Kinetic Models to Produce an Antioxidant by Enzymatic Hydrolysis of Bovine Plasma Protein Using a High Substrate Concentration

Author(s): Nathalia A. Gómez*, Leidy J. Gómez, José E. Zapata.

Journal Name: Current Enzyme Inhibition

Volume 15 , Issue 2 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Background: The animal blood that is produced in a slaughterhouse is a potential source of inexpensive proteins used in the food industry around the world. However, 60% of it is surplus, and it ends with a negative environmental impact.

Introduction: The enzymatic hydrolysis of proteins represents a good way to produce peptides with different biological activities.

Methods: Enzymatic hydrolysis of bovine plasma with subtilisin at an alkaline pH and 61.5°C was performed using the pH-stat method. Experiments were conducted considering the effects of a high initial substrate concentration (So) and the enzyme/substrate ratio (E/S) minimizing the processing time necessary to obtain a specific degree of hydrolysis (DH).

Results: The best conditions obtained were 42 g/L of So and 0.89 AU/g substrate of E/S until a DH of 20% in 11,1 ± 1,1 min was achieved to the tested conditions, which result in a fitted empirical polynomial equation of degree 3.

Conclusion: A kinetic equation is established to relate the DH and the reaction time to a relative error of less than 5% in the fit, to obtain a good antioxidant product in an industrially interesting time. Additionally, the results suggest a good adjustment of the data with a determination coefficient (R2) of 0.9745 in validation.

Keywords: Antioxidants, degree of hydrolysis, enzymatic hydrolysis, kinetic model, pH-Stat method, protein hydrolysates.

Isaza, J.M.; Londoño, L.M.; Restrepo, D.; Cortes, M.; Suárez, H. Producción y propiedades funcionales de plasma bovino hidratado en embutido tipo salchichón. Rev. Colomb. Cienc. Pecu., 2010, 23(2), 199-206.
Friedman, M. Nutritional value of proteins from different food sources. A review. J. Agric. Food Chem., 1996, 44, 6-29.
Wanasundara, J.; Ronald, P.D.; Pegg, B.; Phyllis, J.S. Value added applications for plasma proteins from the beef processing industry; Can Meat Sci Assoc, 2003, pp. 10-15.
Wu, Z.; Pan, D.; Zhen, X.; Cao, J. Angiotensin I-converting enzyme inhibitory peptides derived from bovine casein and identified by MALDI-TOF-MS/MS. J. Sci. Food Agric., 2013, 93(6), 1331-1337.
[] [PMID: 23015408]
Park, K.; Hyun, C. Antigenotoxic effects of the peptides derived from bovine blood plasma proteins. Enzyme Microb. Technol., 2002, 30, 633-638.
Naso, L.G.; Lezama, L.; Valcarcel, M.; Salado, C.; Villacé, P.; Kortazar, D.; Ferrer, E.G.; Williams, P.A.M. Bovine serum albumin binding, antioxidant and anticancer properties of an oxidovanadium(IV) complex with luteolin. J. Inorg. Biochem., 2016, 157(157), 80-93.
[] [PMID: 26828287]
Adoui, F.; Boughera, F.; Chataigne, G.; Chihib, N-E.; El Hameur, H.; Dhulster, P.; Zidoune, M.N.; Nedjar-Arroume, N. A simple method to separate the antimicrobial peptides from complex peptic casein hydrolysate and identification of a novel antibacterial domains within the sequence of bovine alfa-casein. Int. Rev. Chem. Eng., 2013, 5(2), 179-187.
Benítez, R.; Ibarz, A.; Pagan, J. Protein hydrolysates: Processes and applications. Acta Bioquim. Clin. Latinoam., 2008, 42, 227-236.
Kechaou, E.S.; Dumay, J.; Donnay-Moreno, C.; Jaouen, P.; Gouygou, J-P.; Bergé, J-P.; Amar, R.B. Enzymatic hydrolysis of cuttlefish (Sepia officinalis) and sardine (Sardina pilchardus) viscera using commercial proteases: Effects on lipid distribution and amino acid composition. J. Biosci. Bioeng., 2009, 107(2), 158-164.
[] [PMID: 19217554]
Margot, A.; Flaschel, E.; Renken, A. Empirical kinetic models for tryptic whey-protein hydrolysis. Process Biochem., 1997, 32, 217-223.
Marquez, M.; Vazquez, M. Modeling of enzymatic protein hydrolysis. Process Biochem., 1999, 35(1), 111-117.
He, Z.M.; Qi, W.; He, M.X. A novel exponential kinetic model for casein tryptic hydrolysis to prepare active peptides. Chin. J. Chem. Eng., 2002, 10, 562-566.
Seo, H-W.; Jung, E-Y.; Go, G-W.; Kim, G-D.; Joo, S-T.; Yang, H-S. Optimization of hydrolysis conditions for bovine plasma protein using response surface methodology. Food Chem., 2015, 185, 106-111.
[] [PMID: 25952847]
Marquez, M.C.; Fernandez, V. Enzymic hydrolysis of vegetable proteins: Mechanism and kinetics. Process Biochem., 1993, 28(7), 481-490.
Sousa, R., Jr; Lopes, G.P.; Tardioli, P.W.; Giordano, R.L.C.; Almeida, P.I.F.; Giordano, R.C. Kinetic model for whey protein hydrolysis by alcalase multipoint - immobilized on agarose gel particles. Braz. J. Chem. Eng., 2004, 21(02), 147-153.
Salami, M.; Yousefi, R.; Reza, M.; Dalgalarrondo, M.; Chobert, J-M.; Haertlé, T.; Hadi, S.; Akbar, A.; Niasari-Naslaji, A.; Akbar, A. Kinetic characterization of hydrolysis of hydrolysis of camel and bovine milk proteins by pancreatic enzymes. Int. Dairy J., 2008, 18, 1097-1102.
Ruan, Ch.; Chi, Q.Y.J.; Zhang, R.D. Kinetics of hydrolysis of egg white protein by pepsin. Czech J. Food Sci., 2010, 28, 355-363.
Valencia, P.; Pinto, M.; Almonacid, S. Identification of the key mechanisms involved in the hydrolysis of fish protein by Alcalase. Process Biochem., 2014, 49, 258-264.
Figueroa, O.A.; Zapata, J.E.; Gutierrez, G.A. Modelamiento de la cinética de hidrólisis enzimática de proteínas del plasma bovino. Rev EIA, 2012, 17, 71-84.
Guadix, A.; Guadix, E.M.; Páez-Dueñas, M.P.; González-Tello, P.; Camacho, F. Technological processes and methods of control in the hydrolysis of proteins. Ars Pharm, 2000, 41(1), 79-89.
Adler-Nissen, J. Enzymatic hydrolysis of food proteins; Elsevier Applied Science Publishers: London, UK, 1986.
Liu, Q.; Baohua, K.; Jiang, L.; Cui, X.; Lui, J. Free radical scavening activity of porcine plasma protein hydrolysates determined by electron spin resonance spectrometer. Lebensm. Wiss. Technol., 2009, (42), 956-962.
Gómez, L.J.; Figueroa, O.A.; Zapata, J.E. Actividad antioxidante de hidrolizados enzimáticos de plasma bovino obtenidos por efecto de Alcalasa 2.4 L. Inf. Tecnol., 2013, 24, 33-42.
Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med., 1999, 26(9-10), 1231-1237.
[] [PMID: 10381194]
Dunn, I.J.; Heinzle, E.; Ingham, J.; Pfenosil, J.E. Biological Reaction Engineering. Dynamic Modelling Fundamentals with Simulation Examples, 2nd ed; Wiley-VCH: Federal Republic of Germany, 2003.
Gonzàlez-Tello, P.; Camacho, F.; Jurado, E.; Páez, M.P.; Guadix, E.M. Enzymatic hydrolysis of whey proteins: I. Kinetic models. Biotechnol. Bioeng., 1994, 44(4), 523-528.
[] [PMID: 18618786]
Berg, R.; Haenen, G.; Berg, H.; Bast, A. Applicability of an improved Trolox equivalent antioxidant capacity (TEAC) assay for evaluation of antioxidant capacity measurements of mixtures. Food Chem., 1999, 66, 511-517.
Arts, M.J.; Haenen, G.R.; Voss, H-P.; Bast, A. Antioxidant capacity of reaction products limits the applicability of the Trolox Equivalent Antioxidant Capacity (TEAC) assay. Food Chem. Toxicol., 2004, 42(1), 45-49.
[] [PMID: 14630129]
Pisoschi, A.M.; Cheregi, M.C.; Danet, A.F. Total antioxidant capacity of some commercial fruit juices: Electrochemical and spectrophotometrical approaches. Molecules, 2009, 14(1), 480-493.
[] [PMID: 19158657]
Jung, M.Y.; Min, D.B. ESR study of the singlet oxygen quenching and protective activity of Trolox on the photodecomposition of riboflavin and lumiflavin in aqueous buffer solutions. J. Food Sci., 2009, 74(6), C449-C455.
[] [PMID: 19723181]
Gómez, L.J.; Zapata, J.E. Effects of hydrolysis and digestion in vitro on the activity of bovine plasma hydrolysates as inhibitors of the angiotensin I converting enzyme. Braz. Arch. Biol. Technol., 2014, 57, 386-393.
Wei, Q.; Zhimin, H. Enzymatic hydrolysis of protein: Mechanismand kinetic model. Front. Chem. China, 2006, 3, 308-314.
Figueroa, O.A.; Zapata, J.E.; Sánchez, C.P. Optimization of enzymatic hydrolysis of proteins Bovine plasma. Inf. Tecnol., 2016, 27(2), 39-52.
Lamsal, B.; Jung, S.; Johnson, L. Rheological properties of soy protein hydrolysates obtained from limited enzymatic hydrolysis. LWT-Food Sci Techn, 2007, 40(7), 1215-1223.
Demirhan, E.; Apar, D.K.; Özbek, B. Sesame cake protein hydrolysis by alcalase: Effects of process parameters on hydrolysis, solubilisation and enzyme inactivation. Korean J. Chem. Eng., 2011, 28, 195-202.
Klompong, V.; Benjakul, S.; Kantachote, D.; Shahidi, F. Antioxidative activity and functional properties of protein hydrolysate of yellow stripe trevally (Selaroides leptolepis) as influenced by the degree of hydrolysis and enzyme type. Food Chem., 2007, 102, 1317-1327.
Witono, Y.; Windrati, W.S.; Taruna, I.; Afriliana, A.; Assadam, A. Characteristics and sensory analysis of ketchup and sauce products from “Bibian” fish hydrolysate. Am. J. Food Sci Techn, 2014, 2(6), 203-208.
Witono, Y.; Taruna, I.; Windrati, W.S.; Azkiyah, L.; Sari, T.N. Wader (Rasbora jacobsoni) protein hydrolysates: Production, biochemical and functional properties. Agric. Agric. Sci. Procedia, 2016, 9, 482-492.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2019
Page: [144 - 153]
Pages: 10
DOI: 10.2174/1573408015666191009090742

Article Metrics

PDF: 14