Assessment of miR-212 and Other Biomarkers in the Diagnosis and Treatment of HBV-infection-related Liver Diseases

Author(s): Yigan Zhang, Huaze Xi, Xin Nie, Peng Zhang, Ning Lan, Ying Lu, Jinrong Liu, Wenzhen Yuan*.

Journal Name: Current Drug Metabolism

Volume 20 , Issue 10 , 2019


Graphical Abstract:


Abstract:

Objectives: Our study aims to detect the sensitivity of the new biomarker miR-212 existing in serum exosomes along with other hepatocellular carcinoma biomarkers such as AFP (alpha-fetoprotein), CA125 (carbohydrate antigen-ca125), and Hbx protein in the diagnosis of HBV-related liver diseases. We also aim to study the roles of these biomarkers in the progression of chronic hepatitis B and provide scientific data to show the clinical value of these biomarkers.

Methods: We selected 200 patients with HBV-infection (58 cases of chronic hepatitis B, 47 cases of hepatocellular carcinoma, 30 cases of compensatory phase cirrhosis, and 65 cases of decompensatory phase cirrhosis), 31 patients with primary liver cancer without HBV infection, and 70 healthy individuals as the control group. The expression level of serum AFP and CA125 was detected with electrochemiluminescence immunoassay. The expression level of the Hbx protein was detected with ELISA. Meanwhile, the expression level of miR-212 in serum was analyzed with RT-qPCR. We collected patients’ clinical information following the Child-Pugh classification and MELD score criterion, and statistical analysis was made between the expression level of miR-212 and the collected clinical indexes. Lastly, we predicted the target genes of the miR-212 and its functions using bioinformatics methods such as cluster analysis and survival prediction.

Results: Compared to the control group, the expression level of miR-212 in HBV infected patients was remarkably increased (P<0.05), especially between the HBV-infection Hepatocellular carcinoma group and the non-HBVinfection liver cancer group (P<0.05). The expression of miR-212 was increased in patients’ Child-Pugh classification, MELD score, and TNM staging. Moreover, the sensitivity and specificity of miR-212 were superior to AFP, CA125, and HBx protein.

Conclusion: There is a linear relationship between disease progression and expression level of miR-212 in the serum of HBV infected patients. This demonstrates that miR-212 plays a significant role in liver diseases. miR-212 is expected to be a new biomarker used for the diagnosis and assessment of patients with HBV-infection-related liver diseases.

Keywords: MicroRNA, miR-212, exosome, HBV-related liver disease, hepatitis, cirrhosis, hepatocellular carcinoma.

[1]
Johnstone, R.M.; Adam, M.; Hammond, J.R.; Orr, L.; Turbide, C. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J. Biol. Chem., 1987, 262(19), 9412-9420.
[PMID: 3597417]
[2]
Xin, H.; Li, Y.; Chopp, M. Exosomes/miRNAs as mediating cell-based therapy of stroke. Front. Cell. Neurosci., 2014, 8, 377.
[http://dx.doi.org/10.3389/fncel.2014.00377] [PMID: 25426026]
[3]
Eichmüller, S.B.; Osen, W.; Mandelboim, O.; Seliger, B. Immune modulatory microRNAs involved in tumor attack and tumor immune escape. J. Natl. Cancer Inst., 2017, 109(10)djx034
[http://dx.doi.org/10.1093/jnci/djx034] [PMID: 28383653]
[4]
Bedossa, P.; Poynard, T. An algorithm for the grading of activity in chronic hepatitis C. Hepatology, 1996, 24(2), 289-293.
[http://dx.doi.org/10.1002/hep.510240201] [PMID: 8690394]
[5]
Rawat, S.; Bouchard, M.J. The hepatitis B virus (HBV) HBx protein activates AKT to simultaneously regulate HBV replication and hepatocyte survival. J. Virol., 2015, 89(2), 999-1012.
[http://dx.doi.org/10.1128/JVI.02440-14] [PMID: 25355887]
[6]
Durand, F.; Valla, D. Assessment of the prognosis of cirrhosis: Child-Pugh versus MELD. J. Hepatol., 2005, 42(Suppl. 1), S100-S107.
[http://dx.doi.org/10.1016/j.jhep.2004.11.015] [PMID: 15777564]
[7]
Kamath, P.S.; Wiesner, R.H.; Malinchoc, M.; Kremers, W.; Therneau, T.M.; Kosberg, C.L.; D’Amico, G.; Dickson, E.R.; Kim, W.R. A model to predict survival in patients with end-stage liver disease. Hepatology, 2001, 33(2), 464-470.
[http://dx.doi.org/10.1053/jhep.2001.22172] [PMID: 11172350]
[8]
Garcia-Tsao, G.; Sanyal, A.J.; Grace, N.D.; Carey, W. Prevention and management of gastroesophageal varices and variceal hemorrhage in cirrhosis. Hepatology, 2007, 46(3), 922-938.
[http://dx.doi.org/10.1002/hep.21907] [PMID: 17879356]
[9]
Song, P.P.; Xia, J.F.; Inagaki, Y.; Hasegawa, K.; Sakamoto, Y.; Kokudo, N.; Tang, W. Controversies regarding and perspectives on clinical utility of biomarkers in hepatocellular carcinoma. World J. Gastroenterol., 2016, 22(1), 262-274.
[http://dx.doi.org/10.3748/wjg.v22.i1.262] [PMID: 26755875]
[10]
Kalambokis, G.; Kostoula, A.; Economou, M.; Tsianos, E.V. Tumor necrosis factor-alpha-related intraperitoneal release of CA 125 in cirrhotic patients with sterile ascites. Clin. Chem., 2005, 51(11), 2207-2208.
[http://dx.doi.org/10.1373/clinchem.2005.053058] [PMID: 16244306]
[11]
Edula, R.G.; Muthukuru, S.; Moroianu, S.; Wang, Y.; Lingiah, V.; Fung, P.; Pyrsopoulos, N.T. CA-125 Significance in cirrhosis and correlation with disease severity and portal hypertension: A retrospective study. J. Clin. Transl. Hepatol., 2018, 6(3), 241-246.
[http://dx.doi.org/10.14218/JCTH.2017.00070] [PMID: 30271734]
[12]
Zhang, X.D.; Wang, Y.; Ye, L.H. Hepatitis B virus X protein accelerates the development of hepatoma. Cancer Biol. Med., 2014, 11(3), 182-190.
[PMID: 25364579]
[13]
Ali, A.; Abdel-Hafiz, H.; Suhail, M.; Al-Mars, A.; Zakaria, M.K.; Fatima, K.; Ahmad, S.; Azhar, E.; Chaudhary, A.; Qadri, I. Hepatitis B virus, HBx mutants and their role in hepatocellular carcinoma. World J. Gastroenterol., 2014, 20(30), 10238-10248.
[http://dx.doi.org/10.3748/wjg.v20.i30.10238] [PMID: 25132741]
[14]
Zhang, B.; Han, S.; Feng, B.; Chu, X.; Chen, L.; Wang, R. Hepatitis B virus X protein-mediated non-coding RNA aberrations in the development of human hepatocellular carcinoma. Exp. Mol. Med., 2017, 49(2)e293
[http://dx.doi.org/10.1038/emm.2016.177] [PMID: 28186085]
[15]
Mercer, T.R.; Dinger, M.E.; Mattick, J.S. Long non-coding RNAs: insights into functions. Nat. Rev. Genet., 2009, 10(3), 155-159.
[http://dx.doi.org/10.1038/nrg2521] [PMID: 19188922]
[16]
Gupta, R.A.; Shah, N.; Wang, K.C.; Kim, J.; Horlings, H.M.; Wong, D.J.; Tsai, M.C.; Hung, T.; Argani, P.; Rinn, J.L.; Wang, Y.; Brzoska, P.; Kong, B.; Li, R.; West, R.B.; van de Vijver, M.J.; Sukumar, S.; Chang, H.Y. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature, 2010, 464(7291), 1071-1076.
[http://dx.doi.org/10.1038/nature08975] [PMID: 20393566]
[17]
Femminella, G.D.; Ferrara, N.; Rengo, G. The emerging role of microRNAs in Alzheimer’s disease. Front. Physiol., 2015, 6, 40.
[http://dx.doi.org/10.3389/fphys.2015.00040] [PMID: 25729367]
[18]
Kondkar, A.A.; Abu-Amero, K.K. Utility of circulating microRNAs as clinical biomarkers for cardiovascular diseases. BioMed Res. Int., 2015, 2015821823
[http://dx.doi.org/10.1155/2015/821823] [PMID: 25710029]
[19]
McClelland, A.D.; Kantharidis, P. microRNA in the development of diabetic complications. Clin. Sci. (Lond.), 2014, 126(2), 95-110.
[20]
Sayed, D.; Abdellatif, M. MicroRNAs in development and disease. Physiol. Rev., 2011, 91(3), 827-887.
[http://dx.doi.org/10.1152/physrev.00006.2010] [PMID: 21742789]
[21]
Park, J.K.; Henry, J.C.; Jiang, J.; Esau, C.; Gusev, Y.; Lerner, M.R.; Postier, R.G.; Brackett, D.J.; Schmittgen, T.D. miR-132 and miR-212 are increased in pancreatic cancer and target the retinoblastoma tumor suppressor. Biochem. Biophys. Res. Commun., 2011, 406(4), 518-523.
[http://dx.doi.org/10.1016/j.bbrc.2011.02.065] [PMID: 21329664]
[22]
Galon, J.; Costes, A.; Sanchez-Cabo, F.; Kirilovsky, A.; Mlecnik, B.; Lagorce-Pagès, C.; Tosolini, M.; Camus, M.; Berger, A.; Wind, P.; Zinzindohoué, F.; Bruneval, P.; Cugnenc, P.H.; Trajanoski, Z.; Fridman, W.H.; Pagès, F. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science, 2006, 313(5795), 1960-1964.
[http://dx.doi.org/10.1126/science.1129139] [PMID: 17008531]
[23]
Ino, Y.; Yamazaki-Itoh, R.; Shimada, K.; Iwasaki, M.; Kosuge, T.; Kanai, Y.; Hiraoka, N. Immune cell infiltration as an indicator of the immune microenvironment of pancreatic cancer. Br. J. Cancer, 2013, 108(4), 914-923.
[http://dx.doi.org/10.1038/bjc.2013.32] [PMID: 23385730]
[24]
Ma, C.; Nong, K.; Wu, B.; Dong, B.; Bai, Y.; Zhu, H.; Wang, W.; Huang, X.; Yuan, Z.; Ai, K. miR-212 promotes pancreatic cancer cell growth and invasion by targeting the hedgehog signaling pathway receptor patched-1. J. Exp. Clin. Cancer Res., 2014, 33, 54.
[http://dx.doi.org/10.1186/1756-9966-33-54] [PMID: 24961235]
[25]
Lv, Z.D.; Yang, D.X.; Liu, X.P.; Jin, L.Y.; Wang, X.G.; Yang, Z.C.; Liu, D.; Zhao, J.J.; Kong, B.; Li, F.N.; Wang, H.B. MiR-212-5p suppresses the epithelial-mesenchymal transition in triple-negative breast cancer by targeting Prrx2. Cell. Physiol. Biochem., 2017, 44(5), 1785-1795.
[http://dx.doi.org/10.1159/000485785] [PMID: 29216628]
[26]
Chen, J.Q.; Ou, Y.L.; Huang, Z.P.; Hong, Y.G.; Tao, Y.P.; Wang, Z.G.; Ni, J.S.; Hao, L.Q.; Lin, H. MicroRNA-212-3p inhibits the proliferation and invasion of human hepatocellular carcinoma cells by suppressing CTGF expression. Sci. Rep., 2019, 9(1), 9820.
[http://dx.doi.org/10.1038/s41598-019-46088-w] [PMID: 31285444]
[27]
Zhou, Y.; Ji, Z.; Yan, W.; Zhou, Z.; Li, H. The biological functions and mechanism of miR-212 in prostate cancer proliferation, migration and invasion via targeting Engrailed-2. Oncol. Rep., 2017, 38(3), 1411-1419.
[http://dx.doi.org/10.3892/or.2017.5805] [PMID: 28713997]
[28]
Li, D.; Li, Z.; Xiong, J.; Gong, B.; Zhang, G.; Cao, C.; Jie, Z.; Liu, Y.; Cao, Y.; Yan, Y.; Xiong, H.; Qiu, L.; Yang, M.; Chen, H.; Jiang, S.; Yang, X.; Chen, H. MicroRNA-212 functions as an epigenetic-silenced tumor suppressor involving in tumor metastasis and invasion of gastric cancer through down-regulating PXN expression. Am. J. Cancer Res., 2015, 5(10), 2980-2997.
[PMID: 26693054]
[29]
Li, Y.; Zhang, D.; Chen, C.; Ruan, Z.; Li, Y.; Huang, Y. MicroRNA-212 displays tumor-promoting properties in non-small cell lung cancer cells and targets the hedgehog pathway receptor PTCH1. Mol. Biol. Cell, 2012, 23(8), 1423-1434.
[http://dx.doi.org/10.1091/mbc.e11-09-0777] [PMID: 22357618]
[30]
Lara-Pezzi, E.; Gómez-Gaviro, M.V.; Gálvez, B.G.; Mira, E.; Iñiguez, M.A.; Fresno, M.; Martínez-A, C.; Arroyo, A.G.; López-Cabrera, M. The hepatitis B virus X protein promotes tumor cell invasion by inducing membrane-type matrix metalloproteinase-1 and cyclooxygenase-2 expression. J. Clin. Invest., 2002, 110(12), 1831-1838.
[http://dx.doi.org/10.1172/JCI200215887] [PMID: 12488433]
[31]
Yang, X.; Ma, Z.; Zhou, S.; Weng, Y.; Lei, H.; Zeng, S.; Li, L.; Jiang, H. Multiple drug transporters are involved in renal secretion of entecavir. Antimicrob. Agents Chemother., 2016, 60(10), 6260-6270.
[http://dx.doi.org/10.1128/AAC.00986-16] [PMID: 27503646]
[32]
Sprowl, J.A.; Mikkelsen, T.S.; Giovinazzo, H.; Sparreboom, A. Contribution of tumoral and host solute carriers to clinical drug response. Drug Resist. Updat., 2012, 15(1-2), 5-20.
[http://dx.doi.org/10.1016/j.drup.2012.01.009] [PMID: 22459901]
[33]
Yonezawa, A.; Masuda, S.; Yokoo, S.; Katsura, T.; Inui, K. Cisplatin and oxaliplatin, but not carboplatin and nedaplatin, are substrates for human organic cation transporters (SLC22A1-3 and multidrug and toxin extrusion family). J. Pharmacol. Exp. Ther., 2006, 319(2), 879-886.
[http://dx.doi.org/10.1124/jpet.106.110346] [PMID: 16914559]
[34]
He, M.K.; Le, Y.; Zhang, Y.F.; Ouyang, H.Y.; Jian, P.E.; Yu, Z.S.; Wang, L.J.; Shi, M. Matrix metalloproteinase 12 expression is associated with tumor FOXP3+ regulatory T cell infiltration and poor prognosis in hepatocellular carcinoma. Oncol. Lett., 2018, 16(1), 475-482.
[http://dx.doi.org/10.3892/ol.2018.8642] [PMID: 29928435]
[35]
He, X.; Fan, S. hsa-miR-212 modulates the radiosensitivity of glioma cells by targeting BRCA1. Oncol. Rep., 2018, 39(3), 977-984.
[PMID: 29286157]
[36]
Kogure, T.; Lin, W.L.; Yan, I.K.; Braconi, C.; Patel, T. Intercellular nanovesicle-mediated microRNA transfers: A mechanism of environmental modulation of hepatocellular cancer cell growth. Hepatology, 2011, 54(4), 1237-1248.
[http://dx.doi.org/10.1002/hep.24504] [PMID: 21721029]
[37]
Chaput, N.; Théry, C. Exosomes: Immune properties and potential clinical implementations. Semin. Immunopathol., 2011, 33(5), 419-440.
[http://dx.doi.org/10.1007/s00281-010-0233-9] [PMID: 21174094]
[38]
Chai, N.; Chang, H.E.; Nicolas, E.; Han, Z.; Jarnik, M.; Taylor, J. Properties of subviral particles of hepatitis B virus. J. Virol., 2008, 82(16), 7812-7817.
[http://dx.doi.org/10.1128/JVI.00561-08] [PMID: 18524834]
[39]
Conigliaro, A.; Costa, V.; Lo Dico, A.; Saieva, L.; Buccheri, S.; Dieli, F.; Manno, M.; Raccosta, S.; Mancone, C.; Tripodi, M.; De Leo, G.; Alessandro, R. CD90+ liver cancer cells modulate endothelial cell phenotype through the release of exosomes containing H19 lncRNA. Mol. Cancer, 2015, 14, 155.
[http://dx.doi.org/10.1186/s12943-015-0426-x] [PMID: 26272696]
[40]
Gai, X.; Tang, B.; Liu, F.; Wu, Y.; Wang, F.; Jing, Y.; Huang, F.; Jin, D.; Wang, L.; Zhang, H. mTOR/miR-145-regulated exosomal GOLM1 promotes hepatocellular carcinoma through augmented GSK-3beta/MMPs. Yi Chuan Xue Bao, 2019, 46(5), 235-245.


Rights & PermissionsPrintExport Cite as


Article Details

VOLUME: 20
ISSUE: 10
Year: 2019
Page: [785 - 798]
Pages: 14
DOI: 10.2174/1389200220666191011120434
Price: $58

Article Metrics

PDF: 19
HTML: 1

Special-new-year-discount