory activity of novel inhibitors on epidermal growth factor receptor (EGFR). Med. Chem., 2011, 7(1), 24-31.
[http://dx.doi.org/10.2174/157340611794072698] [PMID: 21235516]
[325]
Zhou, G.P. The disposition of the LZCC protein residues in wenxiang diagram provides new insights into the protein-protein interaction mechanism. J. Theor. Biol., 2011, 284(1), 142-148.
[http://dx.doi.org/10.1016/j.jtbi.2011.06.006] [PMID: 21718705]
[326]
Li, J.; Wei, D.Q.; Wang, J.F.; Yu, Z.T.; Chou, K.C. Molecular dynamics simulations of CYP2E1. Med. Chem., 2012, 8(2), 208-221.
[http://dx.doi.org/10.2174/157340612800493692] [PMID: 22385180]
[327]
Wang, J.F.; Chou, K.C. Recent advances in computational studies on influenza a virus M2 proton channel. Mini Rev. Med. Chem., 2012, 12(10), 971-978.
[http://dx.doi.org/10.2174/138955712802762275] [PMID: 22420575]
[328]
Zhang, T.; Wei, D.Q.; Chou, K.C. A pharmacophore model specific to active site of CYP1A2 with a novel molecular modeling explorer and CoMFA. Med. Chem., 2012, 8(2), 198-207.
[http://dx.doi.org/10.2174/157340612800493601] [PMID: 22385179]
[329]
Chou, K.C. Progresses in predicting post-translational modification. Int. J. Pept. Res. Ther., 2019.
[http://dx.doi.org/10.1007/s10989-019-09893-5]
[330]
Chou, K.C. Steps to the clinic with ELF EMF. Natural Science , 2019, 1, 157-165.
[http://dx.doi.org/10.4236/ns.2009.13020]
[331]
Chou, K.C. Graphic rule for drug metabolism systems. Curr. Drug Metab., 2019, 11, 369-378.
[332]
Chou, K.C. Recent progresses in predicting protein subcellular localization with artificial intelligence tools developed via the 5-steps rule. Genomics, 2019. in press
[333]
Chou, K.C. An insightful 10-year recollection since the emergence of the 5-steps rule. Current. Pharmaceutical Design, 2019. in press
[334]
Chou, K.C. Impacts of pseudo amino acid components and 5-steps rule to proteomics and proteome analysis. Proteomics, 2019. in press
[335]
Chou, K.C. An insightful recollection since the distorted key theory was born about 23 years ago. Int. J. Pept. Res. Ther., 2019. in press
[http://dx.doi.org/10.1016/j.ygeno.2019.09.001]
[336]
Chou, K.C. Proposing pseudo amino acid components is an important milestone for proteome and genome analyses. Intl. J. Pept. Res. Therap.(IJPRT),, 2019. [in press]
[http://dx.doi.org/10.1007/s10989-019-09910-7]
[337]
Chou, K.C. Two kinds of metrics for computational biology. Genomics, in press


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 19
ISSUE: 25
Year: 2019
Page: [2283 - 2300]
Pages: 18
DOI: 10.2174/1568026619666191018100141
Price: $65

Article Metrics

PDF: 22
HTML: 4
EPUB: 1
PRC: 1