Silica Nanoparticles for Insect Pest Control

Author(s): Mariano Cáceres, Claudia V. Vassena, M. Dolores Garcerá, Pablo L. Santo-Orihuela*.

Journal Name: Current Pharmaceutical Design

Volume 25 , Issue 37 , 2019

Become EABM
Become Reviewer

Abstract:

To date, control strategies used against insect pest species are based on synthetic insecticide applications. In addition, the efficacy of these treatments could be decreased due to insecticide resistance in insect populations. Also, the irrational use of chemical control strategies has negative consequences of non-target organisms and threatening human health. Designing nanomaterial for pest insect control is a promising alternative to traditional insecticide formulations. In particular, it has been proven that silica nanoparticles have the potential for molecules delivery, release control improvement and also their toxicity as insecticide alone. In this work, we summarized the state of knowledge on silica nanoparticles (SiNPs) used in pest insect management. Besides, aspects of their synthesis, mode of action, and toxic effects on non-target organisms and environment are reviewed.

Keywords: Silica nanoparticles, insect pest management, nanotoxicology medical insect pest, insecticides, crop pest, green-synthesis.

[1]
Jones N, Ray B, Ranjit KT, Manna AC. Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol Lett 2008; 279(1): 71-6.
[http://dx.doi.org/10.1111/j.1574-6968.2007.01012.x] [PMID: 18081843]
[2]
Marimuthu S, Rahuman AA, Rajakumar G, et al. Evaluation of green synthesized silver nanoparticles against parasites. Parasitol Res 2011; 108(6): 1541-9.
[http://dx.doi.org/10.1007/s00436-010-2212-4] [PMID: 21181192]
[3]
Langer R. New methods of drug delivery. Science 1990; 249(4976): 1527-33.
[http://dx.doi.org/10.1126/science.2218494] [PMID: 2218494]
[4]
Tiwari DK, Behar J. Biocidal nature of treatment of Ag-nanoparticle and ultrasonic irradiation in Escherichia coli dh5. Adv Biol Res (Faisalabad) 2009; 3(3-4): 89-95.
[5]
Alvarez GS, Hélary C, Mebert AM, Wang X, Coradin T, Desimone MF. Antibiotic-loaded silica nanoparticle-collagen composite hydrogels with prolonged antimicrobial activity for wound infection prevention. J Mater Chem B Mater Biol Med 2014; 2: 4660-70.
[http://dx.doi.org/10.1039/c4tb00327f]
[6]
Benelli G, Lukehart CM. Special Issue: applications of green-synthesized nanoparticles in pharmacology, parasitology and entomology. J Cluster Sci 2017; 28(1): 1-2.
[http://dx.doi.org/10.1007/s10876-017-1165-5]
[7]
Anbazhagan P, Murugan K, Jaganathan A, et al. Mosquitocidal, antimalarial and antidiabetic potential of musa paradisiaca-synthesized silver nanoparticles: in vivo and in vitro approaches. J Cluster Sci 2016; 28(1): 91-107.
[http://dx.doi.org/10.1007/s10876-016-1047-2]
[8]
Shah MA, Wani SH, Khan AA. Nanotechnology and insecticides formulations. J Food Bioeng Nanoprocess 2016; 1(3): 285-310.
[9]
Smith K, Evans DA, El-Hiti GA. Role of modern chemistry in sustainable arable crop protection. Philos Trans R Soc Lond B Biol Sci 2008; 363(1491): 623-37.
[http://dx.doi.org/10.1098/rstb.2007.2174] [PMID: 17702697]
[10]
Kah M, Beulke S, Tiede K, Hofmann T. Nanopesticides: State of knowledge, environmental fate, and exposure modeling. Crit Rev Environ Sci Technol 2013; 43: 1823-67.
[http://dx.doi.org/10.1080/10643389.2012.671750]
[11]
Sasson Y, Levy-Ruso G, Toledano O, Ishaaya I. Nanosuspensions: emerging novel agrochemical formulations In: Ishaaya I, Horowitz AR, Nauen R Eds Insecticides Design Using Advanced Technologies Berlin, Heidelberg: Springer-Verlag 2007; pp 1-32
[http://dx.doi.org/10.1007/978-3-540-46907-0_1]
[12]
Oskam G. Metal oxide nanoparticles: synthesis, characterization and application. J Solgel Sci Techno 2006; 37(3): 161-4.
[http://dx.doi.org/10.1007/s10971-005-6621-2]
[13]
Niemeyer CM, Doz P. Nanoparticles, proteins, and nucleic acids: biotechnology meets materials science. Angew Chem Int Ed Engl 2001; 40(22): 4128-58.
[http://dx.doi.org/10.1002/1521-3773(20011119)40:22<4128:AID-ANIE4128>3.0.CO;2-S] [PMID: 29712109]
[14]
Barik TK, Sahu B, Swain V. Nanosilica-from medicine to pest control. Parasitol Res 2008; 103(2): 253-8.
[http://dx.doi.org/10.1007/s00436-008-0975-7] [PMID: 18438740]
[15]
Athanassiou CG, Kavallieratos NG, Benelli G, Losic D, Usha Rani P, Desneux N. Nanoparticles for pest control: current status and future perspectives. J Pest Sci 2018; 91(1): 1-15.
[http://dx.doi.org/10.1007/s10340-017-0898-0]
[16]
Kaziem AE, Gao Y, He S, Li J. Synthesis and insecticidal activity of enzyme-triggered functionalized hollow mesoporous silica for controlled release. J Agric Food Chem 2017; 65(36): 7854-64.
[http://dx.doi.org/10.1021/acs.jafc.7b02560] [PMID: 28809107]
[17]
Rajakumar G, Abdul Rahuman A. Larvicidal activity of synthesized silver nanoparticles using Eclipta prostrata leaf extract against filariasis and malaria vectors. Acta Trop 2011; 118(3): 196-203.
[http://dx.doi.org/10.1016/j.actatropica.2011.03.003] [PMID: 21419749]
[18]
Roni M, Murugan K, Panneerselvam C, Subramaniam J, Hwang JS. Evaluation of leaf aqueous extract and synthesized silver nanoparticles using Nerium oleander against Anopheles stephensi (Diptera: Culicidae). Parasitol Res 2013; 112(3): 981-90.
[http://dx.doi.org/10.1007/s00436-012-3220-3] [PMID: 23239092]
[19]
Lallawmawma H, Sathishkumar G, Sarathbabu S, et al. Synthesis of silver and gold nanoparticles using Jasminum nervosum leaf extract and its larvicidal activity against filarial and arboviral vector Culex quinquefasciatus say (Diptera: Culicidae). Environ Sci Pollut Res Int 2015; 22(22): 17753-68.
[http://dx.doi.org/10.1007/s11356-015-5001-x] [PMID: 26154045]
[20]
Salunkhe RB, Patil SV, Patil CD, Salunke BK. Larvicidal potential of silver nanoparticles synthesized using fungus Cochliobolus lunatus against Aedes aegypti (Linnaeus, 1762) and Anopheles stephensi Liston (Diptera; Culicidae). Parasitol Res 2011; 109(3): 823-31.
[http://dx.doi.org/10.1007/s00436-011-2328-1] [PMID: 21451993]
[21]
Soni N, Prakash S. Efficacy of Chrysosporium tropicum fungus mediated silver and gold nanoparticles against Aedes aegypti larvae. Parasitol Res 2012; 110: 175-84.
[http://dx.doi.org/10.1007/s00436-011-2467-4] [PMID: 21647674]
[22]
Satehi AB, Ziaee M, Ashrafi A. Silica nanoparticles: A potential carrier of chlorpyrifos in slurries to control two insect pests of stored products. Entomol Gen 2017; 37(1): 77-91.
[http://dx.doi.org/10.1127/entomologia/2017/0406]
[23]
Arumugam G, Velayutham V, Shanmugavel S, Sundaram J. Efficacy of nanostructured silica as a stored pulse protector against the infestation of bruchid beetle, Callosobruchus maculatus (Coleoptera: Bruchidae). Appl Nanosci 2016; 6(3): 445-50.
[http://dx.doi.org/10.1007/s13204-015-0446-2]
[24]
Stadler T, Buteler M, Weaver DK. Novel use of nanostructured alumina as an insecticide. Pest Manag Sci 2010; 66(6): 577-9.
[http://dx.doi.org/10.1002/ps.1915] [PMID: 20127753]
[25]
Pavunraj M, Baskar K, Duraipandiyan V, Al-Dhabi NA, Rajendran V, Benelli G. Toxicity of Ag nanoparticles synthesized using stearic acid from Catharanthus roseus leaf extract against Earias vittella and Mosquito Vectors (Culex quinquefasciatus and Aedes aegypti). J Cluster Sci 2017; 28(5): 2477-92.
[http://dx.doi.org/10.1007/s10876-017-1235-8]
[26]
Madhusudhanamurthy J, Rani PU, Sambasiva Rao KRS. Organic-inorganic hybrids of nano silica and certain botanical compounds for their improved bioactivity against agricultural pests. Curr Trends Biotechnol Pharm 2013; 7(2): 615-24.
[27]
Usha Rani P, Madhusudhanamurthy J, Sreedhar B. Dynamic adsorption of α-pinene and linalool on silica nanoparticles for enhanced antifeedant activity against agricultural pests. J Pest Sci 2014; 87(1): 191-200.
[http://dx.doi.org/10.1007/s10340-013-0538-2]
[28]
Vani C, Brindhaa U. Silica nanoparticles as nanocides against Corcyra cephalonica (S.), the stored grain pest. Int J Pharma Bio Sci 2013; 4(3): 1108-18.
[29]
Debnath N, Das S, Brahmachary RL, Chandra R, Sudan S, Goswami A. Entomotoxicity assay of silica, zinc oxide, titanium dioxide, aluminium oxide nanoparticles on Lipaphis pseudobrassicae. AIP Conf Proc 2010; 1276: 307-10..
[http://dx.doi.org/10.1063/1.3504316]
[30]
Hersanti H, Hidayat S, Susanto A, Virgiawan R, Joni IM. The effectiveness of Penicillium sp. mixed with silica nanoparticles in controlling Myzus persicae. AIP Conf Proc 2018; 1927: 030029.
[http://dx.doi.org/10.1063/1.5021222]
[31]
Shoaib A, Elabasy A, Waqas M, et al. Entomotoxic effect of silicon dioxide nanoparticles on Plutella xylostella (L.) (Lepidoptera: Plutellidae) under laboratory conditions. Toxicol Environ Chem 2018; 100(1): 80-91.
[http://dx.doi.org/10.1080/02772248.2017.1387786]
[32]
Janković-Tomanić M, Todorović D, Stanivuković Z, Perić Mataruga V, Wessjohann LA, Kaluđerović GN. Mesoporous silica nanoparticles SBA-15 loaded with emodin upregulate the antioxidative defense of Euproctis chrysorrhoea (L.) larvae. Turk J Biol 2017; 41(6): 935-42.
[http://dx.doi.org/10.3906/biy-1705-76] [PMID: 30814858]
[33]
Santo-Orihuela PL, Foglia ML, Targovnik AM, Miranda MV, Desimone MF. Nanotoxicological effects of SiO2 nanoparticles on Spodoptera frugiperda Sf9 Cells. Curr Pharm Biotechnol 2016; 17(5): 465-70.
[http://dx.doi.org/10.2174/138920101705160303165604] [PMID: 26956111]
[34]
Jayaseelan C, Rahuman AA, Rajakumar G, et al. Synthesis of pediculocidal and larvicidal silver nanoparticles by leaf extract from heartleaf moonseed plant, Tinospora cordifolia Miers. Parasitol Res 2011; 109(1): 185-94.
[http://dx.doi.org/10.1007/s00436-010-2242-y] [PMID: 21212979]
[35]
Kirthi AV, Rahuman AA, Rajakumar G, et al. Acaricidal, pediculocidal and larvicidal activity of synthesized ZnO nanoparticles using wet chemical route against blood feeding parasites. Parasitol Res 2011; 109(2): 461-72.
[http://dx.doi.org/10.1007/s00436-011-2277-8] [PMID: 21340566]
[36]
Murugan K, Benelli G, Panneerselvam C, et al. Cymbopogon citratus-synthesized gold nanoparticles boost the predation efficiency of copepod Mesocyclops aspericornis against malaria and dengue mosquitoes. Exp Parasitol 2015; 153: 129-38.
[http://dx.doi.org/10.1016/j.exppara.2015.03.017] [PMID: 25819295]
[37]
Benelli G. Plant-mediated biosynthesis of nanoparticles as an emerging tool against mosquitoes of medical and veterinary importance: a review. Parasitol Res 2016; 115(1): 23-34.
[http://dx.doi.org/10.1007/s00436-015-4800-9] [PMID: 26541154]
[38]
Benelli G. Green synthesized nanoparticles in the fight against mosquito-borne diseases and cancer-a brief review. Enzyme Microb Technol 2016; 95: 58-68.
[http://dx.doi.org/10.1016/j.enzmictec.2016.08.022] [PMID: 27866627]
[39]
Benelli G. Mode of action of nanoparticles against insects. Environ Sci Pollut Res Int 2018; 25(13): 12329-41.
[http://dx.doi.org/10.1007/s11356-018-1850-4] [PMID: 29611126]
[40]
Subramaniam J, Murugan K, Panneerselvam C, et al. Multipurpose effectiveness of Couroupita guianensis-synthesized gold nanoparticles: high antiplasmodial potential, field efficacy against malaria vectors and synergy with Aplocheilus lineatus predators. Environ Sci Pollut Res Int 2016; 23(8): 7543-58.
[http://dx.doi.org/10.1007/s11356-015-6007-0] [PMID: 26732702]
[41]
Barik TK, Kamaraju R, Gowswami A. Silica nanoparticle: a potential new insecticide for mosquito vector control. Parasitol Res 2012; 111(3): 1075-83.
[http://dx.doi.org/10.1007/s00436-012-2934-6] [PMID: 22565400]
[42]
Jayaseelan C, Gandhi PR, Rajasree SRR, Suman TY, Mary RR. Toxicity studies of nanofabricated palladium against filariasis and malaria vectors. Environ Sci Pollut Res Int 2018; 25(1): 324-32.
[http://dx.doi.org/10.1007/s11356-017-0428-x] [PMID: 29034429]
[43]
Patil CD, Borase HP, Suryawanshi RK, Patil SV. Trypsin inactivation by latex fabricated gold nanoparticles: A new strategy towards insect control. Enzyme Microb Technol 2016; 92: 18-25.
[http://dx.doi.org/10.1016/j.enzmictec.2016.06.005] [PMID: 27542740]
[44]
Suganya P, Vaseeharan B, Vijayakumar S, et al. Biopolymer zein-coated gold nanoparticles: Synthesis, antibacterial potential, toxicity and histopathological effects against the Zika virus vector Aedes aegypti. J Photochem Photobiol B 2017; 173: 404-11.
[http://dx.doi.org/10.1016/j.jphotobiol.2017.06.004] [PMID: 28654862]
[45]
Sundararajan B, Ranjitha Kumari BD. Novel synthesis of gold nanoparticles using Artemisia vulgaris L. leaf extract and their efficacy of larvicidal activity against dengue fever vector Aedes aegypti L. J Trace Elem Med Biol 2017; 43: 187-96.
[http://dx.doi.org/10.1016/j.jtemb.2017.03.008] [PMID: 28341392]
[46]
Small T, Ochoa-Zapater MA, Gallello G, et al. Gold-nanoparticles ingestion disrupts reproduction and development in the German cockroach. Sci Total Environ 2016; 565: 882-8.
[http://dx.doi.org/10.1016/j.scitotenv.2016.02.032] [PMID: 26905368]
[47]
Sutthanont N, Attrapadung S, Nuchprayoon S. Larvicidal activity of synthesized silver nanoparticles from Curcuma zedoaria essential oil against Culex quinquefasciatus. Insects 2019; 10(1): 1-11.
[http://dx.doi.org/10.3390/insects10010027] [PMID: 30641859]
[48]
González JW, Yeguerman C, Marcovecchio D, Delrieux C, Ferrero A, Fernández Banda B. Evaluation of sublethal effects of polymer-based essential oils nanoformulation on the german cockroach. Ecotoxicol Environ Saf 2016; 130: 11-8.
[http://dx.doi.org/10.1016/j.ecoenv.2016.03.045]
[49]
López-Muñoz D, Ochoa-Zapater MA, Torreblanca A, Garcerá MD. Evaluation of the effects of titanium dioxide and aluminum oxide nanoparticles through tarsal contact exposure in the model insect Oncopeltus fasciatus. Sci Total Environ 2019; 666: 759-65.
[http://dx.doi.org/10.1016/j.scitotenv.2019.02.218] [PMID: 30812009]
[50]
Gandhi PR, Jayaseelan C, Mary RR, Mathivanan D, Suseem SR. Acaricidal, pediculicidal and larvicidal activity of synthesized ZnO nanoparticles using Momordica charantia leaf extract against blood feeding parasites. Exp Parasitol 2017; 181: 47-56.
[http://dx.doi.org/10.1016/j.exppara.2017.07.007] [PMID: 28760358]
[51]
Gandhi PV, Jayaseelan C, Vimalkumar E, Mary RR. Larvicidal and pediculicidal activity of synthesized TiO2 nanoparticles using Vitex negundo leaf extract against blood feeding parasites. J Asia Pac Entomol 2016; 19(4): 1089-94.
[http://dx.doi.org/10.1016/j.aspen.2016.10.001]
[52]
Stadler T, Buteler M, Weaver DK, Sofie S. Comparative toxicity of nanostructured alumina and a commercial inert dust for Sitophilus oryzae (L.) and Rhyzopertha dominica (F.) at varying ambient humidity levels. J Stored Prod Res 2012; 48: 81-90.
[http://dx.doi.org/10.1016/j.jspr.2011.09.004]
[53]
Zhang H, Leung Y, Louden D, De Nys R, Lamb R. The potential intrinsic and extrinsic toxicity of silica nanoparticles and its impact on marine organisms. Nano 2008; 3(4): 271-8.
[http://dx.doi.org/10.1142/S1793292008001337]
[54]
Debnath N, Mitra S, Das S, Goswami A. Synthesis of surface functionalized silica nanoparticles and their use as entomotoxic nanocides. Powder Technol 2012; 221: 252-6.
[http://dx.doi.org/10.1016/j.powtec.2012.01.009]
[55]
Debnath N, Das S, Patra P, Mitra S, Goswami A. Toxicological evaluation of entomotoxic silica nanoparticle. Toxicol Environ Chem 2012; 94(5): 944-51.
[http://dx.doi.org/10.1080/02772248.2012.682462]
[56]
Das S, Debnath N, Cui Y, Unrine J, Palli SR. Chitosan, carbon quantum dot, and silica nanoparticle mediated dsRNA delivery for gene silencing in Aedes aegypti: a comparative analysis. ACS Appl Mater Interfaces 2015; 7(35): 19530-5.
[http://dx.doi.org/10.1021/acsami.5b05232] [PMID: 26291176]
[57]
Mommaerts V, Jodko K, Thomassen LCJ, Martens JA, Kirsch-Volders M, Smagghe G. Assessment of side-effects by Ludox TMA silica nanoparticles following a dietary exposure on the bumblebee Bombus terrestris. Nanotoxicology 2012; 6(5): 554-61.
[http://dx.doi.org/10.3109/17435390.2011.590905] [PMID: 21675822]
[58]
Rastogi A, Tripathi DK, Yadav S, et al. Application of silicon nanoparticles in agriculture. 3 Biotech 2019; 9(3): 90.
[http://dx.doi.org/10.1007/s13205-019-1626-7] [PMID: 30800601]
[59]
Popat A, Liu J, Hu Q, et al. Adsorption and release of biocides with mesoporous silica nanoparticles. Nanoscale 2012; 4(3): 970-5.
[http://dx.doi.org/10.1039/C2NR11691J] [PMID: 22200056]
[60]
Goswami A, Roy I, Sengupta S, Debnath N. Novel applications of solid and liquid formulations of nanoparticles against insect pests and pathogens. Thin Solid Films 2019; 519(3): 1252-7.
[http://dx.doi.org/10.1016/j.tsf.2010.08.079]
[61]
Khandelwal N, Doke DS, Khandare JJ, Jawale PV, Biradar AV, Giri AP. Bio-physical evaluation and in vivo delivery of plant proteinase inhibitor immobilized on silica nanospheres. Colloids Surf B Biointerfaces 2015; 130: 84-92.
[http://dx.doi.org/10.1016/j.colsurfb.2015.03.060] [PMID: 25909183]
[62]
Heinemann S, Coradin T, Desimone MF. Bio-inspired silica-collagen materials: applications and perspectives in the medical field. Biomater Sci 2013; 1: 688-702.
[http://dx.doi.org/10.1039/c3bm00014a]
[63]
Wolman FJ, Copello GJ, Mebert AM, Targovnik AM, Miranda MV, del Cañizo AAN, et al. Egg white lysozyme purification with a chitin-silica-based affinity chromatographic matrix. Eur Food Res Technol 2010; 231: 181-8.
[http://dx.doi.org/10.1007/s00217-010-1263-1]
[64]
Wibowo D, Zhao CX, Peters BC, Middelberg AP. Sustained release of fipronil insecticide in vitro and in vivo from biocompatible silica nanocapsules. J Agric Food Chem 2014; 62(52): 12504-11.
[http://dx.doi.org/10.1021/jf504455x] [PMID: 25479362]
[65]
Rahman IA, Padavettan V. Synthesis of silica nanoparticles by Sol-Gel: size-dependent properties, surface modification, and applications in silica-polymer nanocomposites- a review. J Nanomater 2012; 2012132424
[http://dx.doi.org/10.1155/2012/132424]
[66]
Klabunde KJ. Nanoscale Materials in Chemistry. New York, NY, USA: Wiley-Interscience 2001.
[http://dx.doi.org/10.1002/0471220620]
[67]
Hench LL, West JK. The Sol-Gel process. Chem Rev 1990; 90(1): 33-72.
[http://dx.doi.org/10.1021/cr00099a003]
[68]
Stöber W, Fink A, Bohn E. Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 1968; 26(1): 62-9.
[http://dx.doi.org/10.1016/0021-9797(68)90272-5]
[69]
Vinay K, Pranjala T, Lucky K, et al. Green route synthesis of silicon/silicon oxide from bamboo. Adv Mater 2016; 7(4): 271-6.
[70]
Tan TT, Liu S, Zhang Y, Han MY, Selvan ST. Microemulsion preparative method (overview). Comprehens Nanosci and Tech 2011; 5: 399-441.
[http://dx.doi.org/10.1016/B978-0-12-374396-1.00045-3]
[71]
Vansant EF, Voort PVD, Vrancken KC. Characterization and chemical modification of the silica surface. New York, NY, USA: Elsevier Science 1995.
[72]
Pham DD, Le SN, Nguyen NT, et al. Effects of nanosilica from rice husk on the growth and enhancement of chilli plants. J Sci Technol 2016; 54(5): 607-13.
[73]
Haoran C, Weixing W, Jarett CM, et al. Extraction of lignocellulose and synthesis of porous silica nanoparticles from rice husk: a comprehensive utilization of rice husk biomass. ACS Sustain Chem& Eng 2013; 254-9.
[74]
Real C, Alcala D, Maria C, Jose M. Preparation of silica from rice husks. J Am Ceram Soc 2008; 79(8): 2012-6.
[http://dx.doi.org/10.1111/j.1151-2916.1996.tb08931.x]
[75]
Wang W, Martin JC, Fan X, Han A, Luo Z, Sun L. Silica nanoparticles and frameworks from rice husk biomass. ACS Appl Mater Interfaces 2012; 4(2): 977-81.
[http://dx.doi.org/10.1021/am201619u] [PMID: 22206457]
[76]
Debnath N, Das S, Seth D, Chandra R, Bhattacharya SC, Goswami A. Entomotoxic effect of silica nanoparticles against Sitophilus oryzae (L.). J Pest Sci 2011; 84(1): 99-105.
[http://dx.doi.org/10.1007/s10340-010-0332-3]
[77]
Ulrichs C, Krause F, Rocksch T, Goswami A, Mewis I. Electrostatic application of inert silica dust based insecticides onto plant surfaces. Commun Agric Appl Biol Sci 2006; 71(2 Pt A): 171-8.
[PMID: 17390789]
[78]
Song MR, Cui SM, Gao F, et al. Dispersible silica nanoparticles as carrier for enhanced bioactivity of chlorfenapyr. J Pest Sci 2012; 37(3): 258-60.
[http://dx.doi.org/10.1584/jpestics.D12-027]
[79]
Li ZZ, Chen JF, Liu F, et al. Study of UV-shielding properties of novel porous hollow silica nanoparticle carriers for avermectin. Pest Manag Sci 2007; 63(3): 241-6.
[http://dx.doi.org/10.1002/ps.1301] [PMID: 17177171]
[80]
Athanassiou CG, Kavallieratos NC, Evergetis E, Katsoula AM, Haroutounian SA. Insecticidal efficacy of silica gel with Juniperus oxycedrus ssp. oxycedrus (Pinales: Cupressaceae) essential oil against Sitophilus oryzae (Coleoptera: Curculionidae) and Tribolium confusum (Coleoptera: Tenebrionidae). J Econ Entomol 2013; 106(4): 1902-10.
[http://dx.doi.org/10.1603/EC12474] [PMID: 24020309]
[81]
Santo-Orihuela P, Picollo MI, Desimone M, Vassena C. Effect of size and charge of sílica nanoparticles on human lice (Pediculus humanus capitis) (De Geer) Society of Environmental Toxicology and Chemistry (SETAC) Latin America 11th Biennial Meeting. Sep 7-10; Buenos Aires. Argentina.
[82]
Santo-Orihuela PL, Desimone MF, Vassena CV. Efectos de nanopartículas sobre la supervivencia de insectos (Cimex lectularius y Pediculus humanus). VI Congreso Argentino de la Sociedad de Toxicología y Química Ambiental. Córdoba. Argentina. 2016.
[83]
Lee SW, Kim SM, Choi J. Genotoxicity and ecotoxicity assays using the freshwater crustacean Daphnia magna and the larva of the aquatic midge Chironomus riparius to screen the ecological risks of nanoparticle exposure. Environ Toxicol Pharmacol 2009; 28(1): 86-91.
[http://dx.doi.org/10.1016/j.etap.2009.03.001] [PMID: 21783986]
[84]
Nair PM, Park SY, Choi J. Evaluation of the effect of silver nanoparticles and silver ions using stress responsive gene expression in Chironomus riparius. Chemosphere 2013; 92(5): 592-9.
[http://dx.doi.org/10.1016/j.chemosphere.2013.03.060] [PMID: 23664472]
[85]
Nair PM, Choi J. Identification, characterization and expression profiles of Chironomus riparius glutathione S-transferase (GST) genes in response to cadmium and silver nanoparticles exposure. Aquat Toxicol 2011; 101(3-4): 550-60.
[http://dx.doi.org/10.1016/j.aquatox.2010.12.006] [PMID: 21276481]
[86]
Nair PM, Choi J. Modulation in the mRNA expression of ecdysone receptor gene in aquatic midge, Chironomus riparius upon exposure to nonylphenol and silver nanoparticles. Environ Toxicol Pharmacol 2012; 33(1): 98-106.
[http://dx.doi.org/10.1016/j.etap.2011.09.006] [PMID: 22196049]
[87]
Nair PM, Park SY, Lee SW, Choi J. Differential expression of ribosomal protein gene, gonadotrophin releasing hormone gene and Balbiani ring protein gene in silver nanoparticles exposed Chironomus riparius. Aquat Toxicol 2011; 101(1): 31-7.
[http://dx.doi.org/10.1016/j.aquatox.2010.08.013] [PMID: 20870301]
[88]
Yasur J, Rani PU. Environmental effects of nanosilver: impact on castor seed germination, seedling growth, and plant physiology. Environ Sci Pollut Res Int 2013; 20(12): 8636-48.
[http://dx.doi.org/10.1007/s11356-013-1798-3] [PMID: 23702569]
[89]
Fruijtier-Pölloth C. The toxicological mode of action and the safety of synthetic amorphous silica-a nanostructured material. Toxicology 2012; 294(2-3): 61-79.
[http://dx.doi.org/10.1016/j.tox.2012.02.001] [PMID: 22349641]
[90]
Kustov LM, Mashkin PV, Zakharov VN, et al. Silicon nanoparticles: characterization and toxicity studies. Environ Sci Nano 2018; 5(12): 2945-51.
[http://dx.doi.org/10.1039/C8EN00934A]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 25
ISSUE: 37
Year: 2019
Page: [4030 - 4038]
Pages: 9
DOI: 10.2174/1381612825666191015152855
Price: $65

Article Metrics

PDF: 16
HTML: 5