Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Research Article

Synthesis of New Curcumin-like Pentadienones by O- and C-glycosylation

Author(s): Carolina P. Gonçalves*, Dirk Michalik*, Manuel Almeida, Anderson O. Ribeiro and José A. Quincoces

Volume 23, Issue 18, 2019

Page: [1984 - 1991] Pages: 8

DOI: 10.2174/1385272823666191014165754

Price: $65

Abstract

A new method for the preparation of three new curcumin analogues is described by the connection of pentadienones to carbohydrate units. From L-Rhamnose and D-Galactose, several functionalization reactions were performed to obtain the desired sugar units. The sugars 8, 18 and 19, after obtained, were used as starting material for the association with curcumin-derived pentadienones, thus giving rise to three new chalcones 9 by O-glycosylation, 22 and 23 C-glycosylation. The new compounds were characterized by NMR and mass spectroscopy. The compounds obtained have high potential to exhibit antitumor activity.

Keywords: L-Rhamnose derivatives, D-Galactose derivatives, pentadienone, curcumin analogues, O-glycosylation, C-glycosylation.

Graphical Abstract
[1]
Wilken, R.; Veena, M.S.; Wang, M.B.; Srivatsan, E.S. Curcumin: A review of anti-cancer properties and therapeutic activity in head and neck squamous cell carcinoma. Mol. Cancer, 2011, 10(12), 12.
[http://dx.doi.org/10.1186/1476-4598-10-12] [PMID: 21299897]
[2]
Tajbakhsh, A.; Hasanzadeh, M.; Rezaee, M.; Khedri, M.; Khazaei, M. ShahidSales, S.; Ferns, G.A.; Hassanian, S.M.; Avan, A. Therapeutic potential of novel formulated forms of curcumin in the treatment of breast cancer by the targeting of cellular and physiological dysregulated pathways. J. Cell. Physiol., 2018, 233(3), 2183-2192.
[http://dx.doi.org/10.1002/jcp.25961] [PMID: 28419458]
[3]
Jobin, C.; Bradham, C.A.; Russo, M.P.; Juma, B.; Narula, A.S.; Brenner, D.A.; Sartor, R.B. Curcumin blocks cytokine-mediated NF-κ B activation and proinflammatory gene expression by inhibiting inhibitory factor I-κ B kinase activity. J. Immunol., 1999, 163(6), 3474-3483.
[PMID: 10477620]
[4]
Quincoces, J.A.; Carvalho, J.E.; Kohn, K.; Maria, D.A.; Peseke, K.; Kordian, M.; Brunhari, H. New method for the preparation of 1,5-bis(4-hydroxy-3- methoxy-phenyl)penta-1,4-dien-3-one and derivatives with antitumoral properties US Patent 7,432,401, July 07. 2008.
[5]
Quincoces Suarez, J.A.; Rando, D.G.; Santos, R.P.; Gonçalves, C.P.; Ferreira, E.; de Carvalho, J.E.; Kohn, L.; Maria, D.A.; Faião-Flores, F.; Michalik, D.; Marcucci, M.C.; Vogel, C. New antitumoral agents I: In vitro anticancer activity and in vivo acute toxicity of synthetic 1,5-bis(4-hydroxy-3-methoxyphenyl)-1,4-pentadien-3-one and derivatives. Bioorg. Med. Chem., 2010, 18(17), 6275-6281.
[http://dx.doi.org/10.1016/j.bmc.2010.07.026] [PMID: 20696583]
[6]
Ohori, H.; Yamakoshi, H.; Tomizawa, M.; Shibuya, M.; Kakudo, Y.; Takahashi, A.; Takahashi, S.; Kato, S.; Suzuki, T.; Ishioka, C.; Iwabuchi, Y.; Shibata, H. Synthesis and biological analysis of new curcumin analogues bearing an enhanced potential for the medicinal treatment of cancer. Mol. Cancer Ther., 2006, 5(10), 2563-2571.
[http://dx.doi.org/10.1158/1535-7163.MCT-06-0174] [PMID: 17041101]
[7]
Liang, G.; Shao, L.; Wang, Y.; Zhao, C.; Chu, Y.; Xiao, J.; Zhao, Y.; Li, X.; Yang, S. Exploration and synthesis of curcumin analogues with improved structural stability both in vitro and in vivo as cytotoxic agents. Bioorg. Med. Chem., 2009, 17(6), 2623-2631.
[http://dx.doi.org/10.1016/j.bmc.2008.10.044] [PMID: 19243951]
[8]
Fuchs, J.R.; Pandit, B.; Bhasin, D.; Etter, J.P.; Regan, N.; Abdelhamid, D.; Li, C.; Lin, J.; Li, P.K. Structure-activity relationship studies of curcumin analogues. Bioorg. Med. Chem. Lett., 2009, 19(7), 2065-2069.
[http://dx.doi.org/10.1016/j.bmcl.2009.01.104] [PMID: 19249204]
[9]
Quincoces, J.A.; Maria, D.A.; Rando, D.G.; Martins, C.A.; Souza, P.O. Methods to prepare penta-1,4-dien-3-ones and substituted cyclohexanones and derivatives with antitumoral and antiparasitic properties, the compounds and their uses Brazilian Patent PI 0602640-0, US-Patent 8,859,625 B2, October 14, 2014, JP 5317290, July 19, 2013, EP 2054365 B1, September 24. 2014.
[10]
Quincoces, J.A.; Maria, D.A.; Rando, D.G.; Pardi, P.C.; Santos, R.P.; Faião-Flores, F. Pharmaceutical composition and use of the pharmaceutical composition for the treatment, prophylaxis or prevention of neoplastic diseases in humans and animals. Brazilian Patent PI 0902039-0, June 09, 2009, Japan Patent JP 5802658 B2, September 04, 2015, US-Patent US 9,381,169 B2, July 05, 2016, European Patent EP 2441452 B1, December 26 2018.
[11]
Faião-Flores, F.; Pardi, P.C.; Santos, R.P.; Rando, D.G.; Quincoces, J.A.; Maria, D.A. Antiproliferative and antimetastatic activity of DM-1, sodium 4-[5-(4-hydroxy-3-methoxyphenyl)-3-oxo-penta-1,4-dienyl]-2-methoxy-phenolate, in B16F10 melanoma. App. Cancer Res., 2008, 28, 72-79.
[12]
Faião-Flores, F.; Suarez, J.A.; Pardi, P.C.; Maria, D.A. DM-1, sodium 4-[5-(4-hydroxy-3-methoxyphenyl)-3-oxo-penta-1,4-dienyl]-2-methoxy-phenolate: A curcumin analog with a synergic effect in combination with paclitaxel in breast cancer treatment. Tumour Biol., 2012, 33(3), 775-785.
[http://dx.doi.org/10.1007/s13277-011-0293-z] [PMID: 22194218]
[13]
Faião-Flores, F.; Quincoces Suarez, J.A.; Fruet, A.C.; Maria-Engler, S.S.; Pardi, P.C.; Maria, D.A. Curcumin analog DM-1 in monotherapy or combinatory treatment with dacarbazine as a strategy to inhibit in vivo melanoma progression. PLoS One, 2015, 10(3)e0118702
[http://dx.doi.org/10.1371/journal.pone.0118702] [PMID: 25742310]
[14]
Paulino, N.; Paulino, A.S.; Diniz, S.N.; de Mendonça, S.; Gonçalves, I.D.; Faião Flores, F.; Santos, R.P.; Rodrigues, C.; Pardi, P.C.; Quincoces Suarez, J.A. Evaluation of the anti-inflammatory action of curcumin analog (DM1): Effect on iNOS and COX-2 gene expression and autophagy pathways. Bioorg. Med. Chem., 2016, 24(8), 1927-1935.
[http://dx.doi.org/10.1016/j.bmc.2016.03.024] [PMID: 27010501]
[15]
Oliveira, E.A.; Lima, D.S.; Cardozo, L.E.; Souza, G.F.; de Souza, N.; Alves-Fernandes, D.K.; Faião-Flores, F.; Quincoces, J.A.P.; Barros, S.B.M.; Nakaya, H.I.; Monteiro, G.; Maria-Engler, S.S. Toxicogenomic and bioinformatics platforms to identify key molecular mechanisms of a curcuminanalogue DM-1 toxicity in melanoma cells. Pharmacol. Res, 2017, 125(Pt B), 178-187.
[http://dx.doi.org/10.1016/j.phrs.2017.08.018] [PMID: 28882690]
[16]
Dienstmann, R.; Salazar, R.; Tabernero, J. Molecular subtypes and the evolution of treatment decisions in metastatic colorectal cancer. Am. Soc. Clin. Oncol. Educ. Book, 2018, 38, 231-238.
[http://dx.doi.org/10.1200/EDBK_200929] [PMID: 30231342]
[17]
Gabius, S.; Yamazaki, N.; Hanewacker, W.; Gabius, H.J. Regulation of distribution, amount and ligand affinity of sugar receptors in human colon carcinoma cells by treatment with sodium butyrate, retinoic acid and phorbol ester. Anticancer Res., 1990, 10(4), 1005-1012.
[PMID: 2382971]
[18]
Elshahawi, S.I.; Shaaban, K.A.; Kharel, M.K.; Thorson, J.S. A comprehensive review of glycosylated bacterial natural products. Chem. Soc. Rev., 2015, 44(21), 7591-7697.
[http://dx.doi.org/10.1039/C4CS00426D] [PMID: 25735878]
[19]
Varki, A. Essentials of Glycobiology, 3rd ed; Cold Spring Harbor Laboratory Press: New York, 2017.
[20]
Sharon, N.; Lis, H. Lectins: Cell-agglutinating and sugar-specific proteins. Science, 1972, 177(4053), 949-959.
[http://dx.doi.org/10.1126/science.177.4053.949] [PMID: 5055944]
[21]
Betaneli, V.; Ovchinnikov, M.V.; Backinowsky, L.V.; Kochetkov, N.K. Practical synthesis of O-β-D-mannopyranosyl-,O-α-D-mannopyranosyl, and O-β-D-glucopyranosyl-(1→4)-O-α-L-rhamnopyranosyl-(1→3)-D-galactoses. Carbohydr. Res., 1980, 84, 211-224.
[http://dx.doi.org/10.1016/S0008-6215(00)85552-4]
[22]
Chatterjee, D.; Cho, S.N.; Brennan, P.J.; Aspinall, G.O. Chemical synthesis and seroreactivity of O-(3,6-di-O-methyl-beta-D-glucopyranosyl)-(1----4)-O-(2,3-di-O-methyl- alpha-L-rhamnopyranosyl)-(1----9)-oxynonanoyl-bovine serum albumin--the leprosy-specific, natural disaccharide-octyl-neoglycoprotein. Carbohydr. Res., 1986, 156, 39-56.
[http://dx.doi.org/10.1016/S0008-6215(00)90098-3] [PMID: 3815408]
[23]
Schmidt, R.R.; Stumpp, M. Glycosylimidate, 10. Glycosylphosphate aus Glycosyl(trichloracetimidaten). Lieb. Ann. der Chem., 1984, 4, 680-691.
[24]
Percec, V.; Leowanawat, P.; Sun, H.J.; Kulikov, O.; Nusbaum, C.D.; Tran, T.M.; Bertin, A.; Wilson, D.A.; Peterca, M.; Zhang, S.; Kamat, N.P.; Vargo, K.; Moock, D.; Johnston, E.D.; Hammer, D.A.; Pochan, D.J.; Chen, Y.; Chabre, Y.M.; Shiao, T.C.; Bergeron-Brlek, M.; André, S.; Roy, R.; Gabius, H.J.; Heiney, P.A. Modular synthesis of amphiphilic Janus glycodendrimers and their self-assembly into glycodendrimersomes and other complex architectures with bioactivity to biomedically relevant lectins. J. Am. Chem. Soc., 2013, 135(24), 9055-9077.
[http://dx.doi.org/10.1021/ja403323y] [PMID: 23692629]
[25]
Himanen, J.A.; Pihko, P.M. Synthesis of trisaccharides by hetero-diels-alder welding of two monosaccharide units. Eur. J. Org. Chem., 2012, 20, 3765-3780.
[http://dx.doi.org/10.1002/ejoc.201200277]
[26]
Liaigre, J.; Dubreuil, D.; Pradère, J.P.; Bouhours, J.F. A novel synthesis of α-D-Galp-(1-->3)-β-D-Galp-1-O-(CH2)3-NH2, its linkage to activated matrices and absorption of anti-alphaGal xenoantibodies by affinity columns. Carbohydr. Res., 2000, 325(4), 265-277.
[http://dx.doi.org/10.1016/S0008-6215(00)00010-0] [PMID: 10839120]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy