Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

General Research Article

Photoluminescence and Magnetic Properties of Undoped and (Mn, Co) co-doped ZnO Nanoparticles

Author(s): Mona Rekaby*

Volume 16, Issue 4, 2020

Page: [655 - 666] Pages: 12

DOI: 10.2174/1573413715666191010162626

Price: $65

Abstract

Objective: The influence of Manganese (Mn2+) and Cobalt (Co2+) ions doping on the optical and magnetic properties of ZnO nanoparticles was studied.

Methods: Nanoparticle samples of type ZnO, Zn0.97Mn0.03O, Zn0.96Mn0.03Co0.01O, Zn0.95Mn0.03 Co0.02O, Zn0.93Mn0.03Co0.04O, and Zn0.91Mn0.03Co0.06O were synthesized using the wet chemical coprecipitation method.

Results: X-ray powder diffraction (XRD) patterns revealed that the prepared samples exhibited a single phase of hexagonal wurtzite structure without any existence of secondary phases. Transmission electron microscope (TEM) images clarified that Co doping at high concentrations has the ability to alter the morphologies of the samples from spherical shaped nanoparticles (NPS) to nanorods (NRs) shaped particles. The different vibrational modes of the prepared samples were analyzed through Fourier transform infrared (FTIR) measurements. The optical characteristics and structural defects of the samples were studied through Photoluminescence (PL) spectroscopy. PL results clarified that Mn2+ and Co2+ doping quenched the recombination of electron-hole pairs and enhanced the number of point defects relative to the undoped ZnO sample. Magnetic measurements were carried out at room temperature using a vibrating sample magnetometer (VSM). (Mn, Co) co-doped ZnO samples exhibited a ferromagnetic behavior coupled with paramagnetic and weak diamagnetic contributions.

Conclusion: Mn2+ and Co2+ doping enhanced the room temperature Ferromagnetic (RTFM) behavior of ZnO. In addition, the signature for antiferromagnetic ordering between the Co ions was revealed. Moreover, a strong correlation between the magnetic and optical behavior of the (Mn, Co) co-doped ZnO was analyzed.

Keywords: Diluted magnetic semiconductors (DMS), Co-precipitation method, FTIR, photoluminescence, (M-H) hysteresis curves.

« Previous
Graphical Abstract
[1]
Molnar, S.V.; Read, D. New materials for semiconductor spin-electronics. Proc. IEEE, 2003, 91(5), 715-726.
[http://dx.doi.org/10.1109/JPROC.2003.811803]
[2]
Wolf, S.A.; Awschalom, D.D.; Buhrman, R.A.; Daughton, J.M.; von Molnár, S.; Roukes, M.L.; Chtchelkanova, A.Y.; Treger, D.M. A spin-based electronics vision for the future. Science, 2001, 294(5546), 1488-1495.
[http://dx.doi.org/10.1126/science.1065389]
[3]
Dietl, T. Ferromagnetic semiconductors. Semicond. Sci. Technol., 2002, 17(4), 377-392.
[http://dx.doi.org/10.1088/0268-1242/17/4/310]
[4]
Chappert, C.; Fert, A.; Van Dau, F.N. The emergence of spin electronics in data storage. Nat. Mater., 2007, 6(11), 813-823.
[http://dx.doi.org/10.1038/nmat2024] [PMID: 17972936]
[5]
Zając, M.; Gosk, J.; Grzanka, E.; Stelmakh, S.; Palczewska, M.; Wysmołek, A.; Korona, K.; Kamińska, M.; Twardowski, A. Ammonothermal synthesis of GaN doped with transition metal ions (Mn, Fe, Cr). J. Alloys Compd., 2008, 456(1), 324-338.
[http://dx.doi.org/10.1016/j.jallcom.2007.02.046]
[6]
Rylkov, V.V.; Aronzon, B.A.; Danilov, Y.A.; Drozdov, Y.N.; Lesnikov, V.P.; Maslakov, K.I.; Podol’skii, V.V. The special features of the Hall effect in GaMnSb layers deposited from a laser plasma. J. Exp. Theor. Phys., 2005, 100(4), 742-751.
[http://dx.doi.org/10.1134/1.1926435]
[7]
Sobolev, N.A. Oliveira, M.A.; Rubinger, R.M.; Neves, A.J.; Carmo, M.C.; Lesnikov, V.P.; Podol’skii, V.V.; Danilov, Y.A.; Demidov, E.S.; Kakazaei, G.N. Ferromagnetic resonance and Hall effect characterization of GaMnSb layers. J. Supercond. Nov. Magn., 2007, 20, 399-403.
[http://dx.doi.org/10.1007/s10948-007-0243-6]
[8]
Schallenberg, T.; Munekata, H. Preparation of high-TC ferromagnetic (In,Mn)As with strongly As-rich conditions. J. Cryst. Growth, 2007, 301-302, 623-626.
[http://dx.doi.org/10.1016/j.jcrysgro.2006.09.020]
[9]
Hou, D.L.; Zhao, R.B.; Meng, H.J.; Jia, L.Y.; Ye, X.J.; Zhou, H.J.; Li, X.L. Room-temperature ferromagnetism in Cu-doped TiO2 thin films. Thin Solid Films, 2008, 516(10), 3223-3226.
[http://dx.doi.org/10.1016/j.tsf.2007.06.168]
[10]
Rykov, A.I.; Nomura, K.; Sakuma, J.; Barrero, C.; Yoda, Y.; Mitsui, T. Dilution and clustering of Fe in the rutile phases of TiO2 and SnO2. Phys. Rev. B , 2008, 77(1) 014302
[http://dx.doi.org/10.1103/PhysRevB.77.014302]
[11]
Wang, Y.; Pang, G.; Chen, Y.; Jiao, S.; Wang, D.; Feng, S. Preparation and magnetic properties of Fe3+–Nb5+ co-doped SnO2. J. Solid State Chem., 2008, 181(2), 217-220.
[http://dx.doi.org/10.1016/j.jssc.2007.11.019]
[12]
Zhang, J.; Skomski, R.; Yue, L.P.; Lu, Y.F.; Sellmyer, D.J. Structure and magnetism of V-doped SnO2 thin films: effect of the substrate. J. Phys. Condens. Matter, 2007, 19(25) 256204
[http://dx.doi.org/10.1088/0953-8984/19/25/256204]
[13]
Xing, P.F.; Chen, Y.X.; Yan, S.; Liu, G.L.; Mei, L.M.; Wang, K.; Han, X.D.; Zhang, Z. High temperature ferromagnetism and perpendicular magnetic anisotropy in Fe-doped In2O3 films. Appl. Phys. Lett., 2008, 92, 022513
[http://dx.doi.org/10.1063/1.2834369]
[14]
Bérardan, D.; Guilmeau, E.; Pelloquin, D. Intrinsic magnetic properties of In2O3 and transition metal-doped-In2O3. J. Magn. Magn. Mater., 2008, 320(6), 983-989.
[http://dx.doi.org/10.1016/j.jmmm.2007.10.002]
[15]
Xu, Q.; Schmidt, H.; Hochmuth, H.; Lorenz, M.; Setzer, A.; Esquinazi, P.; Meinecke, C.; Grundmann, M. Room temperature ferromagnetism in Nd- and Mn-codoped ZnO films. J. Phys. D Appl. Phys., 2008, 41(10) 105012
[http://dx.doi.org/10.1088/0022-3727/41/10/105012]
[16]
Zhou, S.; Potzger, K.; Talut, G.; Reuther, H.; Kuepper, K.; Grenzer, J.; Xu, Q.; Mücklich, A.; Helm, M.; Fassbender, J.; Arenholz, E. Ferromagnetism and suppression of metallic clusters in Fe implanted ZnO: a phenomenon related to defects. J. Phys. D Appl. Phys., 2008, 41(10) 105011
[http://dx.doi.org/10.1088/0022-3727/41/10/105011]
[17]
Carvalho, J.T.; Dubceac, V.; Grey, P.; Cunha, I.; Fortunato, E.; Martins, R.; Clausner, A.; Zschech, E.; Pereira, L. Fully printed zinc oxide electrolyte-gated transistors on paper. Nanomaterials (Basel), 2019, 9(2), 169.
[http://dx.doi.org/10.3390/nano9020169] [PMID: 30704027]
[18]
Jagadish, C.; Pearton, S. Zinc Oxide Bulk, Thin Films and Nanostructures; Elsevier Science, 2006.
[19]
Morkoç, H.; Özgur, Ü. Zinc Oxide: Fundamentals, Materials and Device Technology; WILEY-VCH Verlag GmbH & Co. KGaA: Weinheim: Germany, 2009.
[http://dx.doi.org/10.1002/9783527623945]
[20]
Ozgur, U.; Hofstetter, D.; Morkoc, H. ZnO devices and applications: A review of current status and future prospects. Proc. IEEE, 2010, 98(7), 1255-1268.
[http://dx.doi.org/10.1109/JPROC.2010.2044550]
[21]
Djurišić, A.B.; Ng, A.M.C.; Chen, X.Y. ZnO nanostructures for optoelectronics: Material properties and device applications. Prog. Quantum Electron., 2010, 34(4), 191-259.
[http://dx.doi.org/10.1016/j.pquantelec.2010.04.001]
[22]
Oprea, O.; Andronescu, E.; Ficai, D.; Ficai, A.; Oktar, F.N.; Yetmez, M. ZnO applications and challenges. Curr. Org. Chem., 2014, 18, 192-203.
[http://dx.doi.org/10.2174/13852728113176660143]
[23]
Becheri, A.; Dürr, M.; Nostro, P.L.; Baglioni, P. Synthesis and characterization of zinc oxide nanoparticles: application to textiles as UV-absorbers. J. Nanopart. Res., 2008, 10, 679-689.
[http://dx.doi.org/10.1007/s11051-007-9318-3]
[24]
Taunk, P.B.; Das, R.; Bisen, D.P.; Tamrakar, R.k. Structural characterization and photoluminescence properties of zinc oxide nano particles synthesized by chemical route method. J. Radiat. Res. Appl. Sci., 2015, 8(3), 433-438.
[http://dx.doi.org/10.1016/j.jrras.2015.03.006]
[25]
Ivanov, V.Y.; Zakrzewski, A.J.; Witkowski, B.S.; Godlewski, M. Optical properties of ZnO doped with cobalt ions. Opt. Mater., 2016, 59, 15-19.
[http://dx.doi.org/10.1016/j.optmat.2016.04.001]
[26]
Mote, V.D.; Dargad, J.S.; Purushotham, Y.; Dole, B.N. Effect of doping on structural, physical, morphological and optical properties of Zn1−xMnxO nano-particles. Ceram. Int., 2015, 41(10, Part B), 15153-15161.
[http://dx.doi.org/10.1016/j.ceramint.2015.08.088]
[27]
Kumar, S.; Tiwari, N.; Jha, S.N.; Chatterjee, S.; Bhattacharyya, D.; Sahoo, N.K.; Ghosh, A.K. Insight into the origin of ferromagnetism in Fe-doped ZnO diluted magnetic semiconductor nanocrystals: an EXFAS study of local structure. RSC Advances, 2015, 5(115), 94658-94669.
[http://dx.doi.org/10.1039/C5RA12828E]
[28]
Yildiz, A.; Uzun, S.; Serin, N.; Serin, T. Influence of grain boundaries on the figure of merit of undoped and Al, In, Sn doped ZnO thin films for photovoltaic applications. Scr. Mater., 2016, 113, 23-26.
[http://dx.doi.org/10.1016/j.scriptamat.2015.10.004]
[29]
Li, Q.; Wang, Y.; Fan, L.; Liu, J.; Kong, W.; Ye, B. Coexistence of superparamagnetism and ferromagnetism in Co-doped ZnO nanocrystalline films. Scr. Mater., 2013, 69(9), 694-697.
[http://dx.doi.org/10.1016/j.scriptamat.2013.08.007]
[30]
Pereira, L.M.C.; Wahl, U.; Decoster, S.; Correia, J.G.; Amorim, L.M.; da Silva, M.R.; Araújo, J.P.; Vantomme, A. Mixed Zn and O substitution of Co and Mn in ZnO. Phys. Rev. B, 2011, 84(12) 125204
[http://dx.doi.org/10.1103/PhysRevB.84.125204]
[31]
Ma, Q.; Lv, X.; Wang, Y.; Chen, J. Optical and photocatalytic properties of Mn doped flower-like ZnO hierarchical structures. Opt. Mater., 2016, 60, 86-93.
[http://dx.doi.org/10.1016/j.optmat.2016.07.014]
[32]
Lu, X.; Liu, Y.; Si, X.; Shen, Y.; Yu, W.; Wang, W.; Luo, X.; Zhou, T. Temperature-dependence on the structural, optical, and magnetic properties of Al-doped ZnO nanoparticles. Opt. Mater., 2016, 62, 335-340.
[http://dx.doi.org/10.1016/j.optmat.2016.09.037]
[33]
Mahdhi, H.; Ben Ayadi, Z.; Gauffier, J.L.; Djessas, K.; Alaya, S. Effect of sputtering power on the electrical and optical properties of Ca-doped ZnO thin films sputtered from nanopowders compacted target. Opt. Mater., 2015, 45, 97-103.
[http://dx.doi.org/10.1016/j.optmat.2015.03.015]
[34]
Gürbüz, O.; Okutan, M. Structural, electrical, and dielectric properties of Cr doped ZnO thin films: Role of Cr concentration. Appl. Surf. Sci., 2016, 387, 1211-1218.
[http://dx.doi.org/10.1016/j.apsusc.2016.06.114]
[35]
Kim, S-K.; Gopi, C.V.V.M.; Srinivasa Rao, S.; Punnoose, D.; Kim, H-J. Highly efficient yttrium-doped ZnO nanorods for quantum dot-sensitized solar cells. Appl. Surf. Sci., 2016, 365, 136-142.
[http://dx.doi.org/10.1016/j.apsusc.2016.01.043]
[36]
Thankalekshmi, R.R.; Rastogi, A.C. Synthesis and properties of Zn(Cu–Mn)O dilute magnetic semiconductor thin films by chemical spray pyrolysis technique. J. Anal. Appl. Pyrolysis, 2014, 107, 183-190.
[http://dx.doi.org/10.1016/j.jaap.2014.02.020]
[37]
Dietl, T.; Ohno, H.; Matsukura, F.; Cibert, J.; Ferrand, D. Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science, 2000, 287(5455), 1019-1022.
[38]
Young Ahn, G.; Park, S-I.; Sung Kim, C. Enhanced ferromagnetic properties of diluted Fe doped ZnO with hydrogen treatment. J. Magn. Magn. Mater., 2006, 303(2), e329-e331.
[http://dx.doi.org/10.1016/j.jmmm.2006.01.100]
[39]
Beltran, J.J.; Osorio, J.A.; Barrero, C.A.; Hanna, C.B. Magnetic properties of Fe doped, Co doped, and Fe+ Co co-doped ZnO. J. Appl. Phys., 2013, 113(2), 17C308.
[40]
Yang, L.W.; Wu, X.L.; Huang, G.S.; Qiu, T.; Yang, Y.M. In situ synthesis of Mn-doped ZnO multileg nanostructures and Mn-related Raman vibration. J. Appl. Phys., 2005, 97, 014308
[http://dx.doi.org/10.1063/1.1827917]
[41]
Beltran, J.J.; Barrero, C.A.; Punnoose, A. Combination of defects plus mixed valence of transition metals: A strong strategy for ferromagnetic enhancement in ZnO nanoparticles. J. Phys. Chem. C, 2016, 120, 8969-8978.
[http://dx.doi.org/10.1021/acs.jpcc.6b00743]
[42]
Dubey, D.K.; Singh, D.N.; Kumar, S.; Nayak, C.; Kumbhakar, P.; Jha, S.N.; Bhattacharya, D.; Ghosh, A.K.; Chatterjee, S. Local structure and photocatalytic properties of sol–gel derived Mn–Li co-doped ZnO diluted magnetic semiconductor nanocrystals. RSC Advances, 2016, 6(27), 22852-22867.
[http://dx.doi.org/10.1039/C5RA23220A]
[43]
Pazhanivelu, V.; Paul Blessington Selvadurai, A.; Kannan, R.; Murugaraj, R. Room temperature ferromagnetism in Ist group elements codoped ZnO:Fe nanoparticles by co-precipitation method. Physica B Condens. Matter, 2016, 487, 102-108.
[44]
Yakout, S.M.; El-Sayed, A.M. Synthesis, structure, and room temperature ferromagnetism of Mn and/or Co Doped ZnO nanocrystalline. J. Supercond. Nov. Magn., 2016, 29, 1593-1599.
[http://dx.doi.org/10.1007/s10948-016-3446-x]
[45]
Yang, J.; Fei, L.; Liu, H.; Liu, Y.; Gao, M.; Zhang, Y.; Yang, L. A study of structural, optical and magnetic properties of Zn0.97−xCuxCr0.03O diluted magnetic semiconductors. J. Alloys Compd., 2011, 509(8), 3672-3676.
[http://dx.doi.org/10.1016/j.jallcom.2010.12.157]
[46]
Ashokkumar, M.; Muthukumaran, S. Microstructure, optical and FTIR studies of Ni, Cu co-doped ZnO nanoparticles by coprecipitation method. Opt. Mater., 2014, 37, 671-678.
[http://dx.doi.org/10.1016/j.optmat.2014.08.012]
[47]
Neena, D.; Shah, A.H.; Deshmukh, K.; Ahmad, H.; Fu, D.J.; Kondamareddy, K.K.; Kumar, P.; Dwivedi, R.K.; Sing, V. Influence of (Co-Mn) co-doping on the microstructures, optical properties of sol-gel derived ZnO nanoparticles. Eur. Phys. J. D, 2016, 70, 53.
[48]
Wang, F-H.; Chang, C-L. Effect of substrate temperature on transparent conducting Al and F co-doped ZnO thin films prepared by rf magnetron sputtering. Appl. Surf. Sci., 2016, 370, 83-91.
[http://dx.doi.org/10.1016/j.apsusc.2016.02.161]
[49]
Singh, J.; Kumar, P.; Late, D.J.; Singh, T.; More, M.A.; Joag, D.S.; Tiwari, R.S.; San Hui, K.; Srivastava, O.N. Optical and field emission properties in different nanostructures of ZnO. J. Nanomater. Bios., 2012, 7, 525.
[50]
Sharma, V.K.; Najim, M.; Srivastava, A.K.; Varma, G.D. Structural and magnetic studies on transition metal (Mn, Co) doped ZnO nanoparticles. J. Magn. Magn. Mater., 2012, 324(5), 683-689.
[http://dx.doi.org/10.1016/j.jmmm.2011.08.061]
[51]
Chanda, A.; Gupta, S.; Vasundhara, M.; Joshi, S.R.; Mutta, G.R.; Singh, J. Study of structural, optical and magnetic properties of cobalt doped ZnO nanorods. RSC Advances, 2017, 7(80), 50527-50536.
[http://dx.doi.org/10.1039/C7RA08458G]
[52]
Sasikala Devi, A.A.; Roqan, I.S. The origin of room temperature ferromagnetism mediated by Co–VZn complexes in the ZnO grain boundary. RSC Advances, 2016, 6(56), 50818-50824.
[http://dx.doi.org/10.1039/C6RA11607H]
[53]
Yang, L.W.; Wu, X.L.; Qui, T.; Siu, G.G.; Chu, P.K. Synthesis and magnetic properties of Zn1−xCoxO nanorods. J. Appl. Phys., 2006, 99, 074303
[http://dx.doi.org/10.1063/1.2188031]
[54]
Zolfaghari, M.; Chireh, M. Effect of Mn dopant on lattice parameters and band gap energy of semiconductor ZnO nanoparticles. Adv. Mat. Res., 2014, 829, 784-789.
[55]
Gungor, E.; Gungor, T.; Caliskan, D.; Ceylan, A.; Ozbay, E. Co doping induced structural and optical properties of sol-gel prepared ZnO thin films. Appl. Surf. Sci., 2014, 318, 309-313.
[http://dx.doi.org/10.1016/j.apsusc.2014.06.132]
[56]
Wojnarowicz, J.; Omelchenko, M.; Szczytko, J.; Chudoba, T.; Gierlotka, S.; Majhofer, A.; Twardowski, A.; Lojkowski, W. Structural and magnetic properties of Co‒Mn codoped ZnO nanoparticles obtained by microwave solvothermal synthesis. Crystals (Basel), 2018, 8(11), 410.
[http://dx.doi.org/10.3390/cryst8110410]
[57]
Khan, R.; Zulfiqar, S.; Fashu, S.; Rehman, Z.U.; Khan, A.; Rahman, M.U. Structure and magnetic properties of (Co, Mn) co-doped ZnO diluted magnetic semiconductor nanoparticles. J. Mater. Sci. Mater. Electron., 2018, 29, 32-37.
[http://dx.doi.org/10.1007/s10854-017-7884-4]
[58]
Shannon, R.D.; Prewitt, C.T. Effective ionic radii in oxides and fluorides. Acta Crystallogr. B, 1969, 25(5), 925-946.
[http://dx.doi.org/10.1107/S0567740869003220]
[59]
Sharma, D.; Jha, R. Transition metal (Co, Mn) co-doped ZnO nanoparticles: Effect on structural and optical properties. J. Alloys Compd., 2017, 698, 532-538.
[http://dx.doi.org/10.1016/j.jallcom.2016.12.227]
[60]
Dasari, M.P.; Godavarti, U.; Mote, V.D. Structural, morphological, magnetic and electrical properties of Ni-doped ZnO nanoparticles synthesized by co-precipitation method. Process. Appl. Ceram., 2018, 12(2), 100-110.
[http://dx.doi.org/10.2298/PAC1802100D]
[61]
Tiwari, N.; Kumar, S.; Ghosh, A.K.; Chatterjee, S.; Jha, S.N.; Bhattacharyya, D. Structural investigations of (Mn, Dy) co-doped ZnO nanocrystals using X-ray absorption studies. RSC Advances, 2017, 7, 56662-56675.
[http://dx.doi.org/10.1039/C7RA10748J]
[62]
Srinet, G.; Kumar, R.; Sajal, V. Structural, optical, vibrational, and magnetic properties of sol-gel derived Ni doped ZnO nanoparticles. J. Appl. Phys., 2013, 114, 033912
[http://dx.doi.org/10.1063/1.4813868]
[63]
Li, W.; Wang, G.; Chen, C.; Liao, J.; Li, Z. Enhanced visible light photocatalytic activity of ZnO nanowires doped with Mn2+ and Co2+ ions. Nanomaterials (Basel), 2017, 7(1) E20
[http://dx.doi.org/10.3390/nano7010020] [PMID: 28336854]
[64]
Gao, D.; Zhang, Z.; Fu, J.; Xu, Y.; Qi, J.; Xue, D. Room temperature ferromagnetism of pure ZnO nanoparticles. J. Appl. Phys., 2009, 105, 113928-113932.
[http://dx.doi.org/10.1063/1.3143103]
[65]
Gandhi, V.; Ganesan, R.; Abdulrahman Syedahamed, H.H.; Thaiyan, M. Effect of cobalt doping on structural, optical, and magnetic properties of ZnO nanoparticles synthesized by coprecipitation method. J. Phys. Chem. C, 2014, 118(18), 9715-9725.
[http://dx.doi.org/10.1021/jp411848t]
[66]
Zhou, S.; Potzger, K.; Reuther, H.; Kuepper, K.; Skorupa, W.; Helm, M.; Fassbender, J. Absence of ferromagnetism in V-implanted ZnO single crystals. J. Appl. Phys, 2007, 101, 09H109.
[67]
Sundaresan, A.; Bhargavi, R.; Rangarajan, N.; Siddesh, U.; Rao, C.N.R. Ferromagnetism as a universal feature of nanoparticles of the otherwise nonmagnetic oxides. Phys. Rev. B , 2006, 74(16) 161306
[http://dx.doi.org/10.1103/PhysRevB.74.161306]
[68]
Guruvammal, D.; Selvaraj, S.; Meenakshi Sundar, S. Effect of Ni-doping on the structural, optical and magnetic properties of ZnO nanoparticles by solvothermal method. J. Alloys Compd., 2016, 682, 850-855.
[http://dx.doi.org/10.1016/j.jallcom.2016.05.038]
[69]
Srinet, G.; Varshney, P.; Kumar, R.; Sajal, V.; Kulriya, P.K.; Knobel, M.; Sharma, S.K. Structural, optical and magnetic properties of Zn1−xCoxO prepared by the sol-gel route. Ceram. Int., 2013, 39(6), 6077-6085.
[http://dx.doi.org/10.1016/j.ceramint.2013.01.025]
[70]
Köseoğlu, Y. PEG-assisted hydrothermal synthesis and characterization of Co0.1Zn0.9O DMS nanoparticles. J. Magn. Magn. Mater., 2015, 373, 195-199.
[http://dx.doi.org/10.1016/j.jmmm.2014.02.052]
[71]
Gözüak, F.; Köseoğlu, Y.; Baykal, A.; Kavas, H. Synthesis and characterization of CoxZn1−xFe2O4 magnetic nanoparticles via a PEG-assisted route. J. Magn. Magn. Mater., 2009, 321(14), 2170-2177.
[http://dx.doi.org/10.1016/j.jmmm.2009.01.008]
[72]
Tian, Z.M.; Yuan, S.L.; Yin, S.Y.; Zhang, S.Q.; Xie, H.Y.; Miao, J.H.; Wang, Y.Q.; He, J.H.; Li, J.Q. Synthesis and magnetic properties of vanadium doped anatase TiO2 nanoparticles. J. Magn. Magn. Mater., 2008, 320(3), L5-L9.
[http://dx.doi.org/10.1016/j.jmmm.2007.05.009]
[73]
Jung, J-S.; Malkinski, L.; Lim, J-H.; Yu, M.; O’Connor, C.J.; Lee, H-O.; Kim, E-M. Fabrication and magnetic properties of Co nanostructures in AAO membranes. Korean Chem. Soc., 2008, 29, 758-760.
[http://dx.doi.org/10.5012/bkcs.2008.29.4.758]
[74]
Xavier, S.; Thankachan, S.; Jacob, B.P.; Mohammed, E.M. Effect of samarium substitution on the structural and magnetic properties of nanocrystalline cobalt ferrite. J. Nanosci., 2013, 2013 524380
[75]
Stoner, E.C.; Wohlfarth, E.P. A mechanism of magnetic hysteresis in heterogeneous alloys. Philos. Trans. R. Soc. Lond. A, 1948, 240, 599-642.
[http://dx.doi.org/10.1098/rsta.1948.0007]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy