Radial Glia-endothelial Cells’ Bidirectional Interactions Control Vascular Maturation and Astrocyte Differentiation: Impact for Blood-brain Barrier Formation

Author(s): Siqueira M. da Silva, Gisbert D. Campos, Flávia C.A. Gomes, Joice Stipursky*.

Journal Name: Current Neurovascular Research

Volume 16 , Issue 4 , 2019

Become EABM
Become Reviewer

Abstract:

Background: In the developing cerebral cortex, Radial Glia (RG) multipotent neural stem cell, among other functions, differentiate into astrocytes and serve as a scaffold for blood vessel development. After some time, blood vessel Endothelial Cells (ECs) become associated with astrocytes to form the neurovascular Blood-Brain Barrier (BBB) unit.

Objective: Since little is known about the mechanisms underlying bidirectional RG-ECs interactions in both vascular development and astrocyte differentiation, this study investigated the impact of interactions between RG and ECs mediated by secreted factors on EC maturation and gliogenesis control.

Methods: First, we demonstrated that immature vasculature in the murine embryonic cerebral cortex physically interacts with Nestin positive RG neural stem cells in vivo. Isolated Microcapillary Brain Endothelial Cells (MBEC) treated with the conditioned medium from RG cultures (RG-CM) displayed decreased proliferation, reduction in the protein levels of the endothelial tip cell marker Delta-like 4 (Dll4), and decreased expression levels of the vascular permeability associated gene, plasmalemma vesicle-associated protein-1 (PLVAP1). These events were also accompanied by increased levels of the tight junction protein expression, zonula occludens-1 (ZO-1).

Results: Finally, we demonstrated that isolated RG cells cultures treated with MBEC conditioned medium promoted the differentiation of astrocytes in a Vascular Endothelial Growth Factor-A (VEGF-A) dependent manner.

Conclusion: These results suggest that the bidirectional interaction between RG and ECs is essential to induce vascular maturation and astrocyte generation, which may be an essential cell-cell communication mechanism to promote BBB establishment.

Keywords: Radial glia-endothelial cells, cerebral cortex, neural stem cell, astrocytes, blood-brain barrier, isolated microcapillary brain endothelial cells, vascular development, gliogenesis.

[1]
Anderson KD, Pan L, Yang XM, et al. Angiogenic sprouting into neural tissue requires Gpr124, an orphan G protein-coupled receptor. Proc Natl Acad Sci USA 2011; 108(7): 2807-12.
[http://dx.doi.org/10.1073/pnas.1019761108] [PMID: 21282641]
[2]
Ma S, Kwon HJ, Johng H, Zang K, Huang Z. Radial glial neural progenitors regulate nascent brain vascular network stabilization via inhibition of Wnt signaling. PLoS Biol 2013; 11(1) e1001469
[http://dx.doi.org/10.1371/journal.pbio.1001469] [PMID: 23349620]
[3]
Siqueira M, Francis D, Gisbert D, Gomes FCA, Stipursky J. Radial glia cells control angiogenesis in the developing cerebral cortex through TGF-β1 signaling. Mol Neurobiol 2018; 55(5): 3660-75.
[PMID: 28523566]
[4]
Oh SP, Seki T, Goss KA, et al. Activin receptor-like kinase 1 modulates transforming growth factor-beta 1 signaling in the regulation of angiogenesis. Proc Natl Acad Sci USA 2000; 97(6): 2626-31.
[http://dx.doi.org/10.1073/pnas.97.6.2626] [PMID: 10716993]
[5]
Hellström M, Phng LK, Hofmann JJ, et al. Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature 2007; 445(7129): 776-80.
[http://dx.doi.org/10.1038/nature05571] [PMID: 17259973]
[6]
Wälchli T, Wacker A, Frei K, et al. Wiring the vascular network with neural cues: A CNS perspective. Neuron 2015; 87(2): 271-96.
[http://dx.doi.org/10.1016/j.neuron.2015.06.038] [PMID: 26182414]
[7]
Merwin JR, Anderson JM, Kocher O, Van Itallie CM, Madri JA. Transforming growth factor beta 1 modulates extracellular matrix organization and cell-cell junctional complex formation during in vitro angiogenesis. J Cell Physiol 1990; 142(1): 117-28.
[http://dx.doi.org/10.1002/jcp.1041420115] [PMID: 1688859]
[8]
Langen UH, Ayloo S, Gu C. Development and cell biology of the blood-brain barrier. Annu Rev Cell Dev Biol 2019; 35: 12.1-12.23.
[http://dx.doi.org/10.1146/annurev-cellbio-100617-062608]
[9]
Kim JH, Kim JH, Park JA, et al. Blood-neural barrier: Intercellular communication at glio-vascular interface. J Biochem Mol Biol 2006; 39(4): 339-45.
[PMID: 16889675]
[10]
Anton ES, Marchionni MA, Lee KF, Rakic P. Role of GGF/neuregulin signaling in interactions between migrating neurons and radial glia in the developing cerebral cortex. Development 1997; 124(18): 3501-10.
[PMID: 9342043]
[11]
Barnabé-Heider F, Wasylnka JA, Fernandes KJ, et al. Evidence that embryonic neurons regulate the onset of cortical gliogenesis via cardiotrophin-1. Neuron 2005; 48(2): 253-65.
[http://dx.doi.org/10.1016/j.neuron.2005.08.037] [PMID: 16242406]
[12]
Ding SL, Royall JJ, Sunkin SM, et al. Comprehensive cellular-resolution atlas of the adult human brain. J Comp Neurol 2016; 524(16): 3127-481.
[http://dx.doi.org/10.1002/cne.24080] [PMID: 27418273]
[13]
Diniz LP, Almeida JC, Tortelli V, et al. Astrocyte-induced synaptogenesis is mediated by transforming growth factor β signaling through modulation of D-serine levels in cerebral cortex neurons. J Biol Chem 2012; 287(49): 41432-45.
[http://dx.doi.org/10.1074/jbc.M112.380824] [PMID: 23055518]
[14]
Diniz LP, Tortelli V, Garcia MN, et al. Astrocyte transforming growth factor beta 1 promotes inhibitory synapse formation via CaM kinase II signaling. Glia 2014; 62(12): 1917-31.
[http://dx.doi.org/10.1002/glia.22713] [PMID: 25042347]
[15]
He F, Ge W, Martinowich K, et al. A positive autoregulatory loop of Jak-STAT signaling controls the onset of astrogliogenesis. Nat Neurosci 2005; 8(5): 616-25.
[http://dx.doi.org/10.1038/nn1440] [PMID: 15852015]
[16]
Noctor SC, Flint AC, Weissman TA, Dammerman RS, Kriegstein AR. Neurons derived from radial glial cells establish radial units in neocortex. Nature 2001; 409(6821): 714-20.
[http://dx.doi.org/10.1038/35055553] [PMID: 11217860]
[17]
Schmid RS, McGrath B, Berechid BE, et al. Neuregulin 1-erbB2 signaling is required for the establishment of radial glia and their transformation into astrocytes in cerebral cortex. Proc Natl Acad Sci USA 2003; 100(7): 4251-6.
[http://dx.doi.org/10.1073/pnas.0630496100] [PMID: 12649319]
[18]
Stipursky J, Francis D, Dezonne RS, et al. TGF-β1 promotes cerebral cortex radial glia-astrocyte differentiation in vivo. Front Cell Neurosci 2014; 8: 393.
[http://dx.doi.org/10.3389/fncel.2014.00393] [PMID: 25484855]
[19]
Stipursky J, Francis D, Gomes FC. Activation of MAPK/PI3K/SMAD pathways by TGF-β(1) controls differentiation of radial glia into astrocytes in vitro. Dev Neurosci 2012; 34(1): 68-81.
[http://dx.doi.org/10.1159/000338108] [PMID: 22652705]
[20]
Stipursky J, Gomes FC. TGF-beta1/SMAD signaling induces astrocyte fate commitment in vitro: Implications for radial glia development. Glia 2007; 55(10): 1023-33.
[21]
Kriegstein A, Alvarez-Buylla A. The glial nature of embryonic and adult neural stem cells. Annu Rev Neurosci 2009; 32: 149-84.
[http://dx.doi.org/10.1146/annurev.neuro.051508.135600] [PMID: 19555289]
[22]
Garcia CM, Darland DC, Massingham LJ, D’Amore PA. Endothelial cell-astrocyte interactions and TGF beta are required for induction of blood-neural barrier properties. Brain Res Dev Brain Res 2004; 152(1): 25-38.
[http://dx.doi.org/10.1016/j.devbrainres.2004.05.008] [PMID: 15283992]
[23]
Lebrin F, Deckers M, Bertolino P, Ten Dijke P. TGF-beta receptor function in the endothelium. Cardiovasc Res 2005; 65(3): 599-608.
[http://dx.doi.org/10.1016/j.cardiores.2004.10.036] [PMID: 15664386]
[24]
Liebner S, Czupalla CJ, Wolburg H. Current concepts of blood-brain barrier development. Int J Dev Biol 2011; 55(4-5): 467-76.
[http://dx.doi.org/10.1387/ijdb.103224sl] [PMID: 21769778]
[25]
Stolp HB, Molnár Z. Neurogenic niches in the brain: Help and hindrance of the barrier systems. Front Neurosci 2015; 9: 20.
[http://dx.doi.org/10.3389/fnins.2015.00020] [PMID: 25691856]
[26]
Goldberg JS, Hirschi KK. Diverse roles of the vasculature within the neural stem cell niche. Regen Med 2009; 4(6): 879-97.
[http://dx.doi.org/10.2217/rme.09.61] [PMID: 19903006]
[27]
Zudaire E, Gambardella L, Kurcz C, Vermeren S. A computational tool for quantitative analysis of vascular networks. PLoS One 2011; 6(11)e27385
[http://dx.doi.org/10.1371/journal.pone.0027385] [PMID: 22110636]
[28]
Kim HM, Hwang DH, Lee JE, Kim SU, Kim BG. Ex vivo VEGF delivery by neural stem cells enhances proliferation of glial progenitors, angiogenesis, and tissue sparing after spinal cord injury. PLoS One 2009; 4(3)e4987
[http://dx.doi.org/10.1371/journal.pone.0004987] [PMID: 19319198]
[29]
Thau-Zuchman O, Shohami E, Alexandrovich AG, Leker RR. Subacute treatment with vascular endothelial growth factor after traumatic brain injury increases angiogenesis and gliogenesis. Neuroscience 2012; 202: 334-41.
[http://dx.doi.org/10.1016/j.neuroscience.2011.11.071] [PMID: 22173016]
[30]
Daneman R, Agalliu D, Zhou L, Kuhnert F, Kuo CJ, Barres BA. Wnt/beta-catenin signaling is required for CNS, but not non-CNS, angiogenesis. Proc Natl Acad Sci USA 2009; 106(2): 641-6.
[http://dx.doi.org/10.1073/pnas.0805165106] [PMID: 19129494]
[31]
Errede M, Girolamo F, Rizzi M, Bertossi M, Roncali L, Virgintino D. The contribution of CXCL12-expressing radial glia cells to neuro-vascular patterning during human cerebral cortex development. Front Neurosci 2014; 8: 324.
[http://dx.doi.org/10.3389/fnins.2014.00324] [PMID: 25360079]
[32]
Gerhardt H, Ruhrberg C, Abramsson A, Fujisawa H, Shima D, Betsholtz C. Neuropilin-1 is required for endothelial tip cell guidance in the developing central nervous system. Dev Dyn 2004; 231(3): 503-9.
[http://dx.doi.org/10.1002/dvdy.20148] [PMID: 15376331]
[33]
Takahashi T, Takase Y, Yoshino T, Saito D, Tadokoro R, Takahashi Y. Angiogenesis in the developing spinal cord: Blood vessel exclusion from neural progenitor region is mediated by VEGF and its antagonists. PLoS One 2015; 10(1) e0116119
[http://dx.doi.org/10.1371/journal.pone.0116119] [PMID: 25585380]
[34]
Nguyen HL, Lee YJ, Shin J, et al. TGF-β signaling in endothelial cells, but not neuroepithelial cells, is essential for cerebral vascular development. Lab Invest 2011; 91(11): 1554-63.
[http://dx.doi.org/10.1038/labinvest.2011.124] [PMID: 21876535]
[35]
Virgintino D, Errede M, Robertson D, Girolamo F, Masciandaro A, Bertossi M. VEGF expression is developmentally regulated during human brain angiogenesis. Histochem Cell Biol 2003; 119(3): 227-32.
[PMID: 12649737]
[36]
Zhao Z, Nelson AR, Betsholtz C, Zlokovic BV. Establishment and dysfunction of the blood-brain barrier. Cell 2015; 163(5): 1064-78.
[http://dx.doi.org/10.1016/j.cell.2015.10.067] [PMID: 26590417]
[37]
Goumans MJ, Valdimarsdottir G, Itoh S, Rosendahl A, Sideras P, ten Dijke P. Balancing the activation state of the endothelium via two distinct TGF-beta type I receptors. EMBO J 2002; 21(7): 1743-53.
[http://dx.doi.org/10.1093/emboj/21.7.1743] [PMID: 11927558]
[38]
Lebrin F, Goumans MJ, Jonker L, et al. Endoglin promotes endothelial cell proliferation and TGF-beta/ALK1 signal transduction. EMBO J 2004; 23(20): 4018-28.
[http://dx.doi.org/10.1038/sj.emboj.7600386] [PMID: 15385967]
[39]
Abbott NJ. Dynamics of CNS barriers: Evolution, differentiation, and modulation. Cell Mol Neurobiol 2005; 25(1): 5-23.
[http://dx.doi.org/10.1007/s10571-004-1374-y] [PMID: 15962506]
[40]
Adams RH, Alitalo K. Molecular regulation of angiogenesis and lymphangiogenesis. Nat Rev Mol Cell Biol 2007; 8(6): 464-78.
[http://dx.doi.org/10.1038/nrm2183] [PMID: 17522591]
[41]
Aspalter IM, Gordon E, Dubrac A, et al. Alk1 and Alk5 inhibition by Nrp1 controls vascular sprouting downstream of Notch. Nat Commun 2015; 6: 7264.
[http://dx.doi.org/10.1038/ncomms8264] [PMID: 26081042]
[42]
Muñoz-Chápuli R, Quesada AR, Angel Medina M. Angiogenesis and signal transduction in endothelial cells. Cell Mol Life Sci 2004; 61(17): 2224-43.
[http://dx.doi.org/10.1007/s00018-004-4070-7] [PMID: 15338053]
[43]
Zhou Y, Nathans J. Gpr124 controls CNS angiogenesis and blood-brain barrier integrity by promoting ligand-specific canonical wnt signaling. Dev Cell 2014; 31(2): 248-56.
[http://dx.doi.org/10.1016/j.devcel.2014.08.018] [PMID: 25373781]
[44]
Zhou Y, Wang Y, Tischfield M, et al. Canonical WNT signaling components in vascular development and barrier formation. J Clin Invest 2014; 124(9): 3825-46.
[http://dx.doi.org/10.1172/JCI76431] [PMID: 25083995]
[45]
Guo L, Zhang H, Hou Y, Wei T, Liu J. Plasmalemma vesicle-associated protein: A crucial component of vascular homeostasis. Exp Ther Med 2016; 12(3): 1639-44.
[http://dx.doi.org/10.3892/etm.2016.3557] [PMID: 27602081]
[46]
Carson-Walter EB, Hampton J, Shue E, et al. Plasmalemmal vesicle associated protein-1 is a novel marker implicated in brain tumor angiogenesis. Clin Cancer Res 2005; 11(21): 7643-50.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-1099] [PMID: 16278383]
[47]
Pepper MS. Transforming growth factor-beta: Vasculogenesis, angiogenesis, and vessel wall integrity. Cytokine Growth Factor Rev 1997; 8(1): 21-43.
[http://dx.doi.org/10.1016/S1359-6101(96)00048-2] [PMID: 9174661]
[48]
Mozer AB, Whittemore SR, Benton RL. Spinal microvascular expression of PV-1 is associated with inflammation, perivascular astrocyte loss, and diminished EC glucose transport potential in acute SCI. Curr Neurovasc Res 2010; 7(3): 238-50.
[http://dx.doi.org/10.2174/156720210792231840] [PMID: 20590523]
[49]
Romão LF, Sousa Vde O, Neto VM, Gomes FC. Glutamate activates GFAP gene promoter from cultured astrocytes through TGF-beta1 pathways. J Neurochem 2008; 106(2): 746-56.
[http://dx.doi.org/10.1111/j.1471-4159.2008.05428.x] [PMID: 18419760]
[50]
Wisniewska-Kruk J, van der Wijk AE, van Veen HA, et al. Plasmalemma vesicle-associated protein has a key role in blood-retinal barrier loss. Am J Pathol 2016; 186(4): 1044-54.
[http://dx.doi.org/10.1016/j.ajpath.2015.11.019] [PMID: 26878208]
[51]
Alvarez JI, Dodelet-Devillers A, Kebir H, et al. The Hedgehog pathway promotes blood-brain barrier integrity and CNS immune quiescence. Science 2011; 334(6063): 1727-31.
[http://dx.doi.org/10.1126/science.1206936] [PMID: 22144466]
[52]
Duan LJ, Pan SJ, Sato TN, Fong GH. Retinal angiogenesis regulates astrocytic differentiation in neonatal mouse retinas by oxygen dependent mechanisms. Sci Rep 2017; 7(1): 17608.
[http://dx.doi.org/10.1038/s41598-017-17962-2] [PMID: 29242645]
[53]
Mi H, Haeberle H, Barres BA. Induction of astrocyte differentiation by endothelial cells. J Neurosci 2001; 21(5): 1538-47.
[http://dx.doi.org/10.1523/JNEUROSCI.21-05-01538.2001] [PMID: 11222644]
[54]
Siegenthaler JA, Miller MW. Transforming growth factor beta1 modulates cell migration in rat cortex: Effects of ethanol. Cereb Cortex 2004; 14(7): 791-802.
[http://dx.doi.org/10.1093/cercor/bhh039] [PMID: 15084492]
[55]
Sakimoto S, Kidoya H, Naito H, et al. A role for endothelial cells in promoting the maturation of astrocytes through the apelin/APJ system in mice. Development 2012; 139(7): 1327-35.
[http://dx.doi.org/10.1242/dev.072330] [PMID: 22357924]
[56]
Takahashi H, Shibuya M. The vascular endothelial growth factor (VEGF)/VEGF receptor system and its role under physiological and pathological conditions. Clin Sci (Lond) 2005; 109(3): 227-41.
[http://dx.doi.org/10.1042/CS20040370] [PMID: 16104843]
[57]
Engelhardt B, Liebner S. Novel insights into the development and maintenance of the blood-brain barrier. Cell Tissue Res 2014; 355(3): 687-99.
[http://dx.doi.org/10.1007/s00441-014-1811-2] [PMID: 24590145]
[58]
Sousa V de O, Romão L, Neto VM, Gomes FC. Glial fibrillary acidic protein gene promoter is differently modulated by transforming growth factor-beta 1 in astrocytes from distinct brain regions. Eur J Neurosci 2004; 19(7): 1721-30.
[http://dx.doi.org/10.1111/j.1460-9568.2004.03249.x] [PMID: 15078546]
[59]
Bain JM, Moore L, Ren Z, Simonishvili S, Levison SW. Vascular endothelial growth factors A and C are induced in the SVZ following neonatal hypoxia-ischemia and exert different effects on neonatal glial progenitors. Transl Stroke Res 2013; 4(2): 158-70.
[http://dx.doi.org/10.1007/s12975-012-0213-6] [PMID: 23565129]
[60]
Dahl D, Rueger DC, Bignami A, Weber K, Osborn M. Vimentin, the 57 000 molecular weight protein of fibroblast filaments, is the major cytoskeletal component in immature glia. Eur J Cell Biol 1981; 24(2): 191-6.
[PMID: 7285936]
[61]
Pixley SK, de Vellis J. Transition between immature radial glia and mature astrocytes studied with a monoclonal antibody to vimentin. Brain Res 1984; 317(2): 201-9.
[http://dx.doi.org/10.1016/0165-3806(84)90097-X] [PMID: 6383523]
[62]
Takahashi H, Liu FC. Genetic patterning of the mammalian telencephalon by morphogenetic molecules and transcription factors. Birth Defects Res C Embryo Today 2006; 78(3): 256-66.
[http://dx.doi.org/10.1002/bdrc.20077] [PMID: 17061260]
[63]
Zlokovic BV. Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders. Nat Rev Neurosci 2011; 12(12): 723-38.
[http://dx.doi.org/10.1038/nrn3114] [PMID: 22048062]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 4
Year: 2019
Page: [291 - 300]
Pages: 10
DOI: 10.2174/1567202616666191014120156
Price: $65

Article Metrics

PDF: 24
HTML: 5
EPUB: 1