Plant Polyphenols as Neuroprotective Agents in Parkinson’s Disease Targeting Oxidative Stress

Author(s): Suet Lee Hor, Seong Lin Teoh, Wei Ling Lim*.

Journal Name: Current Drug Targets

Volume 21 , Issue 5 , 2020

  Journal Home
Translate in Chinese
Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Parkinson's disease (PD) is the second most prevalent progressive neurodegenerative disorder characterized by the degeneration of dopaminergic neurons in the human midbrain. Various ongoing research studies are competing to understand the pathology of PD and elucidate the mechanisms underlying neurodegeneration. Current pharmacological treatments primarily focused on improving dopamine metabolism in PD patients, despite the side effects of long-term usage. In recent years, it is recognized that oxidative stress-mediated pathways lead to neurodegeneration in the brain, which is associated with the pathophysiology of PD. The importance of oxidative stress is often less emphasized when developing potential therapeutic approaches. Natural plant antioxidants have been shown to mediate the oxidative stress-induced effects in PD, which has gained considerable attention in both in vitro and in vivo studies. Yet, clinical trials on natural polyphenol compounds are limited, restricting the potential use of these compounds as an alternative treatment for PD. Therefore, this review provides an understanding of the oxidative stress-induced effects in PD by elucidating the underlying events contributing to oxidative stress and explore the potential use of polyphenols in improving the oxidative status in PD. Preclinical findings have supported the potential of polyphenols in providing neuroprotection against oxidative stress-induced toxicity in PD. However, limiting factors, such as safety and bioavailability of polyphenols, warrant further investigations so as to make them the potential target for clinical applications in the treatment and management of PD.

Keywords: Antioxidants, parkinson's disease, polyphenols, oxidative stress, neuroprotection, bioavailability.

[1]
Dexter DT, Jenner P. Parkinson disease: from pathology to molecular disease mechanisms. Free Radic Biol Med 2013; 62: 132-44.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.01.018] [PMID: 23380027]
[2]
Pringsheim T, Jette N, Frolkis A, Steeves TD. The prevalence of Parkinson’s disease: a systematic review and meta-analysis. Mov Disord 2014; 29(13): 1583-90.
[http://dx.doi.org/10.1002/mds.25945] [PMID: 24976103]
[3]
Obeso JA, Rodriguez-Oroz MC, Goetz CG, et al. Missing pieces in the Parkinson’s disease puzzle. Nat Med 2010; 16(6): 653-61.
[http://dx.doi.org/10.1038/nm.2165] [PMID: 20495568]
[4]
Baradaran N, Tan SN, Liu A, et al. Parkinson’s disease rigidity: relation to brain connectivity and motor performance. Front Neurol 2013; 4: 67.
[http://dx.doi.org/10.3389/fneur.2013.00067] [PMID: 23761780]
[5]
Vervoort G, Bengevoord A, Nackaerts E, Heremans E, Vandenberghe W, Nieuwboer A. Distal motor deficit contributions to postural instability and gait disorder in Parkinson’s disease. Behav Brain Res 2015; 287: 1-7.
[http://dx.doi.org/10.1016/j.bbr.2015.03.026] [PMID: 25804361]
[6]
Chaudhuri KR, Schapira AHV. Non-motor symptoms of Parkinson’s disease: dopaminergic pathophysiology and treatment. Lancet Neurol 2009; 8(5): 464-74.
[http://dx.doi.org/10.1016/S1474-4422(09)70068-7] [PMID: 19375664]
[7]
Kalia LV, Lang AE. Parkinson’s disease. Lancet 2015; 386(9996): 896-912.
[http://dx.doi.org/10.1016/S0140-6736(14)61393-3] [PMID: 25904081]
[8]
Plowman EK, Kleim JA. Behavioral and neurophysiological correlates of striatal dopamine depletion: a rodent model of Parkinson’s disease. J Commun Disord 2011; 44(5): 549-56.
[http://dx.doi.org/10.1016/j.jcomdis.2011.04.008] [PMID: 21601869]
[9]
Dickson DW, Braak H, Duda JE, et al. Neuropathological assessment of Parkinson’s disease: refining the diagnostic criteria. Lancet Neurol 2009; 8(12): 1150-7.
[http://dx.doi.org/10.1016/S1474-4422(09)70238-8] [PMID: 19909913]
[10]
Gerfen CR, Surmeier DJ. Modulation of striatal projection systems by dopamine. Annu Rev Neurosci 2011; 34: 441-66.
[http://dx.doi.org/10.1146/annurev-neuro-061010-113641] [PMID: 21469956]
[11]
Luk KC, Kehm V, Carroll J, et al. Pathological α-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science 2012; 338(6109): 949-53.
[http://dx.doi.org/10.1126/science.1227157] [PMID: 23161999]
[12]
Del Tredici K, Duda JE. Peripheral Lewy body pathology in Parkinson’s disease and incidental Lewy body disease: four cases. J Neurol Sci 2011; 310(1-2): 100-6.
[http://dx.doi.org/10.1016/j.jns.2011.06.003] [PMID: 21689832]
[13]
Tong J, Wong H, Guttman M, et al. Brain alpha-synuclein accumulation in multiple system atrophy, Parkinson’s disease and progressive supranuclear palsy: a comparative investigation. Brain 2010; 133(Pt 1): 172-88.
[http://dx.doi.org/10.1093/brain/awp282] [PMID: 19903734]
[14]
Moore DJ, West AB, Dawson VL, Dawson TM. Molecular pathophysiology of Parkinson’s disease. Annu Rev Neurosci 2005; 28: 57-87.
[http://dx.doi.org/10.1146/annurev.neuro.28.061604.135718] [PMID: 16022590]
[15]
Büeler H. Impaired mitochondrial dynamics and function in the pathogenesis of Parkinson’s disease. Exp Neurol 2009; 218(2): 235-46.
[http://dx.doi.org/10.1016/j.expneurol.2009.03.006] [PMID: 19303005]
[16]
Thomas B, Beal MF. Molecular insights into Parkinson’s disease. F1000 Med Rep 2011; 3: 7.
[http://dx.doi.org/10.3410/M3-7] [PMID: 21655332]
[17]
Gorell JM, Johnson CC, Rybicki BA, Peterson EL, Richardson RJ. The risk of Parkinson’s disease with exposure to pesticides, farming, well water, and rural living. Neurology 1998; 50(5): 1346-50.
[http://dx.doi.org/10.1212/WNL.50.5.1346] [PMID: 9595985]
[18]
Schapira AH, Jenner P. Etiology and pathogenesis of Parkinson’s disease. Mov Disord 2011; 26(6): 1049-55.
[http://dx.doi.org/10.1002/mds.23732] [PMID: 21626550]
[19]
Noyce AJ, Bestwick JP, Silveira-Moriyama L, et al. Meta-analysis of early nonmotor features and risk factors for Parkinson disease. Ann Neurol 2012; 72(6): 893-901.
[http://dx.doi.org/10.1002/ana.23687] [PMID: 23071076]
[20]
Langston JW, Ballard P, Tetrud JW, Irwin I. Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 1983; 219(4587): 979-80.
[http://dx.doi.org/10.1126/science.6823561] [PMID: 6823561]
[21]
Tanner CM, Kamel F, Ross GW, et al. Rotenone, paraquat, and Parkinson’s disease. Environ Health Perspect 2011; 119(6): 866-72.
[http://dx.doi.org/10.1289/ehp.1002839] [PMID: 21269927]
[22]
Silva BA, Breydo L, Fink AL, Uversky VN. Agrochemicals, α-synuclein, and Parkinson’s disease. Mol Neurobiol 2013; 47(2): 598-612.
[http://dx.doi.org/10.1007/s12035-012-8333-2] [PMID: 22933040]
[23]
Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT. Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat Neurosci 2000; 3(12): 1301-6.
[http://dx.doi.org/10.1038/81834] [PMID: 11100151]
[24]
Cannon JR, Tapias V, Na HM, Honick AS, Drolet RE, Greenamyre JT. A highly reproducible rotenone model of Parkinson’s disease. Neurobiol Dis 2009; 34(2): 279-90.
[http://dx.doi.org/10.1016/j.nbd.2009.01.016] [PMID: 19385059]
[25]
Xicoy H, Wieringa B, Martens GJM. The SH-SY5Y cell line in Parkinson’s disease research: a systematic review. Mol Neurodegener 2017; 12(1): 10.
[http://dx.doi.org/10.1186/s13024-017-0149-0] [PMID: 28118852]
[26]
Jalewa J, Sharma MK, Hölscher C. Novel incretin analogues improve autophagy and protect from mitochondrial stress induced by rotenone in SH-SY5Y cells. J Neurochem 2016; 139(1): 55-67.
[http://dx.doi.org/10.1111/jnc.13736] [PMID: 27412483]
[27]
Katzenschlager R, Lees AJ. Treatment of Parkinson’s disease: levodopa as the first choice. J Neurol 2002; 249(Suppl. 2): II19-24.
[http://dx.doi.org/10.1007/s00415-002-1204-4] [PMID: 12375059]
[28]
Hornykiewicz O. A brief history of levodopa. J Neurol 2010; 257(Suppl. 2): S249-52.
[http://dx.doi.org/10.1007/s00415-010-5741-y] [PMID: 21080185]
[29]
Mallajosyula JK, Kaur D, Chinta SJ, et al. MAO-B elevation in mouse brain astrocytes results in Parkinson’s pathology. PLoS One 2008; 3(2)e1616
[http://dx.doi.org/10.1371/journal.pone.0001616] [PMID: 18286173]
[30]
Simola N. Emerging drugs and targets for Parkinson’s disease. Cambridge: Royal Society of Chemistry 2014; pp. 61-82.
[31]
Szökő É, Tábi T, Riederer P, Vécsei L, Magyar K. Pharmacological aspects of the neuroprotective effects of irreversible MAO-B inhibitors, selegiline and rasagiline, in Parkinson’s disease. J Neural Transm (Vienna) 2018; 125(11): 1735-49.
[http://dx.doi.org/10.1007/s00702-018-1853-9] [PMID: 29417334]
[32]
Cools R, Barker RA, Sahakian BJ, Robbins TW. L-Dopa medication remediates cognitive inflexibility, but increases impulsivity in patients with Parkinson’s disease. Neuropsychologia 2003; 41(11): 1431-41.
[http://dx.doi.org/10.1016/S0028-3932(03)00117-9] [PMID: 12849761]
[33]
Ito D, Amano T, Sato H, Fukuuchi Y. Paroxysmal hypertensive crises induced by selegiline in a patient with Parkinson’s disease. J Neurol 2001; 248(6): 533-4.
[http://dx.doi.org/10.1007/s004150170168] [PMID: 11499649]
[34]
Li BD, Bi ZY, Liu JF, et al. Adverse effects produced by different drugs used in the treatment of Parkinson’s disease: A mixed treatment comparison. CNS Neurosci Ther 2017; 23(10): 827-42.
[http://dx.doi.org/10.1111/cns.12727] [PMID: 28872217]
[35]
Rascol O, Brooks DJ, Korczyn AD, De Deyn PP, Clarke CE, Lang AE. A five-year study of the incidence of dyskinesia in patients with early Parkinson’s disease who were treated with ropinirole or levodopa. N Engl J Med 2000; 342(20): 1484-91.
[http://dx.doi.org/10.1056/NEJM200005183422004] [PMID: 10816186]
[36]
Fedorova T, Logvinenko A, Poleshchuk V, Illarioshkin S. The state of systemic oxidative stress during Parkinson’s disease. Neurochem J 2017; 11: 340-5.
[http://dx.doi.org/10.1134/S1819712417040031]
[37]
Hwang O. Role of oxidative stress in Parkinson’s disease. Exp Neurobiol 2013; 22(1): 11-7.
[http://dx.doi.org/10.5607/en.2013.22.1.11] [PMID: 23585717]
[38]
Di Matteo V, Esposito E. Biochemical and therapeutic effects of antioxidants in the treatment of Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis. Curr Drug Targets CNS Neurol Disord 2003; 2(2): 95-107.
[http://dx.doi.org/10.2174/1568007033482959] [PMID: 12769802]
[39]
Uttara B, Singh AV, Zamboni P, Mahajan RT. Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol 2009; 7(1): 65-74.
[http://dx.doi.org/10.2174/157015909787602823] [PMID: 19721819]
[40]
Almeida S, Alves MG, Sousa M, Oliveira PF, Silva BM. Are polyphenols strong dietary agents against neurotoxicity and neurodegeneration? Neurotox Res 2016; 30(3): 345-66.
[http://dx.doi.org/10.1007/s12640-015-9590-4] [PMID: 26745969]
[41]
Pohl F, Kong Thoo Lin P. The potential use of plant natural products and plant extracts with antioxidant properties for the prevention/treatment of neurodegenerative diseases: in vitro, in vivo and clinical trials. Molecules 2018; 23(12): 23.
[http://dx.doi.org/10.3390/molecules23123283] [PMID: 30544977]
[42]
Pandey KB, Rizvi SI. Plant polyphenols as dietary antioxidants in human health and disease. Oxid Med Cell Longev 2009; 2(5): 270-8.
[http://dx.doi.org/10.4161/oxim.2.5.9498] [PMID: 20716914]
[43]
Melo A, Monteiro L, Lima RM, Oliveira DM, Cerqueira MD, El-Bachá RS. Oxidative stress in neurodegenerative diseases: mechanisms and therapeutic perspectives. Oxid Med Cell Longev 2011.2011467180
[http://dx.doi.org/10.1155/2011/467180] [PMID: 22191013]
[44]
Jellinger KA. Basic mechanisms of neurodegeneration: a critical update. J Cell Mol Med 2010; 14(3): 457-87.
[http://dx.doi.org/10.1111/j.1582-4934.2010.01010.x] [PMID: 20070435]
[45]
Valencia A, Morán J. Reactive oxygen species induce different cell death mechanisms in cultured neurons. Free Radic Biol Med 2004; 36(9): 1112-25.
[http://dx.doi.org/10.1016/j.freeradbiomed.2004.02.013] [PMID: 15082065]
[46]
Dias V, Junn E, Mouradian MM. The role of oxidative stress in Parkinson’s disease. J Parkinsons Dis 2013; 3(4): 461-91.
[PMID: 24252804]
[47]
Kobayashi H, Fukuhara K, Tada-Oikawa S, et al. The mechanisms of oxidative DNA damage and apoptosis induced by norsalsolinol, an endogenous tetrahydroisoquinoline derivative associated with Parkinson’s disease. J Neurochem 2009; 108(2): 397-407.
[http://dx.doi.org/10.1111/j.1471-4159.2008.05774.x] [PMID: 19012744]
[48]
Goodwin J, Nath S, Engelborghs Y, Pountney DL. Raised calcium and oxidative stress cooperatively promote alpha-synuclein aggregate formation. Neurochem Int 2013; 62(5): 703-11.
[http://dx.doi.org/10.1016/j.neuint.2012.11.004] [PMID: 23159813]
[49]
Sanders LH, Timothy Greenamyre J. Oxidative damage to macromolecules in human Parkinson disease and the rotenone model. Free Radic Biol Med 2013; 62: 111-20.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.01.003] [PMID: 23328732]
[50]
Garbarino VR, Orr ME, Rodriguez KA, Buffenstein R. Mechanisms of oxidative stress resistance in the brain: Lessons learned from hypoxia tolerant extremophilic vertebrates. Arch Biochem Biophys 2015; 576: 8-16.
[http://dx.doi.org/10.1016/j.abb.2015.01.029] [PMID: 25841340]
[51]
Duan W, Zhu X, Ladenheim B, et al. p53 inhibitors preserve dopamine neurons and motor function in experimental parkinsonism. Ann Neurol 2002; 52(5): 597-606.
[http://dx.doi.org/10.1002/ana.10350] [PMID: 12402257]
[52]
Herbin M, Simonis C, Revéret L, et al. Dopamine modulates motor control in a specific plane related to support. PLoS One 2016; 11(5)e0155058
[http://dx.doi.org/10.1371/journal.pone.0155058] [PMID: 27145032]
[53]
Ershov PV, Ugrumov MV, Calas A, Makarenko IG, Krieger M, Thibault J. Neurons possessing enzymes of dopamine synthesis in the mediobasal hypothalamus of rats. Topographic relations and axonal projections to the median eminence in ontogenesis. J Chem Neuroanat 2002; 24(2): 95-107.
[http://dx.doi.org/10.1016/S0891-0618(02)00019-4] [PMID: 12191726]
[54]
Nirenberg MJ, Chan J, Liu Y, Edwards RH, Pickel VM. Ultrastructural localization of the vesicular monoamine transporter-2 in midbrain dopaminergic neurons: potential sites for somatodendritic storage and release of dopamine. J Neurosci 1996; 16(13): 4135-45.
[http://dx.doi.org/10.1523/JNEUROSCI.16-13-04135.1996] [PMID: 8753875]
[55]
Asanuma M, Miyazaki I, Ogawa N. Dopamine- or L-DOPA-induced neurotoxicity: the role of dopamine quinone formation and tyrosinase in a model of Parkinson’s disease. Neurotox Res 2003; 5(3): 165-76.
[http://dx.doi.org/10.1007/BF03033137] [PMID: 12835121]
[56]
Vergo S, Johansen JL, Leist M, Lotharius J. Vesicular monoamine transporter 2 regulates the sensitivity of rat dopaminergic neurons to disturbed cytosolic dopamine levels. Brain Res 2007; 1185: 18-32.
[http://dx.doi.org/10.1016/j.brainres.2007.09.028] [PMID: 18028884]
[57]
Chen L, Ding Y, Cagniard B, et al. Unregulated cytosolic dopamine causes neurodegeneration associated with oxidative stress in mice. J Neurosci 2008; 28(2): 425-33.
[http://dx.doi.org/10.1523/JNEUROSCI.3602-07.2008] [PMID: 18184785]
[58]
Caudle WM, Richardson JR, Wang MZ, et al. Reduced vesicular storage of dopamine causes progressive nigrostriatal neurodegeneration. J Neurosci 2007; 27(30): 8138-48.
[http://dx.doi.org/10.1523/JNEUROSCI.0319-07.2007] [PMID: 17652604]
[59]
Mukda S, Vimolratana O, Govitrapong P. Melatonin attenuates the amphetamine-induced decrease in vesicular monoamine transporter-2 expression in postnatal rat striatum. Neurosci Lett 2011; 488(2): 154-7.
[http://dx.doi.org/10.1016/j.neulet.2010.11.019] [PMID: 21078367]
[60]
Wasik A, Romańska I, Antkiewicz-Michaluk L. 1-Benzyl-1,2,3,4-tetrahydroisoquinoline, an endogenous parkinsonism-inducing toxin, strongly potentiates MAO-dependent dopamine oxidation and impairs dopamine release: ex vivo and in vivo neurochemical studies. Neurotox Res 2009; 15(1): 15-23.
[http://dx.doi.org/10.1007/s12640-009-9001-9] [PMID: 19384584]
[61]
Uhl GR, Li S, Takahashi N, et al. The VMAT2 gene in mice and humans: amphetamine responses, locomotion, cardiac arrhythmias, aging, and vulnerability to dopaminergic toxins. FASEB J 2000; 14(15): 2459-65.
[http://dx.doi.org/10.1096/fj.00-0205rev] [PMID: 11099463]
[62]
Pifl C, Rajput A, Reither H, et al. Is Parkinson’s disease a vesicular dopamine storage disorder? Evidence from a study in isolated synaptic vesicles of human and nonhuman primate striatum. J Neurosci 2014; 34(24): 8210-8.
[http://dx.doi.org/10.1523/JNEUROSCI.5456-13.2014] [PMID: 24920625]
[63]
Basma AN, Morris EJ, Nicklas WJ, Geller HM. L-dopa cytotoxicity to PC12 cells in culture is via its autoxidation. J Neurochem 1995; 64(2): 825-32.
[http://dx.doi.org/10.1046/j.1471-4159.1995.64020825.x] [PMID: 7830076]
[64]
Jinsmaa Y, Florang VR, Rees JN, et al. Dopamine-derived biological reactive intermediates and protein modifications: Implications for Parkinson’s disease. Chem Biol Interact 2011; 192(1-2): 118-21.
[http://dx.doi.org/10.1016/j.cbi.2011.01.006] [PMID: 21238438]
[65]
Doorn JA, Florang VR, Schamp JH, Vanle BC. Aldehyde dehydrogenase inhibition generates a reactive dopamine metabolite autotoxic to dopamine neurons. Parkinsonism Relat Disord 2014; 20(Suppl. 1): S73-5.
[http://dx.doi.org/10.1016/S1353-8020(13)70019-1] [PMID: 24262193]
[66]
Cohen G. Oxidative stress, mitochondrial respiration, and Parkinson’s disease. Ann N Y Acad Sci 2000; 899: 112-20.
[http://dx.doi.org/10.1111/j.1749-6632.2000.tb06180.x] [PMID: 10863533]
[67]
Anderson DG, Mariappan SV, Buettner GR, Doorn JA. Oxidation of 3,4-dihydroxyphenylacetaldehyde, a toxic dopaminergic metabolite, to a semiquinone radical and an ortho-quinone. J Biol Chem 2011; 286(30): 26978-86.
[http://dx.doi.org/10.1074/jbc.M111.249532] [PMID: 21642436]
[68]
Rabinovic AD, Lewis DA, Hastings TG. Role of oxidative changes in the degeneration of dopamine terminals after injection of neurotoxic levels of dopamine. Neuroscience 2000; 101(1): 67-76.
[http://dx.doi.org/10.1016/S0306-4522(00)00293-1] [PMID: 11068137]
[69]
Müller T, Muhlack S. Cysteinyl-glycine reduction as marker for levodopa-induced oxidative stress in Parkinson’s disease patients. Mov Disord 2011; 26(3): 543-6.
[http://dx.doi.org/10.1002/mds.23384] [PMID: 21462263]
[70]
Post MR, Lieberman OJ, Mosharov EV. Can interactions between α-synuclein, dopamine and calcium explain selective neurodegeneration in Parkinson’s Disease? Front Neurosci 2018; 12: 161.
[http://dx.doi.org/10.3389/fnins.2018.00161] [PMID: 29593491]
[71]
Sulzer D, Zecca L. Intraneuronal dopamine-quinone synthesis: a review. Neurotox Res 2000; 1(3): 181-95.
[http://dx.doi.org/10.1007/BF03033289] [PMID: 12835101]
[72]
Fleming RE, Ponka P. Iron overload in human disease. N Engl J Med 2012; 366(4): 348-59.
[http://dx.doi.org/10.1056/NEJMra1004967] [PMID: 22276824]
[73]
Beard J. Iron deficiency alters brain development and functioning. J Nutr 2003; 133(5)(Suppl. 1): 1468S-72S.
[http://dx.doi.org/10.1093/jn/133.5.1468S] [PMID: 12730445]
[74]
Unger EL, Wiesinger JA, Hao L, Beard JL. Dopamine D2 receptor expression is altered by changes in cellular iron levels in PC12 cells and rat brain tissue. J Nutr 2008; 138(12): 2487-94.
[http://dx.doi.org/10.3945/jn.108.095224] [PMID: 19022977]
[75]
Wilkinson N, Pantopoulos K. The IRP/IRE system in vivo: insights from mouse models. Front Pharmacol 2014; 5: 176.
[http://dx.doi.org/10.3389/fphar.2014.00176] [PMID: 25120486]
[76]
Mills E, Dong XP, Wang F, Xu H. Mechanisms of brain iron transport: insight into neurodegeneration and CNS disorders. Future Med Chem 2010; 2(1): 51-64.
[http://dx.doi.org/10.4155/fmc.09.140] [PMID: 20161623]
[77]
Haacke EM, Cheng NYC, House MJ, et al. Imaging iron stores in the brain using magnetic resonance imaging. Magn Reson Imaging 2005; 23(1): 1-25.
[http://dx.doi.org/10.1016/j.mri.2004.10.001] [PMID: 15733784]
[78]
Sian-Hülsmann J, Mandel S, Youdim MB, Riederer P. The relevance of iron in the pathogenesis of Parkinson’s disease. J Neurochem 2011; 118(6): 939-57.
[http://dx.doi.org/10.1111/j.1471-4159.2010.07132.x] [PMID: 21138437]
[79]
Dexter DT, Carayon A, Javoy-Agid F, et al. Alterations in the levels of iron, ferritin and other trace metals in Parkinson’s disease and other neurodegenerative diseases affecting the basal ganglia. Brain 1991; 114(Pt 4): 1953-75.
[http://dx.doi.org/10.1093/brain/114.4.1953] [PMID: 1832073]
[80]
Morawski M, Meinecke C, Reinert T, et al. Determination of trace elements in the human substantia nigra. Nucl Instrum Methods Phys Res B 2005; 231: 224-8.
[http://dx.doi.org/10.1016/j.nimb.2005.01.061]
[81]
Kaur D, Yantiri F, Rajagopalan S, et al. Genetic or pharmacological iron chelation prevents MPTP-induced neurotoxicity in vivo: a novel therapy for Parkinson’s disease. Neuron 2003; 37(6): 899-909.
[http://dx.doi.org/10.1016/S0896-6273(03)00126-0] [PMID: 12670420]
[82]
Youdim MBH, Fridkin M, Zheng H. Novel bifunctional drugs targeting monoamine oxidase inhibition and iron chelation as an approach to neuroprotection in Parkinson’s disease and other neurodegenerative diseases. Basic neurosciences and genetics, Parkinson's disease and allied conditions, Alzheimer's disease and related disorders, biological psychiatry. 2004; 111: 1455-71
[83]
Ayton S, Lei P, Adlard PA, et al. Iron accumulation confers neurotoxicity to a vulnerable population of nigral neurons: implications for Parkinson’s disease. Mol Neurodegener 2014; 9: 27.
[http://dx.doi.org/10.1186/1750-1326-9-27] [PMID: 25011704]
[84]
Weinreb O, Mandel S, Youdim MBH, Amit T. Targeting dysregulation of brain iron homeostasis in Parkinson’s disease by iron chelators. Free Radic Biol Med 2013; 62: 52-64.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.01.017] [PMID: 23376471]
[85]
Lee DW, Andersen JK. Iron elevations in the aging Parkinsonian brain: a consequence of impaired iron homeostasis? J Neurochem 2010; 112(2): 332-9.
[http://dx.doi.org/10.1111/j.1471-4159.2009.06470.x] [PMID: 20085612]
[86]
Carroll CB, Zeissler ML, Chadborn N, et al. Changes in iron-regulatory gene expression occur in human cell culture models of Parkinson’s disease. Neurochem Int 2011; 59(1): 73-80.
[http://dx.doi.org/10.1016/j.neuint.2011.05.006] [PMID: 21672570]
[87]
Kalivendi SV, Kotamraju S, Cunningham S, Shang T, Hillard CJ, Kalyanaraman B. 1-Methyl-4-phenylpyridinium (MPP+)-induced apoptosis and mitochondrial oxidant generation: role of transferrin-receptor-dependent iron and hydrogen peroxide. Biochem J 2003; 371(Pt 1): 151-64.
[http://dx.doi.org/10.1042/bj20021525] [PMID: 12523938]
[88]
Bokare AD, Choi W. Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes. J Hazard Mater 2014; 275: 121-35.
[http://dx.doi.org/10.1016/j.jhazmat.2014.04.054] [PMID: 24857896]
[89]
LaVaute T, Smith S, Cooperman S, et al. Targeted deletion of the gene encoding iron regulatory protein-2 causes misregulation of iron metabolism and neurodegenerative disease in mice. Nat Genet 2001; 27(2): 209-14.
[http://dx.doi.org/10.1038/84859] [PMID: 11175792]
[90]
Salvatore MF, Fisher B, Surgener SP, Gerhardt GA, Rouault T. Neurochemical investigations of dopamine neuronal systems in iron-regulatory protein 2 (IRP-2) knockout mice. Brain Res Mol Brain Res 2005; 139(2): 341-7.
[http://dx.doi.org/10.1016/j.molbrainres.2005.06.002] [PMID: 16051392]
[91]
Febbraro F, Giorgi M, Caldarola S, Loreni F, Romero-Ramos M. α-Synuclein expression is modulated at the translational level by iron. Neuroreport 2012; 23(9): 576-80.
[http://dx.doi.org/10.1097/WNR.0b013e328354a1f0] [PMID: 22581044]
[92]
Zhou ZD, Tan EK. Iron regulatory protein (IRP)-iron responsive element (IRE) signaling pathway in human neurodegenerative diseases. Mol Neurodegener 2017; 12(1): 75.
[http://dx.doi.org/10.1186/s13024-017-0218-4] [PMID: 29061112]
[93]
Ayala A, Muñoz MF, Argüelles S. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev 2014.2014360438
[http://dx.doi.org/10.1155/2014/360438] [PMID: 24999379]
[94]
Sánchez Campos S, Rodríguez Diez G, Oresti GM, Salvador GA. Dopaminergic neurons respond to iron-induced oxidative stress by modulating lipid acylation and deacylation cycles. PLoS One 2015; 10(6)e0130726
[http://dx.doi.org/10.1371/journal.pone.0130726] [PMID: 26076361]
[95]
Bertrand RL. Iron accumulation, glutathione depletion, and lipid peroxidation must occur simultaneously during ferroptosis and are mutually amplifying events. Med Hypotheses 2017; 101: 69-74.
[http://dx.doi.org/10.1016/j.mehy.2017.02.017] [PMID: 28351498]
[96]
Shamoto-Nagai M, Maruyama W, Akao Y, et al. Neuromelanin inhibits enzymatic activity of 26S proteasome in human dopaminergic SH-SY5Y cells. J Neural Transm (Vienna) 2004; 111(10-11): 1253-65.
[http://dx.doi.org/10.1007/s00702-004-0211-2] [PMID: 15480837]
[97]
Shamoto-Nagai M, Maruyama W, Hashizume Y, et al. In parkinsonian substantia nigra, α-synuclein is modified by acrolein, a lipid-peroxidation product, and accumulates in the dopamine neurons with inhibition of proteasome activity. J Neural Transm (Vienna) 2007; 114(12): 1559-67.
[http://dx.doi.org/10.1007/s00702-007-0789-2] [PMID: 17690948]
[98]
Uversky VN, Li J, Fink AL. Metal-triggered structural transformations, aggregation, and fibrillation of human alpha-synuclein. A possible molecular NK between Parkinson’s disease and heavy metal exposure. J Biol Chem 2001; 276(47): 44284-96.
[http://dx.doi.org/10.1074/jbc.M105343200] [PMID: 11553618]
[99]
Marengo B, Nitti M, Furfaro AL, et al. Redox homeostasis and cellular antioxidant systems: crucial players in cancer growth and therapy. Oxid Med Cell Longev 2016.20166235641
[http://dx.doi.org/10.1155/2016/6235641] [PMID: 27418953]
[100]
Kim GH, Kim JE, Rhie SJ, Yoon S. The role of oxidative stress in neurodegenerative diseases. Exp Neurobiol 2015; 24(4): 325-40.
[http://dx.doi.org/10.5607/en.2015.24.4.325] [PMID: 26713080]
[101]
He L, He T, Farrar S, Ji L, Liu T, Ma X. Antioxidants. Cell Physiol Biochem 2017; 44(2): 532-53.
[http://dx.doi.org/10.1159/000485089] [PMID: 29145191]
[102]
Aoyama K, Watabe M, Nakaki T. Regulation of neuronal glutathione synthesis. J Pharmacol Sci 2008; 108(3): 227-38.
[http://dx.doi.org/10.1254/jphs.08R01CR] [PMID: 19008644]
[103]
Smeyne M, Smeyne RJ. Glutathione metabolism and Parkinson’s disease. Free Radic Biol Med 2013; 62: 13-25.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.05.001] [PMID: 23665395]
[104]
Commandeur JN, Stijntjes GJ, Vermeulen NP. Enzymes and transport systems involved in the formation and disposition of glutathione S-conjugates. Role in bioactivation and detoxication mechanisms of xenobiotics. Pharmacol Rev 1995; 47(2): 271-330.
[PMID: 7568330]
[105]
Sian J, Dexter DT, Lees AJ, et al. Alterations in glutathione levels in Parkinson’s disease and other neurodegenerative disorders affecting basal ganglia. Ann Neurol 1994; 36(3): 348-55.
[http://dx.doi.org/10.1002/ana.410360305] [PMID: 8080242]
[106]
Pearce R, Owen A, Daniel S, Jenner P, Marsden C. Alterations in the distribution of glutathione in the substantia nigra in Parkinson's disease. Basic neurosciences and genetics, Parkinson's disease and allied conditions, Alzheimer's disease and related disorders, biological psychiatry. 1997; 104: 661-77.
[http://dx.doi.org/10.1007/BF01291884]
[107]
Chinta SJ, Kumar MJ, Hsu M, et al. Inducible alterations of glutathione levels in adult dopaminergic midbrain neurons result in nigrostriatal degeneration. J Neurosci 2007; 27(51): 13997-4006.
[http://dx.doi.org/10.1523/JNEUROSCI.3885-07.2007] [PMID: 18094238]
[108]
Garrido M, Tereshchenko Y, Zhevtsova Z, Taschenberger G, Bähr M, Kügler S. Glutathione depletion and overproduction both initiate degeneration of nigral dopaminergic neurons. Acta Neuropathol 2011; 121(4): 475-85.
[http://dx.doi.org/10.1007/s00401-010-0791-x] [PMID: 21191602]
[109]
Mythri RB, Venkateshappa C, Harish G, et al. Evaluation of markers of oxidative stress, antioxidant function and astrocytic proliferation in the striatum and frontal cortex of Parkinson’s disease brains. Neurochem Res 2011; 36(8): 1452-63.
[http://dx.doi.org/10.1007/s11064-011-0471-9] [PMID: 21484266]
[110]
Venkateshappa C, Harish G, Mythri RB, Mahadevan A, Bharath MM, Shankar SK. Increased oxidative damage and decreased antioxidant function in aging human substantia nigra compared to striatum: implications for Parkinson’s disease. Neurochem Res 2012; 37(2): 358-69.
[http://dx.doi.org/10.1007/s11064-011-0619-7] [PMID: 21971758]
[111]
Ramsey CP, Glass CA, Montgomery MB, et al. Expression of Nrf2 in neurodegenerative diseases. J Neuropathol Exp Neurol 2007; 66(1): 75-85.
[http://dx.doi.org/10.1097/nen.0b013e31802d6da9] [PMID: 17204939]
[112]
Hybertson BM, Gao B, Bose SK, McCord JM. Oxidative stress in health and disease: the therapeutic potential of Nrf2 activation. Mol Aspects Med 2011; 32(4-6): 234-46.
[http://dx.doi.org/10.1016/j.mam.2011.10.006] [PMID: 22020111]
[113]
de Vries HE, Witte M, Hondius D, et al. Nrf2-induced antioxidant protection: a promising target to counteract ROS-mediated damage in neurodegenerative disease? Free Radic Biol Med 2008; 45(10): 1375-83.
[http://dx.doi.org/10.1016/j.freeradbiomed.2008.09.001] [PMID: 18824091]
[114]
Lastres-Becker I, Ulusoy A, Innamorato NG, et al. α-Synuclein expression and Nrf2 deficiency cooperate to aggravate protein aggregation, neuronal death and inflammation in early-stage Parkinson’s disease. Hum Mol Genet 2012; 21(14): 3173-92.
[http://dx.doi.org/10.1093/hmg/dds143] [PMID: 22513881]
[115]
Turrens JF. Mitochondrial formation of reactive oxygen species. J Physiol 2003; 552(Pt 2): 335-44.
[http://dx.doi.org/10.1113/jphysiol.2003.049478] [PMID: 14561818]
[116]
Murphy MP. How mitochondria produce reactive oxygen species. Biochem J 2009; 417(1): 1-13.
[http://dx.doi.org/10.1042/BJ20081386] [PMID: 19061483]
[117]
Subramaniam SR, Chesselet MF. Mitochondrial dysfunction and oxidative stress in Parkinson’s disease. Prog Neurobiol 2013; 106-107: 17-32.
[http://dx.doi.org/10.1016/j.pneurobio.2013.04.004] [PMID: 23643800]
[118]
Hauser DN, Hastings TG. Mitochondrial dysfunction and oxidative stress in Parkinson’s disease and monogenic parkinsonism. Neurobiol Dis 2013; 51: 35-42.
[http://dx.doi.org/10.1016/j.nbd.2012.10.011] [PMID: 23064436]
[119]
Mann VM, Cooper JM, Daniel SE, et al. Complex I, iron, and ferritin in Parkinson’s disease substantia nigra. Ann Neurol 1994; 36(6): 876-81.
[http://dx.doi.org/10.1002/ana.410360612] [PMID: 7998774]
[120]
Parker WD Jr, Parks JK, Swerdlow RH. Complex I deficiency in Parkinson’s disease frontal cortex. Brain Res 2008; 1189: 215-8.
[http://dx.doi.org/10.1016/j.brainres.2007.10.061] [PMID: 18061150]
[121]
Valsecchi F, Koopman WJ, Manjeri GR, Rodenburg RJ, Smeitink JA, Willems PH. Complex I disorders: causes, mechanisms, and development of treatment strategies at the cellular level. Dev Disabil Res Rev 2010; 16(2): 175-82.
[http://dx.doi.org/10.1002/ddrr.107] [PMID: 20818732]
[122]
Li N, Ragheb K, Lawler G, et al. Mitochondrial complex I inhibitor rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production. J Biol Chem 2003; 278(10): 8516-25.
[http://dx.doi.org/10.1074/jbc.M210432200] [PMID: 12496265]
[123]
Przedborski S, Tieu K, Perier C, Vila M. MPTP as a mitochondrial neurotoxic model of Parkinson’s disease. J Bioenerg Biomembr 2004; 36(4): 375-9.
[http://dx.doi.org/10.1023/B:JOBB.0000041771.66775.d5] [PMID: 15377875]
[124]
Dranka BP, Zielonka J, Kanthasamy AG, Kalyanaraman B. Alterations in bioenergetic function induced by Parkinson’s disease mimetic compounds: lack of correlation with superoxide generation. J Neurochem 2012; 122(5): 941-51.
[http://dx.doi.org/10.1111/j.1471-4159.2012.07836.x] [PMID: 22708893]
[125]
Zawada WM, Banninger GP, Thornton J, et al. Generation of reactive oxygen species in 1-methyl-4-phenylpyridinium (MPP+) treated dopaminergic neurons occurs as an NADPH oxidase-dependent two-wave cascade. J Neuroinflammation 2011; 8: 129.
[http://dx.doi.org/10.1186/1742-2094-8-129] [PMID: 21975039]
[126]
Votyakova TV, Reynolds IJ. Ca2+-induced permeabilization promotes free radical release from rat brain mitochondria with partially inhibited complex I. J Neurochem 2005; 93(3): 526-37.
[http://dx.doi.org/10.1111/j.1471-4159.2005.03042.x] [PMID: 15836612]
[127]
Palacino JJ, Sagi D, Goldberg MS, et al. Mitochondrial dysfunction and oxidative damage in parkin-deficient mice. J Biol Chem 2004; 279(18): 18614-22.
[http://dx.doi.org/10.1074/jbc.M401135200] [PMID: 14985362]
[128]
Gegg ME, Cooper JM, Schapira AH, Taanman JW. Silencing of PINK1 expression affects mitochondrial DNA and oxidative phosphorylation in dopaminergic cells. PLoS One 2009; 4(3)e4756
[http://dx.doi.org/10.1371/journal.pone.0004756] [PMID: 19270741]
[129]
Gautier CA, Kitada T, Shen J. Loss of PINK1 causes mitochondrial functional defects and increased sensitivity to oxidative stress. Proc Natl Acad Sci USA 2008; 105(32): 11364-9.
[http://dx.doi.org/10.1073/pnas.0802076105] [PMID: 18687901]
[130]
Ziviani E, Tao RN, Whitworth AJ. Drosophila parkin requires PINK1 for mitochondrial translocation and ubiquitinates mitofusin. Proc Natl Acad Sci USA 2010; 107(11): 5018-23.
[http://dx.doi.org/10.1073/pnas.0913485107] [PMID: 20194754]
[131]
Jiang H, Ren Y, Zhao J, Feng J. Parkin protects human dopaminergic neuroblastoma cells against dopamine-induced apoptosis. Hum Mol Genet 2004; 13(16): 1745-54.
[http://dx.doi.org/10.1093/hmg/ddh180] [PMID: 15198987]
[132]
Wood-Kaczmar A, Gandhi S, Yao Z, et al. PINK1 is necessary for long term survival and mitochondrial function in human dopaminergic neurons. PLoS One 2008; 3(6)e2455
[http://dx.doi.org/10.1371/journal.pone.0002455] [PMID: 18560593]
[133]
Amo T, Sato S, Saiki S, et al. Mitochondrial membrane potential decrease caused by loss of PINK1 is not due to proton leak, but to respiratory chain defects. Neurobiol Dis 2011; 41(1): 111-8.
[http://dx.doi.org/10.1016/j.nbd.2010.08.027] [PMID: 20817094]
[134]
Amo T, Saiki S, Sawayama T, Sato S, Hattori N. Detailed analysis of mitochondrial respiratory chain defects caused by loss of PINK1. Neurosci Lett 2014; 580: 37-40.
[http://dx.doi.org/10.1016/j.neulet.2014.07.045] [PMID: 25092611]
[135]
Deas E, Wood NW, Plun-Favreau H. Mitophagy and Parkinson’s disease: the PINK1-parkin link. Biochim Biophys Acta 2011; 1813(4): 623-33.
[http://dx.doi.org/10.1016/j.bbamcr.2010.08.007] [PMID: 20736035]
[136]
Vives-Bauza C, Zhou C, Huang Y, et al. PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. Proc Natl Acad Sci USA 2010; 107(1): 378-83.
[http://dx.doi.org/10.1073/pnas.0911187107] [PMID: 19966284]
[137]
Narendra DP, Jin SM, Tanaka A, et al. PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol 2010; 8(1)e1000298
[http://dx.doi.org/10.1371/journal.pbio.1000298] [PMID: 20126261]
[138]
de Vries RLA, Przedborski S. Mitophagy and Parkinson’s disease: be eaten to stay healthy. Mol Cell Neurosci 2013; 55: 37-43.
[http://dx.doi.org/10.1016/j.mcn.2012.07.008] [PMID: 22926193]
[139]
Michel PP, Hirsch EC, Hunot S. Understanding Dopaminergic Cell Death Pathways in Parkinson Disease. Neuron 2016; 90(4): 675-91.
[http://dx.doi.org/10.1016/j.neuron.2016.03.038] [PMID: 27196972]
[140]
Kelsey NA, Wilkins HM, Linseman DA. Nutraceutical antioxidants as novel neuroprotective agents. Molecules 2010; 15(11): 7792-814.
[http://dx.doi.org/10.3390/molecules15117792] [PMID: 21060289]
[141]
Ebrahimi A, Schluesener H. Natural polyphenols against neurodegenerative disorders: potentials and pitfalls. Ageing Res Rev 2012; 11(2): 329-45.
[http://dx.doi.org/10.1016/j.arr.2012.01.006] [PMID: 22336470]
[142]
Pérez-Jiménez J, Neveu V, Vos F, Scalbert A. Identification of the 100 richest dietary sources of polyphenols: an application of the Phenol-Explorer database. Eur J Clin Nutr 2010; 64(Suppl. 3): S112-20.
[http://dx.doi.org/10.1038/ejcn.2010.221] [PMID: 21045839]
[143]
Shahpiri Z, Bahramsoltani R, Hosein Farzaei M, Farzaei F, Rahimi R. Phytochemicals as future drugs for Parkinson’s disease: a comprehensive review. Rev Neurosci 2016; 27(6): 651-68.
[http://dx.doi.org/10.1515/revneuro-2016-0004] [PMID: 27124673]
[144]
Esposito E, Rotilio D, Di Matteo V, Di Giulio C, Cacchio M, Algeri S. A review of specific dietary antioxidants and the effects on biochemical mechanisms related to neurodegenerative processes. Neurobiol Aging 2002; 23(5): 719-35.
[http://dx.doi.org/10.1016/S0197-4580(02)00078-7] [PMID: 12392777]
[145]
DeFeudis FV, Drieu K. Ginkgo biloba extract (EGb 761) and CNS functions: basic studies and clinical applications. Curr Drug Targets 2000; 1(1): 25-58.
[http://dx.doi.org/10.2174/1389450003349380] [PMID: 11475535]
[146]
Pardon MC, Joubert C, Perez-Diaz F, Christen Y, Launay JM, Cohen-Salmon C. In vivo regulation of cerebral monoamine oxidase activity in senescent controls and chronically stressed mice by long-term treatment with Ginkgo biloba extract (EGb 761). Mech Ageing Dev 2000; 113(3): 157-68.
[http://dx.doi.org/10.1016/S0047-6374(99)00107-4] [PMID: 10714935]
[147]
Rojas P, Rojas C, Ebadi M, Montes S, Monroy-Noyola A, Serrano-García N. EGb761 pretreatment reduces monoamine oxidase activity in mouse corpus striatum during 1-methyl-4-phenylpyridinium neurotoxicity. Neurochem Res 2004; 29(7): 1417-23.
[http://dx.doi.org/10.1023/B:NERE.0000026406.64547.93] [PMID: 15202774]
[148]
Rojas P, Garduño B, Rojas C, et al. EGb761 blocks MPP+-induced lipid peroxidation in mouse corpus striatum. Neurochem Res 2001; 26(11): 1245-51.
[http://dx.doi.org/10.1023/A:1013971524150] [PMID: 11874207]
[149]
Rojas P, Ruiz-Sánchez E, Rojas C, Ogren SO. Ginkgo biloba extract (EGb 761) modulates the expression of dopamine-related genes in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinsonism in mice. Neuroscience 2012; 223: 246-57.
[http://dx.doi.org/10.1016/j.neuroscience.2012.08.004] [PMID: 22885234]
[150]
Rojas P, Serrano-García N, Mares-Sámano JJ, Medina-Campos ON, Pedraza-Chaverri J, Ogren SO. EGb761 protects against nigrostriatal dopaminergic neurotoxicity in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinsonism in mice: role of oxidative stress. Eur J Neurosci 2008; 28(1): 41-50.
[http://dx.doi.org/10.1111/j.1460-9568.2008.06314.x] [PMID: 18662333]
[151]
Checkoway H, Powers K, Smith-Weller T, Franklin GM, Longstreth WT Jr, Swanson PD. Parkinson’s disease risks associated with cigarette smoking, alcohol consumption, and caffeine intake. Am J Epidemiol 2002; 155(8): 732-8.
[http://dx.doi.org/10.1093/aje/155.8.732] [PMID: 11943691]
[152]
Hu G, Bidel S, Jousilahti P, Antikainen R, Tuomilehto J. Coffee and tea consumption and the risk of Parkinson’s disease. Mov Disord 2007; 22(15): 2242-8.
[http://dx.doi.org/10.1002/mds.21706] [PMID: 17712848]
[153]
Li FJ, Ji HF, Shen L. A meta-analysis of tea drinking and risk of Parkinson’s disease. Scientific World Journal 2012.2012923464
[http://dx.doi.org/10.1100/2012/923464] [PMID: 22448141]
[154]
Qi H, Li S. Dose-response meta-analysis on coffee, tea and caffeine consumption with risk of Parkinson’s disease. Geriatr Gerontol Int 2014; 14(2): 430-9.
[http://dx.doi.org/10.1111/ggi.12123] [PMID: 23879665]
[155]
Mandel SA, Amit T, Kalfon L, Reznichenko L, Youdim MB. Targeting multiple neurodegenerative diseases etiologies with multimodal-acting green tea catechins. J Nutr 2008; 138(8): 1578S-83S.
[http://dx.doi.org/10.1093/jn/138.8.1578S] [PMID: 18641210]
[156]
Levites Y, Weinreb O, Maor G, Youdim MB, Mandel S. Green tea polyphenol (-)-epigallocatechin-3-gallate prevents N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced dopaminergic neurodegeneration. J Neurochem 2001; 78(5): 1073-82.
[http://dx.doi.org/10.1046/j.1471-4159.2001.00490.x] [PMID: 11553681]
[157]
Choi JY, Park CS, Kim DJ, et al. Prevention of nitric oxide-mediated 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinson’s disease in mice by tea phenolic epigallocatechin 3-gallate. Neurotoxicology 2002; 23(3): 367-74.
[http://dx.doi.org/10.1016/S0161-813X(02)00079-7] [PMID: 12387363]
[158]
Kim JS, Kim JM. O JJ, Jeon BS. Inhibition of inducible nitric oxide synthase expression and cell death by (-)-epigallocatechin-3-gallate, a green tea catechin, in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson’s disease. J Clin Neurosci 2010; 17(9): 1165-8.
[http://dx.doi.org/10.1016/j.jocn.2010.01.042] [PMID: 20541420]
[159]
Xu Q, Langley M, Kanthasamy AG, Reddy MB. Epigallocatechin gallate has a neurorescue effect in a mouse model of parkinson disease. J Nutr 2017; 147(10): 1926-31.
[http://dx.doi.org/10.3945/jn.117.255034] [PMID: 28835392]
[160]
Dai J, Mumper RJ. Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules 2010; 15(10): 7313-52.
[http://dx.doi.org/10.3390/molecules15107313] [PMID: 20966876]
[161]
de Souza RF, De Giovani WF. Antioxidant properties of complexes of flavonoids with metal ions. Redox Rep 2004; 9(2): 97-104.
[http://dx.doi.org/10.1179/135100004225003897] [PMID: 15231064]
[162]
van Acker SA, van den Berg DJ, Tromp MN, et al. Structural aspects of antioxidant activity of flavonoids. Free Radic Biol Med 1996; 20(3): 331-42.
[http://dx.doi.org/10.1016/0891-5849(95)02047-0] [PMID: 8720903]
[163]
Grinberg LN, Newmark H, Kitrossky N, Rahamim E, Chevion M, Rachmilewitz EA. Protective effects of tea polyphenols against oxidative damage to red blood cells. Biochem Pharmacol 1997; 54(9): 973-8.
[http://dx.doi.org/10.1016/S0006-2952(97)00155-X] [PMID: 9374417]
[164]
Jomova K, Vondrakova D, Lawson M, Valko M. Metals, oxidative stress and neurodegenerative disorders. Mol Cell Biochem 2010; 345(1-2): 91-104.
[http://dx.doi.org/10.1007/s11010-010-0563-x] [PMID: 20730621]
[165]
Mandel S, Maor G, Youdim MB. Iron and alpha-synuclein in the substantia nigra of MPTP-treated mice: effect of neuroprotective drugs R-apomorphine and green tea polyphenol (-)-epigallocatechin-3-gallate. J Mol Neurosci 2004; 24(3): 401-16.
[http://dx.doi.org/10.1385/JMN:24:3:401] [PMID: 15655262]
[166]
Perron NR, Hodges JN, Jenkins M, Brumaghim JL. Predicting how polyphenol antioxidants prevent DNA damage by binding to iron. Inorg Chem 2008; 47(14): 6153-61.
[http://dx.doi.org/10.1021/ic7022727] [PMID: 18553907]
[167]
Mounsey RB, Teismann P. Chelators in the treatment of iron accumulation in Parkinson’s disease. Int J Cell Biol 2012.2012983245
[http://dx.doi.org/10.1155/2012/983245] [PMID: 22754573]
[168]
Daniel S, Limson JL, Dairam A, Watkins GM, Daya S. Through metal binding, curcumin protects against lead- and cadmium-induced lipid peroxidation in rat brain homogenates and against lead-induced tissue damage in rat brain. J Inorg Biochem 2004; 98(2): 266-75.
[http://dx.doi.org/10.1016/j.jinorgbio.2003.10.014] [PMID: 14729307]
[169]
Du XX, Xu HM, Jiang H, Song N, Wang J, Xie JX. Curcumin protects nigral dopaminergic neurons by iron-chelation in the 6-hydroxydopamine rat model of Parkinson’s disease. Neurosci Bull 2012; 28(3): 253-8.
[http://dx.doi.org/10.1007/s12264-012-1238-2] [PMID: 22622825]
[170]
Dai MC, Zhong ZH, Sun YH, et al. Curcumin protects against iron induced neurotoxicity in primary cortical neurons by attenuating necroptosis. Neurosci Lett 2013; 536: 41-6.
[http://dx.doi.org/10.1016/j.neulet.2013.01.007] [PMID: 23328441]
[171]
Gupta SC, Prasad S, Kim JH, et al. Multitargeting by curcumin as revealed by molecular interaction studies. Nat Prod Rep 2011; 28(12): 1937-55.
[http://dx.doi.org/10.1039/c1np00051a] [PMID: 21979811]
[172]
Khatri DK, Juvekar AR. Neuroprotective effect of curcumin as evinced by abrogation of rotenone-induced motor deficits, oxidative and mitochondrial dysfunctions in mouse model of Parkinson’s disease. Pharmacol Biochem Behav 2016; 150-151: 39-47.
[http://dx.doi.org/10.1016/j.pbb.2016.09.002] [PMID: 27619637]
[173]
Harish G, Venkateshappa C, Mythri RB, et al. Bioconjugates of curcumin display improved protection against glutathione depletion mediated oxidative stress in a dopaminergic neuronal cell line: Implications for Parkinson’s disease. Bioorg Med Chem 2010; 18(7): 2631-8.
[http://dx.doi.org/10.1016/j.bmc.2010.02.029] [PMID: 20227282]
[174]
Dickinson DA, Iles KE, Zhang H, Blank V, Forman HJ. Curcumin alters EpRE and AP-1 binding complexes and elevates glutamate-cysteine ligase gene expression. FASEB J 2003; 17(3): 473-5.
[http://dx.doi.org/10.1096/fj.02-0566fje] [PMID: 12514113]
[175]
Jagatha B, Mythri RB, Vali S, Bharath MM. Curcumin treatment alleviates the effects of glutathione depletion in vitro and in vivo: therapeutic implications for Parkinson’s disease explained via in silico studies. Free Radic Biol Med 2008; 44(5): 907-17.
[http://dx.doi.org/10.1016/j.freeradbiomed.2007.11.011] [PMID: 18166164]
[176]
Pandareesh MD, Shrivash MK, Naveen Kumar HN, Misra K, Srinivas Bharath MM. Curcumin Monoglucoside Shows Improved Bioavailability and Mitigates Rotenone Induced Neurotoxicity in Cell and Drosophila Models of Parkinson’s Disease. Neurochem Res 2016; 41(11): 3113-28.
[http://dx.doi.org/10.1007/s11064-016-2034-6] [PMID: 27535828]
[177]
Rojas C, Rojas-Castaneda J, Ruiz-Sanchez E, Montes P, Rojas P. Antioxidant properties of a Ginkgo biloba leaf extract (EGb 761) in animal models of Alzheimer’s and Parkinson’s diseases. Curr Top Nutraceutical Res 2015; 13: 105.
[178]
Tanaka K, Galduróz RF, Gobbi LT, Galduróz JC. Ginkgo biloba extract in an animal model of Parkinson’s disease: a systematic review. Curr Neuropharmacol 2013; 11(4): 430-5.
[http://dx.doi.org/10.2174/1570159X11311040006] [PMID: 24381532]
[179]
Ahmad M, Saleem S, Ahmad AS, et al. Ginkgo biloba affords dose-dependent protection against 6-hydroxydopamine-induced parkinsonism in rats: neurobehavioural, neurochemical and immunohistochemical evidences. J Neurochem 2005; 93(1): 94-104.
[http://dx.doi.org/10.1111/j.1471-4159.2005.03000.x] [PMID: 15773909]
[180]
Tellone E, Galtieri A, Russo A, Giardina B, Ficarra S. Resveratrol: A focus on several neurodegenerative diseases. Oxid Med Cell Longev 2015.2015392169
[http://dx.doi.org/10.1155/2015/392169] [PMID: 26180587]
[181]
Fukui M, Choi HJ, Zhu BT. Mechanism for the protective effect of resveratrol against oxidative stress-induced neuronal death. Free Radic Biol Med 2010; 49(5): 800-13.
[http://dx.doi.org/10.1016/j.freeradbiomed.2010.06.002] [PMID: 20542495]
[182]
Moldzio R, Radad K, Krewenka C, Kranner B, Duvigneau JC, Rausch WD. Protective effects of resveratrol on glutamate-induced damages in murine brain cultures. J Neural Transm (Vienna) 2013; 120(9): 1271-80.
[http://dx.doi.org/10.1007/s00702-013-1000-6] [PMID: 23459926]
[183]
Lagouge M, Argmann C, Gerhart-Hines Z, et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1α. Cell 2006; 127(6): 1109-22.
[http://dx.doi.org/10.1016/j.cell.2006.11.013] [PMID: 17112576]
[184]
Wu Y, Li X, Zhu JX, et al. Resveratrol-activated AMPK/SIRT1/autophagy in cellular models of Parkinson’s disease. Neurosignals 2011; 19(3): 163-74.
[http://dx.doi.org/10.1159/000328516] [PMID: 21778691]
[185]
Lin T-K, Chen S-D, Chuang Y-C, et al. Resveratrol partially prevents rotenone-induced neurotoxicity in dopaminergic SH-SY5Y cells through induction of heme oxygenase-1 dependent autophagy. Int J Mol Sci 2014; 15(1): 1625-46.
[http://dx.doi.org/10.3390/ijms15011625] [PMID: 24451142]
[186]
Ferretta A, Gaballo A, Tanzarella P, et al. Effect of resveratrol on mitochondrial function: implications in parkin-associated familiar Parkinson’s disease. Biochim Biophys Acta 2014; 1842(7): 902-15.
[http://dx.doi.org/10.1016/j.bbadis.2014.02.010] [PMID: 24582596]
[187]
Mathieu L, Lopes Costa A, Le Bachelier C, et al. Resveratrol attenuates oxidative stress in mitochondrial Complex I deficiency: Involvement of SIRT3. Free Radic Biol Med 2016; 96: 190-8.
[http://dx.doi.org/10.1016/j.freeradbiomed.2016.04.027] [PMID: 27126960]
[188]
Peng K, Tao Y, Zhang J, et al. Resveratrol regulates mitochondrial biogenesis and fission/fusion to attenuate rotenone-induced neurotoxicity. 2015; 2015
[189]
Boots AW, Haenen GRMM, Bast A. Health effects of quercetin: from antioxidant to nutraceutical. Eur J Pharmacol 2008; 585(2-3): 325-37.
[http://dx.doi.org/10.1016/j.ejphar.2008.03.008] [PMID: 18417116]
[190]
Karuppagounder SS, Madathil SK, Pandey M, Haobam R, Rajamma U, Mohanakumar KP. Quercetin up-regulates mitochondrial complex-I activity to protect against programmed cell death in rotenone model of Parkinson’s disease in rats. Neuroscience 2013; 236: 136-48.
[http://dx.doi.org/10.1016/j.neuroscience.2013.01.032] [PMID: 23357119]
[191]
Sharma DR, Wani WY, Sunkaria A, et al. Quercetin attenuates neuronal death against aluminum-induced neurodegeneration in the rat hippocampus. Neuroscience 2016; 324: 163-76.
[http://dx.doi.org/10.1016/j.neuroscience.2016.02.055] [PMID: 26944603]
[192]
Ay M, Luo J, Langley M, et al. Molecular mechanisms underlying protective effects of quercetin against mitochondrial dysfunction and progressive dopaminergic neurodegeneration in cell culture and MitoPark transgenic mouse models of Parkinson’s Disease. J Neurochem 2017; 141(5): 766-82.
[http://dx.doi.org/10.1111/jnc.14033] [PMID: 28376279]
[193]
Singh N, Haldar S, Tripathi AK, et al. Brain iron homeostasis: from molecular mechanisms to clinical significance and therapeutic opportunities. Antioxid Redox Signal 2014; 20(8): 1324-63.
[http://dx.doi.org/10.1089/ars.2012.4931] [PMID: 23815406]
[194]
Kandinov B, Giladi N, Korczyn AD. Smoking and tea consumption delay onset of Parkinson’s disease. Parkinsonism Relat Disord 2009; 15(1): 41-6.
[http://dx.doi.org/10.1016/j.parkreldis.2008.02.011] [PMID: 18434232]
[195]
Pasinetti GM, Wang J, Ho L, Zhao W, Dubner L. Roles of resveratrol and other grape-derived polyphenols in Alzheimer’s disease prevention and treatment. Biochim Biophys Acta 2015; 1852(6): 1202-8.
[http://dx.doi.org/10.1016/j.bbadis.2014.10.006] [PMID: 25315300]
[196]
Colizzi C. The protective effects of polyphenols on Alzheimer’s disease: A systematic review. Alzheimers Dement (N Y) 2018; 5: 184-96.
[http://dx.doi.org/10.1016/j.trci.2018.09.002] [PMID: 31194101]
[197]
Baum L, Lam CW, Cheung SK, et al. Six-month randomized, placebo-controlled, double-blind, pilot clinical trial of curcumin in patients with Alzheimer disease. J Clin Psychopharmacol 2008; 28(1): 110-3.
[http://dx.doi.org/10.1097/jcp.0b013e318160862c] [PMID: 18204357]
[198]
Turner RS, Thomas RG, Craft S, et al. A randomized, double-blind, placebo-controlled trial of resveratrol for Alzheimer disease. Neurology 2015; 85(16): 1383-91.
[http://dx.doi.org/10.1212/WNL.0000000000002035] [PMID: 26362286]
[199]
Moussa C, Hebron M, Huang X, et al. Resveratrol regulates neuro-inflammation and induces adaptive immunity in Alzheimer’s disease. J Neuroinflammation 2017; 14(1): 1.
[http://dx.doi.org/10.1186/s12974-016-0779-0] [PMID: 28086917]
[200]
Herrschaft H, Nacu A, Likhachev S, Sholomov I, Hoerr R, Schlaefke S. Ginkgo biloba extract EGb 761® in dementia with neuropsychiatric features: a randomised, placebo-controlled trial to confirm the efficacy and safety of a daily dose of 240 mg. J Psychiatr Res 2012; 46(6): 716-23.
[http://dx.doi.org/10.1016/j.jpsychires.2012.03.003] [PMID: 22459264]
[201]
Ihl R. Effects of Ginkgo biloba extract EGb 761 ® in dementia with neuropsychiatric features: review of recently completed randomised, controlled trials. Int J Psychiatry Clin Pract 2013; 17(Suppl. 1): 8-14.
[http://dx.doi.org/10.3109/13651501.2013.814796] [PMID: 23808613]
[202]
Maclennan KM, Darlington CL, Smith PF. The CNS effects of Ginkgo biloba extracts and ginkgolide B. Prog Neurobiol 2002; 67(3): 235-57.
[http://dx.doi.org/10.1016/S0301-0082(02)00015-1] [PMID: 12169298]
[203]
Napryeyenko O, Sonnik G, Tartakovsky I. Efficacy and tolerability of Ginkgo biloba extract EGb 761 by type of dementia: analyses of a randomised controlled trial. J Neurol Sci 2009; 283(1-2): 224-9.
[http://dx.doi.org/10.1016/j.jns.2009.02.353] [PMID: 19286192]
[204]
Ringman JM, Frautschy SA, Teng E, et al. Oral curcumin for Alzheimer’s disease: tolerability and efficacy in a 24-week randomized, double blind, placebo-controlled study. Alzheimers Res Ther 2012; 4(5): 43.
[http://dx.doi.org/10.1186/alzrt146] [PMID: 23107780]
[205]
Gauthier S, Schlaefke S. Efficacy and tolerability of Ginkgo biloba extract EGb 761® in dementia: a systematic review and meta-analysis of randomized placebo-controlled trials. Clin Interv Aging 2014; 9: 2065-77.
[http://dx.doi.org/10.2147/CIA.S72728] [PMID: 25506211]
[206]
Savaskan E, Mueller H, Hoerr R, von Gunten A, Gauthier S. Treatment effects of Ginkgo biloba extract EGb 761® on the spectrum of behavioral and psychological symptoms of dementia: metaanalysis of randomized controlled trials. 2018; 285-93.
[207]
Pagano E, Romano B, Izzo AA, Borrelli F. The clinical efficacy of curcumin-containing nutraceuticals: An overview of systematic reviews. Pharmacol Res 2018; 134: 79-91.
[http://dx.doi.org/10.1016/j.phrs.2018.06.007] [PMID: 29890252]
[208]
Lewandowska U, Szewczyk K, Hrabec E, Janecka A, Gorlach S. Overview of metabolism and bioavailability enhancement of polyphenols. J Agric Food Chem 2013; 61(50): 12183-99.
[http://dx.doi.org/10.1021/jf404439b] [PMID: 24295170]
[209]
Molino S, Dossena M, Buonocore D, et al. Polyphenols in dementia: From molecular basis to clinical trials. Life Sci 2016; 161: 69-77.
[http://dx.doi.org/10.1016/j.lfs.2016.07.021] [PMID: 27493077]
[210]
Barnes S, Prasain J, D’Alessandro T, et al. The metabolism and analysis of isoflavones and other dietary polyphenols in foods and biological systems. Food Funct 2011; 2(5): 235-44.
[http://dx.doi.org/10.1039/c1fo10025d] [PMID: 21779561]
[211]
Figueira I, Menezes R, Macedo D, Costa I, Dos Santos CN. Polyphenols Beyond Barriers: A Glimpse into the Brain. Curr Neuropharmacol 2017; 15(4): 562-94.
[http://dx.doi.org/10.2174/1570159X14666161026151545] [PMID: 27784225]
[212]
Youdim KA, Shukitt-Hale B, Joseph JA. Flavonoids and the brain: interactions at the blood-brain barrier and their physiological effects on the central nervous system. Free Radic Biol Med 2004; 37(11): 1683-93.
[http://dx.doi.org/10.1016/j.freeradbiomed.2004.08.002] [PMID: 15528027]
[213]
Renaud J, Martinoli MG. Considerations for the Use of Polyphenols as Therapies in neurodegenerative diseases. Int J Mol Sci 2019; 20(8): 1883.
[http://dx.doi.org/10.3390/ijms20081883] [PMID: 30995776]
[214]
Kujawska M, Jodynis-Liebert J. Polyphenols in parkinson’s disease: A systematic review of in vivo studies. Nutrients 2018; 10(5): 642.
[http://dx.doi.org/10.3390/nu10050642] [PMID: 29783725]
[215]
Modi G, Pillay V, Choonara YE. Advances in the treatment of neurodegenerative disorders employing nanotechnology. Ann N Y Acad Sci 2010; 1184: 154-72.
[http://dx.doi.org/10.1111/j.1749-6632.2009.05108.x] [PMID: 20146696]
[216]
Sandhir R, Yadav A, Sunkaria A, Singhal N. Nano-antioxidants: An emerging strategy for intervention against neurodegenerative conditions. Neurochem Int 2015; 89: 209-26.
[http://dx.doi.org/10.1016/j.neuint.2015.08.011] [PMID: 26315960]
[217]
Wang Y, Xu H, Fu Q, Ma R, Xiang J. Protective effect of resveratrol derived from Polygonum cuspidatum and its liposomal form on nigral cells in parkinsonian rats. J Neurol Sci 2011; 304(1-2): 29-34.
[http://dx.doi.org/10.1016/j.jns.2011.02.025] [PMID: 21376343]
[218]
da Rocha Lindner G, Bonfanti Santos D, Colle D, et al. Improved neuroprotective effects of resveratrol-loaded polysorbate 80-coated poly(lactide) nanoparticles in MPTP-induced Parkinsonism. Nanomedicine (Lond) 2015; 10(7): 1127-38.
[http://dx.doi.org/10.2217/nnm.14.165] [PMID: 25929569]
[219]
Palle S, Neerati P. Improved neuroprotective effect of resveratrol nanoparticles as evinced by abrogation of rotenone-induced behavioral deficits and oxidative and mitochondrial dysfunctions in rat model of Parkinson’s disease. Naunyn Schmiedebergs Arch Pharmacol 2018; 391(4): 445-53.
[http://dx.doi.org/10.1007/s00210-018-1474-8] [PMID: 29411055]
[220]
Pandita D, Kumar S, Poonia N, Lather V. Solid lipid nanoparticles enhance oral bioavailability of resveratrol, a natural polyphenol. Food Res Int 2014; 62: 1165-74.
[http://dx.doi.org/10.1016/j.foodres.2014.05.059]
[221]
Yadav A, Sunkaria A, Singhal N, Sandhir R. Resveratrol loaded solid lipid nanoparticles attenuate mitochondrial oxidative stress in vascular dementia by activating Nrf2/HO-1 pathway. Neurochem Int 2018; 112: 239-54.
[http://dx.doi.org/10.1016/j.neuint.2017.08.001] [PMID: 28782592]
[222]
Bollimpelli VS, Kumar P, Kumari S, Kondapi AK. Neuroprotective effect of curcumin-loaded lactoferrin nano particles against rotenone induced neurotoxicity. Neurochem Int 2016; 95: 37-45.
[http://dx.doi.org/10.1016/j.neuint.2016.01.006] [PMID: 26826319]
[223]
Kanai M, Imaizumi A, Otsuka Y, et al. Dose-escalation and pharmacokinetic study of nanoparticle curcumin, a potential anticancer agent with improved bioavailability, in healthy human volunteers. Cancer Chemother Pharmacol 2012; 69(1): 65-70.
[http://dx.doi.org/10.1007/s00280-011-1673-1] [PMID: 21603867]
[224]
Dos Santos MCT, Scheller D, Schulte C, et al. Evaluation of cerebrospinal fluid proteins as potential biomarkers for early stage Parkinson’s disease diagnosis. PLoS One 2018; 13(11)e0206536
[http://dx.doi.org/10.1371/journal.pone.0206536] [PMID: 30383831]
[225]
Miller DB, O’Callaghan JP. Biomarkers of Parkinson’s disease: present and future. Metabolism 2015; 64(3)(Suppl. 1): S40-6.
[http://dx.doi.org/10.1016/j.metabol.2014.10.030] [PMID: 25510818]
[226]
Hall S, Surova Y, Öhrfelt A, Zetterberg H, Lindqvist D, Hansson O. CSF biomarkers and clinical progression of Parkinson disease. Neurology 2015; 84(1): 57-63.
[http://dx.doi.org/10.1212/WNL.0000000000001098] [PMID: 25411441]
[227]
Mollenhauer B, Caspell-Garcia CJ, Coffey CS, et al. Longitudinal CSF biomarkers in patients with early Parkinson disease and healthy controls. Neurology 2017; 89(19): 1959-69.
[http://dx.doi.org/10.1212/WNL.0000000000004609] [PMID: 29030452]
[228]
Sharma S, Moon CS, Khogali A, et al. Biomarkers in Parkinson’s disease (recent update). Neurochem Int 2013; 63(3): 201-29.
[http://dx.doi.org/10.1016/j.neuint.2013.06.005] [PMID: 23791710]
[229]
Ide K, Yamada H, Umegaki K, et al. Lymphocyte vitamin C levels as potential biomarker for progression of Parkinson’s disease. Nutrition 2015; 31(2): 406-8.
[http://dx.doi.org/10.1016/j.nut.2014.08.001] [PMID: 25592020]
[230]
He R, Yan X, Guo J, Xu Q, Tang B, Sun Q. Recent advances in biomarkers for parkinson’s disease. Front Aging Neurosci 2018; 10: 305.
[http://dx.doi.org/10.3389/fnagi.2018.00305] [PMID: 30364199]
[231]
Lotankar S, Prabhavalkar KS, Bhatt LK. Biomarkers for parkinson’s disease: recent advancement. Neurosci Bull 2017; 33(5): 585-97.
[http://dx.doi.org/10.1007/s12264-017-0183-5] [PMID: 28936761]
[232]
Lin X, Cook TJ, Zabetian CP, et al. DJ-1 isoforms in whole blood as potential biomarkers of Parkinson disease. Sci Rep 2012; 2: 954.
[http://dx.doi.org/10.1038/srep00954] [PMID: 23233873]
[233]
Saito Y. Oxidized DJ-1 as a possible biomarker of Parkinson’s disease. J Clin Biochem Nutr 2014; 54(3): 138-44.
[http://dx.doi.org/10.3164/jcbn.13-108] [PMID: 24894116]
[234]
Shen L, Ji H-F. Low uric acid levels in patients with Parkinson’s disease: evidence from meta-analysis. BMJ Open 2013; 3(11)e003620
[http://dx.doi.org/10.1136/bmjopen-2013-003620] [PMID: 24247326]
[235]
Wen M, Zhou B, Chen YH, et al. Serum uric acid levels in patients with Parkinson’s disease: A meta-analysis. PLoS One 2017; 12(3)e0173731
[http://dx.doi.org/10.1371/journal.pone.0173731] [PMID: 28319195]
[236]
Boots AW, Haenen GRMM, Bast A. Health effects of quercetin: From antioxidant to nutraceutical. 2008; 325-7.
[237]
Murakami A. Dose-dependent functionality and toxicity of green tea polyphenols in experimental rodents. Arch Biochem Biophys 2014; 557: 3-10.
[http://dx.doi.org/10.1016/j.abb.2014.04.018] [PMID: 24814373]
[238]
Hu J, Webster D, Cao J, Shao A. The safety of green tea and green tea extract consumption in adults - Results of a systematic review. Regul Toxicol Pharmacol 2018; 95: 412-33.
[http://dx.doi.org/10.1016/j.yrtph.2018.03.019] [PMID: 29580974]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 21
ISSUE: 5
Year: 2020
Page: [458 - 476]
Pages: 19
DOI: 10.2174/1389450120666191017120505
Price: $65

Article Metrics

PDF: 22
HTML: 1