Recombinant Protein Production in Microalgae: Emerging Trends

Author(s): Niaz Ahmad*, Muhammad Aamer Mehmood, Sana Malik.

Journal Name: Protein & Peptide Letters

Volume 27 , Issue 2 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

In recent years, microalgae have emerged as an alternative platform for large-scale production of recombinant proteins for different commercial applications. As a production platform, it has several advantages, including rapid growth, easily scale up and ability to grow with or without the external carbon source. Genetic transformation of several species has been established. Of these, Chlamydomonas reinhardtii has become significantly attractive for its potential to express foreign proteins inexpensively. All its three genomes – nuclear, mitochondrial and chloroplastic – have been sequenced. As a result, a wealth of information about its genetic machinery, protein expression mechanism (transcription, translation and post-translational modifications) is available. Over the years, various molecular tools have been developed for the manipulation of all these genomes. Various studies show that the transformation of the chloroplast genome has several advantages over nuclear transformation from the biopharming point of view. According to a recent survey, over 100 recombinant proteins have been expressed in algal chloroplasts. However, the expression levels achieved in the algal chloroplast genome are generally lower compared to the chloroplasts of higher plants. Work is therefore needed to make the algal chloroplast transformation commercially competitive. In this review, we discuss some examples from the algal research, which could play their role in making algal chloroplast commercially successful.

Keywords: Microalgae, chloroplast transformation, recombinant proteins, biopharming, genetic transformation, foreign proteins.

[1]
Johnson, I.S. Human insulin from recombinant DNA technology. Science, 1983, 219(4585), 632-637.
[http://dx.doi.org/10.1126/science.6337396] [PMID: 6337396]
[2]
Fischer, R.; Schillberg, S.; Hellwig, S.; Twyman, R.M.; Drossard, J. GMP issues for recombinant plant-derived pharmaceutical proteins. Biotechnol. Adv., 2012, 30(2), 434-439.
[http://dx.doi.org/10.1016/j.biotechadv.2011.08.007] [PMID: 21856403]
[3]
Josephson, S.; Bishop, R. Secretion of peptides from E. coli: a production system for the pharmaceutical industry. Trends Biotechnol., 1988, 6, 218-224.
[http://dx.doi.org/10.1016/0167-7799(88)90077-7]
[4]
Knäblein, J. Plant-based expression of biopharmaceuticals; Wiley-VCH: Hoboken, NJ, 2006.
[5]
Ahmad, N.; Mukhtar, Z. Green factories: Plastids for the production of foreign proteins at high levels. Gene Ther. Mol. Biol., 2013, 15, 14-29.
[6]
Dewan, S.S. Global markets for bioengineered protein drugs; Global Market Research Reports. BCC Research, 2017.
[7]
Specht, E.; Miyake-Stoner, S.; Mayfield, S. Micro-algae come of age as a platform for recombinant protein production. Biotechnol. Lett., 2010, 32(10), 1373-1383.
[http://dx.doi.org/10.1007/s10529-010-0326-5] [PMID: 20556634]
[8]
Yan, N.; Fan, C.; Chen, Y.; Hu, Z. The potential for microalgae as bioreactors to produce pharmaceuticals. Int. J. Mol. Sci., 2016, 17(6), 962.
[http://dx.doi.org/10.3390/ijms17060962] [PMID: 27322258]
[9]
Boynton, J.E.; Gillham, N.W.; Harris, E.H.; Hosler, J.P.; Johnson, A.M.; Jones, A.R.; Randolph-Anderson, B.L.; Robertson, D.; Klein, T.M.; Shark, K.B.; Sanford, J.C. Chloroplast transformation in Chlamydomonas with high velocity microprojectiles. Science, 1988, 240(4858), 1534-1538.
[http://dx.doi.org/10.1126/science.2897716] [PMID: 2897716]
[10]
Gutiérrez, C.L.; Gimpel, J.; Escobar, C.; Marshall, S.H.; Henríquez, V. Chloroplast genetic tool for the green microalgae Haematococcus pluvialis (Chlorophyceae, Volvocales) 1. J. Phycol., 2012, 48(4), 976-983.
[http://dx.doi.org/10.1111/j.1529-8817.2012.01178.x] [PMID: 27009007]
[11]
Georgianna, D.R.; Hannon, M.J.; Marcuschi, M.; Wu, S.; Botsch, K.; Lewis, A.J.; Hyun, J.; Mendez, M.; Mayfield, S.P. Production of recombinant enzymes in the marine alga Dunaliella tertiolecta. Algal Res., 2013, 2, 2-9.
[http://dx.doi.org/10.1016/j.algal.2012.10.004]
[12]
Zienkiewicz, M.; Krupnik, T.; Drożak, A.; Golke, A.; Romanowska, E. Transformation of the Cyanidioschyzon merolae chloroplast genome: Prospects for understanding chloroplast function in extreme environments. Plant Mol. Biol., 2017, 93(1-2), 171-183.
[http://dx.doi.org/10.1007/s11103-016-0554-8] [PMID: 27796719]
[13]
Xie, W-H.; Zhu, C-C.; Zhang, N-S.; Li, D-W.; Yang, W-D.; Liu, J-S.; Sathishkumar, R.; Li, H-Y. Construction of novel chloroplast expression vector and development of an efficient transformation system for the diatom Phaeodactylum tricornutum. Mar. Biotechnol. (NY), 2014, 16(5), 538-546.
[http://dx.doi.org/10.1007/s10126-014-9570-3] [PMID: 24763817]
[14]
Sidorov, V.A.; Kasten, D.; Pang, S.Z.; Hajdukiewicz, P.T.; Staub, J.M.; Nehra, N.S. Technical advance: Stable chloroplast transformation in potato use of green fluorescent protein as a plastid marker. Plant J., 1999, 19(2), 209-216.
[http://dx.doi.org/10.1046/j.1365-313X.1999.00508.x] [PMID: 10476068]
[15]
Sikdar, S.; Serino, G.; Chaudhuri, S.; Maliga, P. Plastid transformation in Arabidopsis thaliana. Plant Cell Rep., 1998, 18, 20-24.
[http://dx.doi.org/10.1007/s002990050525]
[16]
Skarjinskaia, M.; Svab, Z.; Maliga, P. Plastid transformation in Lesquerella fendleri, an oilseed Brassicacea. Transgenic Res., 2003, 12(1), 115-122.
[http://dx.doi.org/10.1023/A:1022110402302] [PMID: 12650530]
[17]
Svab, Z.; Hajdukiewicz, P.; Maliga, P. Stable transformation of plastids in higher plants. Proc. Natl. Acad. Sci. USA, 1990, 87(21), 8526-8530.
[http://dx.doi.org/10.1073/pnas.87.21.8526] [PMID: 11607112]
[18]
Svab, Z.; Maliga, P. High-frequency plastid transformation in tobacco by selection for a chimeric aadA gene. Proc. Natl. Acad. Sci. USA, 1993, 90(3), 913-917.
[http://dx.doi.org/10.1073/pnas.90.3.913] [PMID: 8381537]
[19]
Ahmad, N.; Mukhtar, Z. Genetic manipulations in crops: challenges and opportunities. Genomics, 2017, 109(5-6), 494-505.
[http://dx.doi.org/10.1016/j.ygeno.2017.07.007] [PMID: 28778540]
[20]
Bock, R. Strategies for metabolic pathway engineering with multiple transgenes. Plant Mol. Biol., 2013, 83(1-2), 21-31.
[http://dx.doi.org/10.1007/s11103-013-0045-0] [PMID: 23504453]
[21]
Young, R.E.; Purton, S. Codon reassignment to facilitate genetic engineering and biocontainment in the chloroplast of Chlamydomonas reinhardtii. Plant Biotechnol. J., 2016, 14(5), 1251-1260.
[http://dx.doi.org/10.1111/pbi.12490] [PMID: 26471875]
[22]
Dyo, Y.M.; Purton, S. The algal chloroplast as a synthetic biology platform for production of therapeutic proteins. Microbiology, 2018, 164(2), 113-121.
[http://dx.doi.org/10.1099/mic.0.000599] [PMID: 29297850]
[23]
Bertalan, I.; Munder, M.C.; Weiß, C.; Kopf, J.; Fischer, D.; Johanningmeier, U. A rapid, modular and marker-free chloroplast expression system for the green alga Chlamydomonas reinhardtii. J. Biotechnol., 2015, 195, 60-66.
[http://dx.doi.org/10.1016/j.jbiotec.2014.12.017] [PMID: 25554634]
[24]
Bock, R. The give-and-take of DNA: Horizontal gene transfer in plants. Trends Plant Sci., 2010, 15(1), 11-22.
[http://dx.doi.org/10.1016/j.tplants.2009.10.001] [PMID: 19910236]
[25]
Stegemann, S.; Keuthe, M.; Greiner, S.; Bock, R. Horizontal transfer of chloroplast genomes between plant species. Proc. Natl. Acad. Sci. USA, 2012, 109(7), 2434-2438.
[http://dx.doi.org/10.1073/pnas.1114076109] [PMID: 22308367]
[26]
Day, A.; Goldschmidt-Clermont, M. The chloroplast transformation toolbox: Selectable markers and marker removal. Plant Biotechnol. J., 2011, 9(5), 540-553.
[http://dx.doi.org/10.1111/j.1467-7652.2011.00604.x] [PMID: 21426476]
[27]
Bennoun, P.; Spierer-Herz, M.; Erickson, J.; Girard-Bascou, J.; Pierre, Y.; Delosme, M.; Rochaix, J.D. Characterization of photosystem II mutants of Chlamydomonas reinhardii lacking the psbA gene. Plant Mol. Biol., 1986, 6(3), 151-160.
[http://dx.doi.org/10.1007/BF00021484] [PMID: 24307274]
[28]
Ahmad, N.; Michoux, F.; Lössl, A.G.; Nixon, P.J. Challenges and perspectives in commercializing plastid transformation technology. J. Exp. Bot., 2016, 67(21), 5945-5960.
[http://dx.doi.org/10.1093/jxb/erw360] [PMID: 27697788]
[29]
Kindle, K.L.; Richards, K.L.; Stern, D.B. Engineering the chloroplast genome: Techniques and capabilities for chloroplast transformation in Chlamydomonas reinhardtii. Proc. Natl. Acad. Sci. USA, 1991, 88(5), 1721-1725.
[http://dx.doi.org/10.1073/pnas.88.5.1721] [PMID: 11607155]
[30]
Economou, C.; Wannathong, T.; Szaub, J.; Purton, S. A simple, low-cost method for chloroplast transformation of the green alga Chlamydomonas reinhardtii. Methods Mol. Biol., 2014, 1132, 401-411.
[http://dx.doi.org/10.1007/978-1-62703-995-6_27] [PMID: 24599870]
[31]
Wallin, E.; von Heijne, G. Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms. Protein Sci., 1998, 7(4), 1029-1038.
[http://dx.doi.org/10.1002/pro.5560070420] [PMID: 9568909]
[32]
Bakheet, T.M.; Doig, A.J. Properties and identification of human protein drug targets. Bioinformatics, 2009, 25(4), 451-457.
[http://dx.doi.org/10.1093/bioinformatics/btp002] [PMID: 19164304]
[33]
Carpenter, E.P.; Beis, K.; Cameron, A.D.; Iwata, S. Overcoming the challenges of membrane protein crystallography. Curr. Opin. Struct. Biol., 2008, 18(5), 581-586.
[http://dx.doi.org/10.1016/j.sbi.2008.07.001] [PMID: 18674618]
[34]
Gangl, D.; Zedler, J.A.; Włodarczyk, A.; Jensen, P.E.; Purton, S.; Robinson, C. Expression and membrane-targeting of an active plant cytochrome P450 in the chloroplast of the green alga Chlamydomonas reinhardtii. Phytochemistry, 2015, 110, 22-28.
[http://dx.doi.org/10.1016/j.phytochem.2014.12.006] [PMID: 25556316]
[35]
Renault, H.; Bassard, J-E.; Hamberger, B.; Werck-Reichhart, D. Cytochrome P450-mediated metabolic engineering: Current progress and future challenges. Curr. Opin. Plant Biol., 2014, 19, 27-34.
[http://dx.doi.org/10.1016/j.pbi.2014.03.004] [PMID: 24709279]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 27
ISSUE: 2
Year: 2020
Page: [105 - 110]
Pages: 6
DOI: 10.2174/0929866526666191014124855
Price: $65

Article Metrics

PDF: 29
HTML: 6