Recent Achievements in the Hydrogenation of Nitriles Catalyzed by Transitional Metals

Author(s): Krisztina Lévay, László Hegedűs*.

Journal Name: Current Organic Chemistry

Volume 23 , Issue 18 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Amines are important and valuable intermediates in the pharmaceutical, plastic and agrochemical industry. Hence, there is an increasing interest in developing improved process for the synthesis of amines. The heterogeneous catalytic hydrogenation of nitriles is one of the most frequently applied methods for the synthesis of diverse amines, but the homogeneous catalysis has also received a growing attention from the catalysis community. This mini-review provides an overview of the recent achievements in the selective reduction of nitriles using both homogeneous and heterogeneous transition metal catalysts.

Keywords: Amines, heterogeneous catalysis, homogeneous catalysis, hydrogenation, nitriles, selective reduction.

[1]
Roose, P.; Eller, K.; Henkes, E.; Rossbacher, R.; Höke, H. In Ullmann’s Encyclopedia of Industrial Chemistry, 7th ed; Wiley-VCH: Weinheim, 2015, pp. 1-55.
[2]
Weissermel, K.; Arpe, H-J. Industrial Organic Chemistry, 3rd rev. Ed.; VCH: Weinheim, 1997.
[http://dx.doi.org/10.1002/9783527616688]
[3]
Liang, Y.; Zhang, X.; MacMillan, D.W.C. Decarboxylative sp3 C-N coupling via dual copper and photoredox catalysis. Nature, 2018, 559(7712), 83-88.
[http://dx.doi.org/10.1038/s41586-018-0234-8] [PMID: 29925943]
[4]
Tian, C.; Yang, L.; Tian, H.; An, G.; Li, G. C5-selective trifluoromethylation of 8-aminoquinolines via photoredox catalysis. J. Fluor. Chem., 2019, 219, 23-28.
[http://dx.doi.org/10.1016/j.jfluchem.2018.12.011]
[5]
Yang, H.; Tian, C.; Qiu, D.; Tian, H.; An, G.; Li, G. Organic photoredox catalytic decarboxylative cross-coupling of gem-difluoroalkenes with unactivated carboxylic acids. Org. Chem. Front., 2019, 6, 2365-2370.
[http://dx.doi.org/10.1039/C9QO00495E]
[6]
Yuan, C.; Zhu, L.; Chen, C.; Chen, X.; Yang, Y.; Lan, Y.; Zhao, Y. Ruthenium(II)-enabled para-selective C-H difluoromethylation of anilides and their derivatives. Nat. Commun., 2018, 9(1), 1189.
[http://dx.doi.org/10.1038/s41467-018-03341-6] [PMID: 29567953]
[7]
Tian, C.; Yao, X.; Ji, W.; Wang, Q.; An, G.; Li, G. A para-C-H Functionalization of aniline derivatives via in situ generated bulky hypervalent iodinium reagents. Eur. J. Org. Chem., 2018, 2018, 5972-5979.
[http://dx.doi.org/10.1002/ejoc.201801058]
[8]
Freifelder, M. Practical Catalytic Hydrogenation; Wiley: New York, 1971, pp. 238-260.
[9]
Rylander, P.N. Catalytic Hydrogenation over Platinum Metals; Academic Press: New York, 1976, pp. 203-226.
[10]
Gomez, S.; Peters, J.A.; Maschmeyer, T. The reductive animation of aldehydes and ketones and the hydrogenation of nitriles: Mechanistic aspects and selectivity control. Adv. Synth. Catal., 2002, 344, 1037-1057.
[http://dx.doi.org/10.1002/1615-4169(200212)344:10<1037:AID-ADSC1037>3.0.CO;2-3]
[11]
Degischer, O.G.; Roessler, F.; Rys, P. Catalytic hydrogenation of benzonitrile over Raney nickel. Chem. Ind. Catal. Org. React., 2001, 82, 241-254.
[12]
Bawane, S.P.; Sawant, S.B. Reaction kinetics of the liquid-phase hydrogenation of benzonitrile to benzylamine using Raney nickel catalyst. Chem. Eng. J., 2004, 103, 13-19.
[http://dx.doi.org/10.1016/j.cej.2004.07.002]
[13]
Kukula, P.; Studer, M.; Blaser, H-U. Chemoselective hydrogenation of α, β-unsaturated nitriles. Adv. Synth. Catal., 2002, 346, 1487-1493.
[http://dx.doi.org/10.1002/adsc.200404128]
[14]
de Bellefon, C.; Fouilloux, P. Homogeneous and heterogeneous hydrogenation of nitriles in a liquid phase: Chemical, mechanistic, and catalytic aspects. Catal. Rev., Sci. Eng., 1994, 36, 459-506.
[http://dx.doi.org/10.1080/01614949408009469]
[15]
Werkmeister, S.; Junge, K.; Beller, M. Catalytic hydrogenation of carboxylic acid esters, amides, and nitriles with homogeneous catalysts. Org. Process Res. Dev., 2014, 18, 289-302.
[http://dx.doi.org/10.1021/op4003278]
[16]
Bagal, D.B.; Bhanage, B.M. Recent advances in transition metal-catalyzed hydrogenation of nitriles. Adv. Synth. Catal., 2015, 357, 883-900.
[http://dx.doi.org/10.1002/adsc.201400940]
[17]
Bagal, D.B.; Bhanage, B.M. In: Science of Synthesis: Catalytic Reduction in Organic Synthesis, Vol. 2, de Vries, J.G.; Ed.; Thieme Verlag: Stuttgart. 2018, pp. 375-401.
[18]
Allgeier, A.M.; Sengupta, S.K. In Hydrogenation: Catalysts and Processes; Jackson, S.D., Ed.; Walter de Gruyter: Berlin, 2018, pp. 107-154.
[http://dx.doi.org/10.1515/9783110545210-005]
[19]
Hegedűs, L.; Lévay, K. Selective heterogeneous catalytic hydrogenation of nitriles to primary amines. Period. Polytech. Chem. Eng., 2018, 62, 476-488.
[http://dx.doi.org/10.3311/PPch.12787]
[20]
Krupka, J.; Pasek, J. Nitrile hydrogenation on solid catalysts - New insights into the reaction mechanism. Curr. Org. Chem., 2012, 16, 988-1004.
[http://dx.doi.org/10.2174/138527212800194692]
[21]
Chojecki, A.; Veprek-Heijman, M.; Müller, T.E.; Schärringer, P.; Veprek, S.; Lercher, J.A. Tailoring Raney-catalysts for the selective hydrogenation of butyronitrile to n-butylamine. J. Catal., 2007, 245, 237-248.
[http://dx.doi.org/10.1016/j.jcat.2006.10.012]
[22]
Johnson, T.A.; Freyberger, D.P. Lithium hydroxide modified sponge catalysts for control of primary amine selectivity in nitrile hydrogenation. Chem. Ind. Catal. Org. React., 2001, 82, 201-227.
[23]
Hoffer, B.W.; Moulijn, J.A. Hydrogenation of dinitriles on Raney-type Ni catalysts: Kinetic and mechanistic aspects. Appl. Catal. A Gen., 2009, 352, 193-201.
[http://dx.doi.org/10.1016/j.apcata.2008.10.004]
[24]
Zhang, Y.; Yang, H.; Chi, Q.; Zhang, Z. Nitrogen-doped carbon-supported nickel nanoparticles: A robust catalyst to bridge the hydrogenation of nitriles and the reductive amination of carbonyl compounds for the synthesis of primary amines. ChemSusChem, 2019, 12(6), 1246-1255.
[http://dx.doi.org/10.1002/cssc.201802459] [PMID: 30600939]
[25]
Segobia, D.J.; Trasarti, C.R.; Apesteguía, C.R. Hydrogenation of nitriles to primary amines on metal-supported catalysts: Highly selective conversion of butyronitrile to n-butylamine. Appl. Catal. A Gen., 2012, 445-446, 69-75.
[http://dx.doi.org/10.1016/j.apcata.2012.08.006]
[26]
Jia, Z.; Zhen, B.; Han, M.; Wang, C. Liquid phase hydrogenation of adiponitrile over directly reduced Ni/SiO2 catalyst. Catal. Commun., 2016, 73, 80-83.
[http://dx.doi.org/10.1016/j.catcom.2015.10.021]
[27]
Wang, C.; Jia, Z.; Zhen, B.; Han, M. Supported Ni catalyst for liquid phase hydrogenation of adiponitrile to 6-aminocapronitrile and hexamethyenediamine. Molecules, 2018, 23(1), 92.
[http://dx.doi.org/10.3390/molecules23010092] [PMID: 29300298]
[28]
Segobia, D.J.; Trasarti, C.R.; Apesteguía, C.R. Chemoselective hydrogenation of unsaturated nitriles to unsaturated primary amines: Conversion of cinnamonitrile on metal-supported catalysts. Appl. Catal. A Gen., 2015, 494, 41-47.
[http://dx.doi.org/10.1016/j.apcata.2015.01.028]
[29]
Liu, C.; Wang, T. Isophthalonitrile (IPN) hydrogenation over K modified Ni-Co supported catalysts: Catalyst characterization and performance evaluation. RSC Advances, 2014, 4, 63725-63733.
[http://dx.doi.org/10.1039/C4RA09607J]
[30]
Liu, C.; Hou, R.; Wang, T. Role of acid sites and surface hydroxyl groups in isophthalonitrile hydrogenation catalyzed by supported Ni-Co catalysts. RSC Advances, 2015, 5, 26465-26474.
[http://dx.doi.org/10.1039/C5RA01007A]
[31]
Liu, C.; Li, X.; Wang, T. Catalytic hydrogenation of isophthalonitrile (IPN) over supported monometallic and bimetallic catalysts. RSC Advances, 2015, 5, 57277-57285.
[http://dx.doi.org/10.1039/C5RA10231F]
[32]
Cheng, H.; Meng, X.; Wu, C.; Shan, X.; Yu, Y.; Zhao, F. Selective hydrogenation of benzonitrile in multiphase reaction systems including compressed carbon dioxide over Ni/Al2O3 catalyst. J. Mol. Catal. A Chem., 2013, 379, 72-79.
[http://dx.doi.org/10.1016/j.molcata.2013.07.017]
[33]
Lv, Y.; Hao, F.; Liu, P.; Xiong, S.; Luo, H. Liquid phase hydrogenation of adiponitrile over acid activated sepiolite supported K-La-Ni trimetallic catalysts. React. Kinet. Mech. Catal., 2016, 119, 555-568.
[http://dx.doi.org/10.1007/s11144-016-1061-2]
[34]
Zhang, P.; Du, W.; Rong, Z.; Wang, Y.; Lu, L. Mild hydrogenation of benzonitrile to benzylamine over amorphous NiAl alloy catalyst. Petrochem. Technol., 2007, 36, 1037-1042.
[35]
Cao, Y.; Niu, L.; Wen, X.; Feng, W.; Huo, L.; Bai, G. Novel layered double hydroxide/oxide-coated nickel-based core-shell nanocomposites for benzonitrile selective hydrogenation: An interesting water switch. J. Catal., 2016, 339, 9-13.
[http://dx.doi.org/10.1016/j.jcat.2016.03.015]
[36]
Mokhov, V.M.; Popov, Yu.V.; Shcherbakova, K.V. Colloid and nanosized catalysts in organic synthesis: XII. Hydrogenation of carbonitriles catalyzed by nickel nanoparticles. Russ. J. Gen. Chem., 2016, 86, 273-280.
[http://dx.doi.org/10.1134/S1070363216020110]
[37]
Konnerth, H.; Prechtl, M.H.G. Nitrile hydrogenation using nickel nanocatalysts in ionic liquids. New J. Chem., 2017, 41, 9594-9597.
[http://dx.doi.org/10.1039/C7NJ02210G]
[38]
Zen, Y-F.; Fu, Z-C.; Liang, F.; Xu, Y.; Yang, D-D.; Yang, Z.; Gan, X.; Lin, Z-S.; Chen, Y.; Fu, W-F. Robust hydrogenation of nitrile and nitro groups to primary amines using Ni2P as a catalyst and ammonia borane under ambient conditions. Asian J. Org. Chem., 2017, 6, 1589-1593.
[http://dx.doi.org/10.1002/ajoc.201700383]
[39]
Ansmann, A.; Benisch, C. Supported cobalt catalysts for nitrile hydrogenations U.S. Patent 6,790,996, September 14. 2004.
[40]
Long, J.; Shen, K.; Chen, L.; Li, Y. Multimetal-MOF-derived transition metal alloy NPs embedded in an N-doped carbon matrix: Highly active catalysts for hydrogenation reactions. J. Mater. Chem. A Mater. Energy Sustain., 2016, 4, 10254-10262.
[http://dx.doi.org/10.1039/C6TA00157B]
[41]
Long, J.; Shen, K.; Li, Y. Bifunctional N-Doped Co@C catalysts for base-free transfer hydrogenations of nitriles: controllable selectivity to primary amines vs imines. ACS Catal., 2017, 7, 275-284.
[http://dx.doi.org/10.1021/acscatal.6b02327]
[42]
Ji, P.; Manna, K.; Lin, Z.; Feng, X.; Urban, A.; Song, Y.; Lin, W. Single-site cobalt catalysts at new Zr123-O)83-OH)82-OH)6 Metal-Organic framework nodes for highly active hydrogenation of nitroarenes, nitriles, and isocyanides. J. Am. Chem. Soc., 2017, 139(20), 7004-7011.
[http://dx.doi.org/10.1021/jacs.7b02394] [PMID: 28478673]
[43]
Chen, F.; Topf, C.; Radnik, J.; Kreyenschulte, C.; Lund, H.; Schneider, M.; Surkus, A-E.; He, L.; Junge, K.; Beller, M. Stable and inert cobalt catalysts for highly selective and practical hydrogenation of C≡N and C=O bonds. J. Am. Chem. Soc., 2016, 138(28), 8781-8788.
[http://dx.doi.org/10.1021/jacs.6b03439] [PMID: 27320777]
[44]
Ferraccioli, R.; Borovika, D.; Surkus, A-E.; Kreyenschulte, C.; Topf, C.; Beller, M. Synthesis of cobalt nanoparticles by pyrolysis of vitamin B12: A non-noble-metal catalyst for efficient hydrogenation of nitriles. Catal. Sci. Technol., 2018, 8, 499-507.
[http://dx.doi.org/10.1039/C7CY01577A]
[45]
Murugesan, K.; Senthamarai, T.; Sohail, M.; Alshammari, A.S.; Pohl, M-M.; Beller, M.; Jagadeesh, R.V. Cobalt-based nanoparticles prepared from MOF-carbon templates as efficient hydrogenation catalysts. Chem. Sci. (Camb.), 2018, 9(45), 8553-8560.
[http://dx.doi.org/10.1039/C8SC02807A] [PMID: 30568779]
[46]
Marella, R.K.; Koppadi, K.S.; Jyothi, Y.; Rama Rao, K.S.; Burri, D.R. Selective gas-phase hydrogenation of benzonitrile into benzylamine over Cu-MgO catalysts without using any additives. New J. Chem., 2013, 37, 3229-3235.
[http://dx.doi.org/10.1039/c3nj00453h]
[47]
Lin, C.; Li, J.; Guo, H.; Wu, X.; Wang, B.; Yan, X. Controllable synthesis of bis[3-(dimethylamino)propyl]amine over Cr and Co double-doped Cu/γ-Al2O3. Catal. Commun., 2018, 111, 64-69.
[http://dx.doi.org/10.1016/j.catcom.2018.03.031]
[48]
Zeynizadeh, B.; Aminzadeh, F.M.; Mousavi, H. Green and convenient protocols for the efficient reduction of nitriles and nitro compounds to corresponding amines with NaBH4 in water catalyzed by magnetically retrievable CuFe2O4 nanoparticles. Res. Chem. Intermed., 2019, 45, 3329-3357.
[http://dx.doi.org/10.1007/s11164-019-03794-4]
[49]
Hegedűs, L.; Máthé, T. Selective heterogeneous catalytic hydrogenation of nitriles to primary amines in liquid phase Part I. Hydrogenation of benzonitrile over palladium. Appl. Catal. A Gen., 2005, 296, 209-215.
[http://dx.doi.org/10.1016/j.apcata.2005.08.024]
[50]
Hegedűs, L.; Máthé, T.; Kárpáti, T. Selective heterogeneous catalytic hydrogenation of nitriles to primary amines in liquid phase Part II: Hydrogenation of benzyl cyanide over palladium. Appl. Catal. A Gen., 2008, 349, 40-45.
[http://dx.doi.org/10.1016/j.apcata.2008.07.012]
[51]
Yap, A.J.; Chan, B.; Yuen, A.K.L.; Ward, A.J.; Masters, A.F.; Maschmeyer, T. A palladium-catalyzed multicascade reaction: Facile low-temperature hydrogenolysis of activated nitriles and related functional groups. ChemCatChem, 2011, 3, 1496-1502.
[http://dx.doi.org/10.1002/cctc.201100076]
[52]
Krupka, J.; Drahonsky, J.; Hlavackova, A. Aminocarbene mechanism of the formation of a tertiary amine in nitrile hydrogenation on a palladium catalyst. React. Kinet. Mech. Catal., 2013, 108, 91-105.
[http://dx.doi.org/10.1007/s11144-012-0497-2]
[53]
Vilches-Herrera, M.; Werkmeister, S.; Junge, K.; Börner, A.; Beller, M. Selective catalytic transfer hydrogenation of nitriles to primary amines using Pd/C. Catal. Sci. Technol., 2014, 4, 629-632.
[http://dx.doi.org/10.1039/c3cy00854a]
[54]
Hao, Y.; Wang, X.; Perret, N.; Cardenas-Lizana, F.; Keane, M.A. Support effects in the gas phase hydrogenation of butyronitrile over palladium. Catal. Struct. React., 2015, 1, 4-10.
[http://dx.doi.org/10.1179/2055075814Y.0000000002]
[55]
Hao, Y.; Li, M.; Cardenas-Lizana, F.; Keane, M.A. Selective Production of Benzylamine via Gas Phase Hydrogenation of Benzonitrile over Supported Pd Catalysts. Catal. Lett., 2016, 146, 109-116.
[http://dx.doi.org/10.1007/s10562-015-1655-8]
[56]
McMillan, L.; Gilpin, L.F.; Baker, J.; Brennan, C.; Hall, A.; Lundie, D.T.; Lennon, D. The application of supported palladium catalyst for the hydrogenation of aromatic nitriles. J. Mol. Catal. Chem., 2016, 411, 239-246.
[http://dx.doi.org/10.1016/j.molcata.2015.10.028]
[57]
McAllister, M.I.; Boulho, C.; McMillan, L.; Gilpin, L.F.; Wiedbrauk, S.; Brennan, C.; Lennon, D. The production of tyramine via the selective hydrogenation of 4-hydroxybenzyl cyanide over a carbon-supported palladium catalyst. RSC Advances, 2018, 8, 29392-29399.
[http://dx.doi.org/10.1039/C8RA05654D]
[58]
McAllister, M.I.; Boulho, C.; McMillan, L.; Gilpin, L.F.; Brennan, C.; Lennon, D. The hydrogenation of mandelonitrile over a Pd/C catalyst: towards a mechanistic understanding. RSC Advances, 2019, 9, 26116-26125.
[http://dx.doi.org/10.1039/C9RA04618F]
[59]
McAllister, M.I.; Boulho, C.; McMillan, L.; Gilpin, L.F.; Brennan, C.; Lennon, D. Hydrogenation of benzonitrile over supported pd catalysts: kinetic and mechanistic insight. Org. Process Res. Dev., 2019, 23, 977-989.
[http://dx.doi.org/10.1021/acs.oprd.9b00058]
[60]
Bakker, J.J.W.; van der Neut, A.G.; Kreutzer, M.T.; Moulijn, J.A.; Kapteijn, F. Catalyst performance changes induced by palladium phase transformation in the hydrogenation of benzonitrile. J. Mol. Catal. A Chem., 2010, 274, 176-191.
[http://dx.doi.org/10.1016/j.jcat.2010.06.013]
[61]
Yoshida, H.; Wang, Y.; Narisawa, S.; Fujita, S. Liu., R.; Arai, M. A multiphase reaction medium including pressurized carbon dioxide and water for selective hydrogenation of benzonitrile with a Pd/Al2O3 catalyst. Appl. Catal. A Gen., 2013, 456, 215-222.
[http://dx.doi.org/10.1016/j.apcata.2013.03.004]
[62]
Bhosale, A.; Yoshida, H.; Fujita, S.; Arai, M. Selective hydrogenation of benzyl cyanide to 2-phenylethylamine over a Pd/Al2O3 catalyst promoted by synergistic effects of CO2 and water. Green Chem., 2015, 17, 1299-1307.
[http://dx.doi.org/10.1039/C4GC02118E]
[63]
Bhosale, A.; Yoshida, H.; Fujita, S.; Arai, M. Carbon dioxide and water: An effective multiphase medium for selective hydrogenation of nitriles with a Pd/Al2O3 catalyst. J. CO2 Util, 2016, 16, 371-374.
[64]
Dai, C.; Liu, F.; Zhang, W.; Li, Y.; Ning, C.; Wang, X.; Zhang, C. Deactivation study of Pd/Al2O3 catalyst for hydrogenation of benzonitrile in fixed-bed reactor. Appl. Catal. A Gen., 2017, 538, 199-206.
[http://dx.doi.org/10.1016/j.apcata.2017.03.030]
[65]
Dai, C.; Zhu, S.; Wang, X.; Zhang, C.; Zhang, W.; Li, Y.; Ning, C. Efficient and selective hydrogenation of benzonitrile to benzylamine: improvement on catalytic performance and stability in a trickle-bed reactor. New J. Chem., 2017, 41, 3758-3765.
[http://dx.doi.org/10.1039/C7NJ00001D]
[66]
Dai, C.; Li, Y.; Ning, C.; Zhang, W.; Wang, X.; Zhang, C. The influence of alumina phases on the performance of Pd/Al2O3 catalyst in selective hydrogenation of benzonitrile to benzylamine. Appl. Catal. A Gen., 2017, 545, 97-103.
[http://dx.doi.org/10.1016/j.apcata.2017.07.032]
[67]
Yoshimura, M.; Komatsu, A.; Niimura, M.; Takagi, Y.; Takahashi, T.; Ueda, S.; Ichikawa, T.; Kobayashi, Y.; Okami, H.; Hattori, T.; Sawama, Y.; Monguchi, Y.; Sajikib, H. Selective Synthesis of Primary Amines from Nitriles under Hydrogenation Conditions. Adv. Synth. Catal., 2018, 360, 1726-1732.
[http://dx.doi.org/10.1002/adsc.201800102]
[68]
Lin, C.; Wang, B.; Guo, H.; Chen, L.; Yan, X. Selective Synthesis of N,N-Bis(3-dimethylaminopropyl)amine over Pd/γ-Al2O3. Bull. Korean Chem. Soc., 2018, 39, 391-396.
[http://dx.doi.org/10.1002/bkcs.11401]
[69]
Chatterjee, M.; Kawanami, H.; Sato, M.; Ishizaka, T.; Yokoyama, T.; Suzuki, T. Hydrogenation of nitrile in supercritical carbon dioxide: a tunable approach to amine selectivity. Green Chem., 2010, 12, 87-93.
[http://dx.doi.org/10.1039/B913828E]
[70]
Segobia, D.J.; Trasarti, C.R.; Apesteguía, C.R. Conversion of butyronitrile to butylamines on noble metals: Effect of solvent on catalyst activity and selectivity. Catal. Sci. Technol., 2014, 4, 4075-4083.
[http://dx.doi.org/10.1039/C4CY00741G]
[71]
Hao, Y.; Li, M.; Cardenas-Lizana, F.; Keane, M.A. Production of butylamine in the gas phase hydrogenation of butyronitrile over Pd/SiO2 and Ba-Pd/SiO2. Catal. Struct. React., 2015, 1, 132-139.
[http://dx.doi.org/10.1179/2055075815Y.0000000007]
[72]
Saito, Y.; Ishitani, H.; Ueno, M.; Kobayashi, S. Selective hydrogenation of nitriles to primary amines catalyzed by a polysilane/SiO2-supported palladium catalyst under continuous-flow conditions. Chem. Open, 2017, 6(2), 211-215.
[http://dx.doi.org/10.1002/open.201600166] [PMID: 28413753]
[73]
Nait Ajjou, A.; Robichaud, A. Chemoselective hydrogenation of nitriles to secondary or tertiary amines catalyzed by aqueous-phase catalysts supported on hexagonal mesoporous silica. Appl. Organomet. Chem, 2018, 32, e4547.
[http://dx.doi.org/10.1002/aoc.4547]
[74]
Jiao, Z-F.; Zhao, J-X.; Guo, X-N.; Tong, X-L.; Zhang, B.; Jin, G-Q.; Qin, Y. d Guo X-Y. Turning the product selectivity of nitrile hydrogenation from primary to secondary amines by precise modification of Pd/SiC catalysts using NiO nanodots. Catal. Sci. Technol., 2019, 9, 2266-2272.
[http://dx.doi.org/10.1039/C9CY00353C]
[75]
Liu, Y.; He, S.; Quan, Z.; Cai, H.; Zhao, Y.; Wang, B. Mild palladium-catalysed highly efficient hydrogenation of C≡N, C-NO2, and C=O bonds using H2 of 1 atm in H2O. Green Chem., 2019, 21, 830-838.
[http://dx.doi.org/10.1039/C8GC03285H]
[76]
Obert, K.; Roth, D.; Ehrig, M.; Schönweiz, A.; Assenbaum, D.; Lange, H.; Wasserscheid, P. Selectivity enhancement in the catalytic hydrogenation of propionitrile using ionic liquid multiphase reaction systems. Appl. Catal. A Gen., 2009, 356, 43-51.
[http://dx.doi.org/10.1016/j.apcata.2008.12.016]
[77]
Muratsugu, S.; Kityakarn, S.; Wang, F.; Ishiguro, N.; Kamachi, T.; Yoshizawa, K.; Sekizawa, O.; Uruga, T.; Tada, M. Formation and nitrile hydrogenation performance of Ru nanoparticles on a K-doped Al2O3 surface. Phys. Chem. Chem. Phys., 2015, 17(38), 24791-24802.
[http://dx.doi.org/10.1039/C5CP03456F] [PMID: 26344789]
[78]
Ortiz-Cervantes, C.; Iyañez, I.; García, J.J. Facile preparation of ruthenium nanoparticles with activity in hydrogenation of aliphatic and aromatic nitriles to amines. J. Phys. Org. Chem., 2012, 25, 902-907.
[http://dx.doi.org/10.1002/poc.2962]
[79]
Chatterjee, M.; Sato, M.; Kawanami, H.; Yokoyama, T.; Suzuki, T.; Ishizakaa, T. An efficient hydrogenation of dinitrile to aminonitrile in supercritical carbon dioxide. Adv. Synth. Catal., 2010, 352, 2394-2398.
[http://dx.doi.org/10.1002/adsc.201000514]
[80]
Liu, L.; Li, J.; Ai, Y.; Liu, Y.; Xiong, J.; Wang, H.; Qiao, Y.; Liu, W.; Tan, S.; Feng, S.; Wang, K. Sun; H.; Liang, Q. A ppm level Rh-based composite as an ecofriendly catalyst for transfer hydrogenation of nitriles: triple guarantee of selectivity for primary amines. Green Chem., 2019, 21, 1390-1395.
[http://dx.doi.org/10.1039/C8GC03595D]
[81]
Monguchi, Y.; Mizuno, M.; Ichikawa, T.; Fujita, Y.; Murakami, E.; Hattori, T.; Maegawa, T.; Sawama, Y.; Sajiki, H. Catalyst-dependent selective hydrogenation of nitriles: selective synthesis of tertiary and secondary amines. J. Org. Chem., 2017, 82(20), 10939-10944.
[http://dx.doi.org/10.1021/acs.joc.7b01823] [PMID: 28933155]
[82]
López-De Jesús, Y.M.; Johnson, C.E.; Monnier, J.R.; Williams, C.T. Selective hydrogenation of benzonitrile by alumina-supported Ir-Pd catalysts. Top. Catal., 2010, 53, 1132-1137.
[http://dx.doi.org/10.1007/s11244-010-9546-0]
[83]
Gőbölös, S.; Mahata, N.; Borbáth, I.; Hegedűs, M.; Margitfalvi, J.L. Hydrogenation of benzonitrile on Sn-Pt/SiO2 catalysts prepared by introducing SnEt4 to Pt/SiO2. Role Tin. React. Kinet. Catal. Lett., 2001, 74, 345-352.
[http://dx.doi.org/10.1023/A:1017957715767]
[84]
Sharma, S.K.; Lynch, J.; Sobolewska, A.M.; Plucinski, P.; Watson, R.J.; Williams, J.M.J. Pt/C catalysed direct reductive amination of nitriles with primary amines in a continuous flow multichannel microreactor. Catal. Sci. Technol., 2013, 3, 85-88.
[http://dx.doi.org/10.1039/C2CY20431B]
[85]
Aguirre, A.; Collins, S.E. Insight into the mechanism of acetonitrile hydrogenation in liquid phase on Pt/Al2O3 by ATR-FTIR. Catal. Today, 2019, 336, 22-32.
[http://dx.doi.org/10.1016/j.cattod.2019.04.027]
[86]
Poupin, C.; Maache, R.; Pirault-Roy, L.; Brahmi, R.; Williams, C.T. Effect of Al2O3/MgO molar ratio on catalytic performance of Pt/MgO-Al2O3 catalyst in acetonitrile hydrogenation followed by Fourier transform infrared spectroscopy. Appl. Catal. A Gen., 2014, 475, 363-370.
[http://dx.doi.org/10.1016/j.apcata.2014.01.041]
[87]
Saad, F.; Comparot, J.D.; Brahmi, R.; Bensitel, M.; Pirault-Roy, L. Influence of acid-base properties of the support on the catalytic performances of Pt-based catalysts in a gas-phase hydrogenation of acetonitrile. Appl. Catal. A Gen., 2017, 544, 1-9.
[http://dx.doi.org/10.1016/j.apcata.2017.06.038]
[88]
Li, T.; Bergner, I.; Haque, N.F.; Zimmer-De Iuliis, M.; Song, D.; Morris, R.H. Hydrogenation of benzonitrile to benzylamine catalyzed by ruthenium hydride complexes with P-NH-NH-P tetradentate ligands: evidence for a hydridic-protonic outer sphere mechanism. Organometallics, 2007, 26, 5940-5949.
[http://dx.doi.org/10.1021/om700783e]
[89]
Enthaler, S.; Junge, K.; Addis, D.; Erre, G.; Beller, M. A practical and benign synthesis of primary amines through ruthenium-catalyzed reduction of nitriles. ChemSusChem, 2008, 1(12), 1006-1010.
[http://dx.doi.org/10.1002/cssc.200800185] [PMID: 19034895]
[90]
Enthaler, S.; Addis, D.; Junge, K.; Erre, G.; Beller, M. A general and environmentally benign catalytic reduction of nitriles to primary amines. Chem. Eur. J., 2008, 14(31), 9491-9494.
[http://dx.doi.org/10.1002/chem.200801600] [PMID: 18816551]
[91]
Addis, D.; Enthaler, S.; Junge, K.; Wendt, B.; Beller, M. Ruthenium N-heterocyclic carbene catalysts for selective reduction of nitriles to primary amines. Tetrahedron Lett., 2009, 50, 3654-3656.
[http://dx.doi.org/10.1016/j.tetlet.2009.03.108]
[92]
Reguillo, R.; Grellier, M.; Vautravers, N.; Vendier, L.; Sabo-Etienne, S. Ruthenium-catalyzed hydrogenation of nitriles: insights into the mechanism. J. Am. Chem. Soc., 2010, 132(23), 7854-7855.
[http://dx.doi.org/10.1021/ja102759z] [PMID: 20481582]
[93]
Gunanathan, C.; Hölscher, M.; Leitner, W. Reduction of nitriles to amines with H2 catalyzed by nonclassical ruthenium hydrides-water-promoted selectivity for primary amines and mechanistic investigations. Eur. J. Inorg. Chem., 2011, 2011, 3381-3386.
[http://dx.doi.org/10.1002/ejic.201100392]
[94]
Miao, X.; Bidange, J.; Dixneuf, P.H.; Fischmeister, C. Bruneau. C.; Dubois, J-L.; Couturier. J-L. Ruthenium-benzylidenes and ruthenium-indenylidenes as efficient catalysts for the hydrogenation of aliphatic nitriles into primary amines. ChemCatChem, 2012, 4, 1911-1916.
[http://dx.doi.org/10.1002/cctc.201200511]
[95]
Werkmeister, S.; Bornschein, C.; Junge, K.; Beller, M. Selective ruthenium-catalyzed transfer hydrogenations of nitriles to amines with 2-butanol. Chem. Eur. J., 2013, 19(14), 4437-4440.
[http://dx.doi.org/10.1002/chem.201204633] [PMID: 23450803]
[96]
Werkmeister, S.; Bornschein, C.; Junge, K.; Beller, M. Ruthenium-catalyzed transfer hydrogenation of nitriles: Reduction and subsequent N-monoalkylation to secondary amines. Eur. J. Org. Chem., 2013, 2013, 3671-3674.
[http://dx.doi.org/10.1002/ejoc.201300151]
[97]
Werkmeister, S.; Junge, K.; Wendt, B.; Spannenberg, A.; Jiao, H.; Bornschein, C.; Beller, M. Ruthenium/Imidazolylphosphine catalysis: hydrogenation of aliphatic and aromatic nitriles to form amines. Chem. Eur. J., 2014, 20(15), 4227-4231.
[http://dx.doi.org/10.1002/chem.201303989] [PMID: 24615766]
[98]
Lu, Z.; Williams, T.J. A dual site catalyst for mild, selective nitrile reduction. Chem. Commun. (Camb.), 2014, 50(40), 5391-5393.
[http://dx.doi.org/10.1039/C3CC47384H] [PMID: 24409456]
[99]
Neumann, J.; Bronschein, C.; Jiao, H.; Junge, K.; Beller, M. Hydrogenation of aliphatic and aromatic nitriles using a defined ruthenium PNP pincer catalyst. Eur. J. Org. Chem., 2015, 27, 5944-5948.
[http://dx.doi.org/10.1002/ejoc.201501007]
[100]
Adam, R.; Bheeter, B.C.; Jackstell, R.; Beller, M. A mild and base-free protocol for the ruthenium catalyzed hydrogenation of aliphatic and aromatic nitriles with tridentate phosphine ligands. ChemCatChem, 2016, 8, 1329-1334.
[http://dx.doi.org/10.1002/cctc.201501367]
[101]
Alshakova, I.D.; Gabidullin, B.; Nikonov, G.I. Ru-catalyzed transfer hydrogenation of nitriles, aromatics, olefins, alkynes and esters. ChemCatChem, 2018, 10, 4860-4869.
[http://dx.doi.org/10.1002/cctc.201801039]
[102]
Mukherjee, A.; Srimani, D.; Chakraborty, S.; Ben-David, Y.; Milstein, D. Selective hydrogenation of nitriles to primary amines catalyzed by a cobalt pincer complex. J. Am. Chem. Soc., 2015, 137(28), 8888-8891.
[http://dx.doi.org/10.1021/jacs.5b04879] [PMID: 26131688]
[103]
Shao, Z.; Fu, S.; Wei, M.; Zhou, S.; Liu, Q. Mild and selective cobalt-catalyzed chemodivergent transfer hydrogenation of nitriles. Angew. Chem. Int. Ed. Engl., 2016, 55(47), 14653-14657.
[http://dx.doi.org/10.1002/anie.201608345] [PMID: 27782352]
[104]
Tokmic, K.; Jackson, B.J.; Salazar, A.; Woods, T.J.; Fout, A.R. Cobalt-catalyzed and lewis acid-assisted nitrile hydrogenation to primary amines: a combined effort. J. Am. Chem. Soc., 2017, 139(38), 13554-13561.
[http://dx.doi.org/10.1021/jacs.7b07368] [PMID: 28906106]
[105]
Adam, R.; Bheeter, C.B.; Cabrero-Antonino, J.R.; Junge, K.; Jackstell, R.; Beller, M. Selective hydrogenation of nitriles to primary amines using a new cobalt phosphine catalyst. ChemSusChem, 2017, 10(5), 842-846.
[http://dx.doi.org/10.1002/cssc.201601843] [PMID: 28066996]
[106]
Dai, H.; Guan, H. Switching the selectivity of cobalt-catalyzed hydrogenation of nitriles. ACS Catal., 2018, 8, 9125-9130.
[http://dx.doi.org/10.1021/acscatal.8b02645]
[107]
Schneekönig, J.; Tannert, B.; Hornke, H.; Beller, M.; Junge, K. Cobalt pincer complexes for catalytic reduction of nitriles to primary amines. Catal. Sci. Technol., 2019, 9, 1779-1783.
[http://dx.doi.org/10.1039/C9CY00225A]
[108]
Bornschein, C.; Werkmeister, S.; Wendt, B.; Jiao, H.; Alberico, E.; Baumann, W.; Junge, H.; Junge, K.; Beller, M. Mild and selective hydrogenation of aromatic and aliphatic (di)nitriles with a well-defined iron pincer complex. Nat. Commun., 2014, 5, 4111.
[http://dx.doi.org/10.1038/ncomms5111] [PMID: 24969371]
[109]
Lange, S.; Elangovan, S.; Cordes, C.; Spannenber, A.; Jiao, H.; Junge, H.; Bachmann, S.; Scalone, M.; Topf, C.; Junge, K.; Beller, M. Selective catalytic hydrogenation of nitriles to primary amines using iron pincer complexes. Catal. Sci. Technol., 2016, 6, 4768-4772.
[http://dx.doi.org/10.1039/C6CY00834H]
[110]
Chakraborty, S.; Leitus, G.; Milstein, D. Selective hydrogenation of nitriles to primary amines catalyzed by a novel iron complex. Chem. Commun. (Camb.), 2016, 52(9), 1812-1815.
[http://dx.doi.org/10.1039/C5CC08204H] [PMID: 26667062]
[111]
Chakraborty, S.; Milstein, D. Selective hydrogenation of nitriles to secondary imines catalyzed by an iron pincer complex. ACS Catal., 2017, 7, 3968-3972.
[http://dx.doi.org/10.1021/acscatal.7b00906]
[112]
Elangovan, S.; Topf, C.; Fischer, S.; Jiao, H.; Spannenberg, A.; Baumann, W.; Ludwig, R.; Junge, K.; Beller, M. Selective catalytic hydrogenations of nitriles, ketones, and aldehydes by well-defined manganese pincer complexes. J. Am. Chem. Soc., 2016, 138(28), 8809-8814.
[http://dx.doi.org/10.1021/jacs.6b03709] [PMID: 27219853]
[113]
Weber, S.; Stöger, B.; Kirchner, K. Hydrogenation of nitriles and ketones catalyzed by an air-stable bisphosphine Mn(I) complex. Org. Lett., 2018, 20(22), 7212-7215.
[http://dx.doi.org/10.1021/acs.orglett.8b03132] [PMID: 30398883]
[114]
Garduño, J.A.; García, J.J. Non-pincer Mn(I) organometallics for the selective catalytic hydrogenation of nitriles to primary amines. ACS Catal., 2019, 9, 392-401.
[http://dx.doi.org/10.1021/acscatal.8b03899]
[115]
Xie, X.; Liotta, C.L.; Eckert, C.A. CO2-protected amine formation from nitrile and imine hydrogenation in gas-expanded liquids. Ind. Eng. Chem. Res., 2004, 43, 7907-7911.
[http://dx.doi.org/10.1021/ie0498201]
[116]
Nait Ajjou, A.; Robichaud, A. Chemoselective hydrogenation of nitriles to primary amines catalyzed by water-soluble transition metal catalysts. Appl. Organomet. Chem, 2018, 32, e4481.
[http://dx.doi.org/10.1002/aoc.4481]
[117]
Zerecero-Silva, P.; Jimenez-Solar, I.; Crestani, G.M.; Arévalo, A.; Barrios-Francisco, R.; García, J.J. Catalytic hydrogenation of aromatic nitriles and dinitriles with nickel compounds. Appl. Catal. A Gen., 2009, 363, 230-234.
[http://dx.doi.org/10.1016/j.apcata.2009.05.027]
[118]
Garduño, J.A.; García, J.J. Nickel-catalyzed transfer hydrogenation of benzonitriles with 2-propanol and 1,4-butanediol as the hydrogen Source. ACS Omega, 2017, 2(5), 2337-2343.
[http://dx.doi.org/10.1021/acsomega.7b00545] [PMID: 31457582]
[119]
Islas, R.E.; García, J.J. Nickel-catalyzed hydrophosphonylation and hydrogenation of aromatic nitriles assisted by Lewis acid. ChemCatChem, 2019, 11, 1337-1345.
[http://dx.doi.org/10.1002/cctc.201801989]
[120]
Rajesh, K.; Dudle, B.; Blacque, O.; Berke, H. Homogeneous hydrogenations of nitriles catalyzed by rhenium complexes. Adv. Synth. Catal., 2011, 353, 1479-1484.
[http://dx.doi.org/10.1002/adsc.201000867]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 23
ISSUE: 18
Year: 2019
Page: [1881 - 1900]
Pages: 20
DOI: 10.2174/1385272823666191007160341

Article Metrics

PDF: 35
HTML: 8