Oral Delivery of Anticancer Agents Using Nanoparticulate Drug Delivery System

Author(s): Prateek Mathur, Shruti Rawal, Bhoomika Patel, Mayur M. Patel*.

Journal Name: Current Drug Metabolism

Volume 20 , Issue 14 , 2019


Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Conventionally, anti-cancer agents were administered through the intravenous route. The major drawbacks associated with the intravenous route of administration are: severe side effects, need of hospitalization, nursing care, and palliative treatment. In order to overcome the drawbacks associated with the intravenous route of administration, oral delivery of anti-cancer agents has gained tremendous interest among the scientific fraternity. Oral delivery of anti-cancer agents principally leads to a reduction in the overall cost of treatment, and aids in improving the quality of life of patients. Bioavailability of drugs and inter-subject variability are the major concerns with oral administration of anti-cancer agents. Factors viz. physicochemical and biological barriers (pre-systemic metabolism and transmembrane efflux of the drug) are accountable for hampering oral bioavailability of anti-cancer agents can be efficiently overcome by employing nanocarrier based drug delivery systems. Oral delivery of anticancer agents by employing these drug delivery systems will not only improve the quality of life of patients but will also provide pharmacoeconomic advantage and lead to a reduction in the overall cost of treatment of life-threatening disease like cancer.

Objective: This article aims to familiarize the readers with some of the recent advancements in the field of nanobased drug delivery systems for oral delivery of anticancer agents.

Conclusion: Advancement in the field of nanotechnology-based drug delivery systems has opened up gateways for the delivery of drugs that are difficult to administer orally. Oral delivery of anti-cancer agents by these drug delivery systems will not only improve the quality of life of patients but will also provide pharmacoeconomic advantage and lead to a reduction in the overall cost of treatment of life-threatening disease like cancer.

Keywords: Hepatic metabolism, cytochrome P450, P-gp efflux, chemotherapy, oral delivery, nanocarriers.

[1]
Fitch, K.; Iwasaki, K.; Pyenson, B. Parity for oral and intravenous injected cancer drugs; Milliman Rep: New York, 2010.
[2]
Mazzaferro, S.; Bouchemal, K.; Ponchel, G. Oral delivery of anticancer drugs I: general considerations. Drug Discov. Today, 2013, 18(1-2), 25-34.
[http://dx.doi.org/10.1016/j.drudis.2012.08.004] [PMID: 22951365]
[3]
Thanki, K.; Gangwal, R.P.; Sangamwar, A.T.; Jain, S. Oral delivery of anticancer drugs: challenges and opportunities. J. Control. Release, 2013, 170(1), 15-40.
[http://dx.doi.org/10.1016/j.jconrel.2013.04.020] [PMID: 23648832]
[4]
Wojtacki, J. Wiraszka; Rolka-Stempniewicz, G.; Grzegorczyk, M. Breast cancer patient’s preferences for oral versus intravenous second-line anticancer therapy. Eur. J. Cancer, 2006, 4(2), 159-160.
[5]
Peltier, S.; Oger, J.M.; Lagarce, F.; Couet, W.; Benoît, J.P. Enhanced oral paclitaxel bioavailability after administration of paclitaxel-loaded lipid nanocapsules. Pharm. Res., 2006, 23(6), 1243-1250.
[http://dx.doi.org/10.1007/s11095-006-0022-2] [PMID: 16715372]
[6]
Kuppens, I.E.; Bosch, T.M.; van Maanen, M.J.; Rosing, H.; Fitzpatrick, A.; Beijnen, J.H.; Schellens, J.H.M. Oral bioavailability of docetaxel in combination with OC144-093 (ONT-093). Cancer Chemother. Pharmacol., 2005, 55(1), 72-78.
[http://dx.doi.org/10.1007/s00280-004-0864-4] [PMID: 15316750]
[7]
Troutman, M.D.; Thakker, D.R. Novel experimental parameters to quantify the modulation of absorptive and secretory transport of compounds by P-glycoprotein in cell culture models of intestinal epithelium. Pharm. Res., 2003, 20(8), 1210-1224.
[http://dx.doi.org/10.1023/A:1025001131513] [PMID: 12948019]
[8]
Shin, S.C.; Choi, J.S.; Li, X. Enhanced bioavailability of tamoxifen after oral administration of tamoxifen with quercetin in rats. Int. J. Pharm., 2006, 313(1-2), 144-149.
[http://dx.doi.org/10.1016/j.ijpharm.2006.01.028] [PMID: 16516418]
[9]
Lu, Y.; Mahato, R.I. Pharmaceutical Perspectives of Cancer Therapeutics; Springer: New York, 2009.
[http://dx.doi.org/10.1007/978-1-4419-0131-6 ]
[10]
Bhardwaj, V.; Ankola, D.D.; Gupta, S.C.; Schneider, M.; Lehr, C.M.; Kumar, M.N.V.R. PLGA nanoparticles stabilized with cationic surfactant: safety studies and application in oral delivery of paclitaxel to treat chemical-induced breast cancer in rat. Pharm. Res., 2009, 26(11), 2495-2503.
[http://dx.doi.org/10.1007/s11095-009-9965-4] [PMID: 19756974]
[11]
van Asperen, J.; van Tellingen, O.; van der Valk, M.A.; Rozenhart, M.; Beijnen, J.H. Enhanced oral absorption and decreased elimination of paclitaxel in mice cotreated with cyclosporin A. Clin. Cancer Res., 1998, 4(10), 2293-2297.
[PMID: 9796957]
[12]
Gore, M.; Oza, A.; Rustin, G.; Malfetano, J.; Calvert, H.; Clarke-Pearson, D.; Carmichael, J.; Ross, G.; Beckman, R.A.; Fields, S.Z. A randomised trial of oral versus intravenous topotecan in patients with relapsed epithelial ovarian cancer. Eur. J. Cancer, 2002, 38(1), 57-63.
[http://dx.doi.org/10.1016/S0959-8049(01)00188-5] [PMID: 11750840]
[13]
von Pawel, J.; Gatzemeier, U.; Pujol, J.L.; Moreau, L.; Bildat, S.; Ranson, M.; Richardson, G.; Steppert, C.; Rivière, A.; Camlett, I.; Lane, S.; Ross, G. Phase II comparator study of oral versus intravenous topotecan in patients with chemosensitive small-cell lung cancer. J. Clin. Oncol., 2001, 19(6), 1743-1749.
[http://dx.doi.org/10.1200/JCO.2001.19.6.1743] [PMID: 11251005]
[14]
Urien, S.; Brain, E.; Bugat, R.; Pivot, X.; Lochon, I.; Van, M.L.; Vauzelle, F.; Lokiec, F. Pharmacokinetics of platinum after oral or intravenous cisplatin: a phase 1 study in 32 adult patients. Cancer Chemother. Pharmacol., 2005, 55(1), 55-60.
[http://dx.doi.org/10.1007/s00280-004-0852-8] [PMID: 15258698]
[15]
Lipinski, C.A. Drug-like properties and the causes of poor solubility and poor permeability. J. Pharmacol. Toxicol. Methods, 2000, 44(1), 235-249.
[http://dx.doi.org/10.1016/S1056-8719(00)00107-6] [PMID: 11274893]
[16]
Brouwers, J.; Brewster, M.E.; Augustijns, P. Supersaturating drug delivery systems: the answer to solubility-limited oral bioavailability? J. Pharm. Sci., 2009, 98(8), 2549-2572.
[http://dx.doi.org/10.1002/jps.21650] [PMID: 19373886]
[17]
Sugano, K. Fraction of a dose absorbed estimation for structurally diverse low solubility compounds. Int. J. Pharm., 2011, 405(1-2), 79-89.
[http://dx.doi.org/10.1016/j.ijpharm.2010.11.049] [PMID: 21134428]
[18]
Varma, M.V.; Panchagnula, R. Prediction of in vivo intestinal absorption enhancement on P-glycoprotein inhibition, from rat in situ permeability. J. Pharm. Sci., 2005, 94(8), 1694-1704.
[http://dx.doi.org/10.1002/jps.20309] [PMID: 15986467]
[19]
Yee, S. In vitro permeability across Caco-2 cells (colonic) can predict in vivo (small intestinal) absorption in man-fact or myth. Pharm. Res., 1997, 14(6), 763-766.
[http://dx.doi.org/10.1023/A:1012102522787] [PMID: 9210194]
[20]
Brunton, L.L.; Lazo, J.S.; Parker, K.L. Goodman & Gilman’s The Pharmacological Basis of Therapeutics, 11th ed; McGraw-Hill Publishers: New York, 2006.
[21]
Hunter, J.; Hirst, B.H. Intestinal secretion of drugs: the role of p-glycoprotein and related drug efflux systems in limiting oral drug absorption. Adv. Drug Deliv. Rev., 1997, 25(2-3), 129-157.
[http://dx.doi.org/10.1016/S0169-409X(97)00497-3] [PMID: 10837555]
[22]
Breedveld, P.; Beijnen, J.H.; Schellens, J.H.M. Use of P-glycoprotein and BCRP inhibitors to improve oral bioavailability and CNS penetration of anticancer drugs. Trends Pharmacol. Sci., 2006, 27(1), 17-24.
[http://dx.doi.org/10.1016/j.tips.2005.11.009] [PMID: 16337012]
[23]
Hu, M.; Li, X. Oral Bioavailability: Basic Principles Advanced Concepts, and Applications; John Wiley & Sons: New Jersey, 2011.
[http://dx.doi.org/10.1002/9781118067598 ]
[24]
Fromm, M.F. Importance of P-glycoprotein at blood-tissue barriers. Trends Pharmacol. Sci., 2004, 25(8), 423-429.
[http://dx.doi.org/10.1016/j.tips.2004.06.002] [PMID: 15276711]
[25]
Ambudkar, S.V.; Ramachandra, M.; Cardarelli, C.O.; Pastan, I.; Gottesman, M.M. Modulation of human P-glycoprotein ATPase activity by interaction between overlapping substrate-binding sites. Proceedings Ann. Meet, Am. Assoc. Cancer Res., 1996.
[26]
Varma, M.V.S.; Ashokraj, Y.; Dey, C.S.; Panchagnula, R. P-glycoprotein inhibitors and their screening: a perspective from bioavailability enhancement. Pharmacol. Res., 2003, 48(4), 347-359.
[http://dx.doi.org/10.1016/S1043-6618(03)00158-0] [PMID: 12902205]
[27]
Sauna, Z.E.; Smith, M.M.; Müller, M.; Kerr, K.M.; Ambudkar, S.V. The mechanism of action of multidrug-resistance-linked P-glycoprotein. J. Bioenerg. Biomembr., 2001, 33(6), 481-491.
[http://dx.doi.org/10.1023/A:1012875105006] [PMID: 11804190]
[28]
Sparreboom, A.; van Asperen, J.; Mayer, U.; Schinkel, A.H.; Smit, J.W.; Meijer, D.K.; Borst, P.; Nooijen, W.J.; Beijnen, J.H.; van Tellingen, O. Limited oral bioavailability and active epithelial excretion of paclitaxel (Taxol) caused by P-glycoprotein in the intestine. Proc. Natl. Acad. Sci. USA, 1997, 94(5), 2031-2035.
[http://dx.doi.org/10.1073/pnas.94.5.2031] [PMID: 9050899]
[29]
Wu, C.Y.; Benet, L.Z.; Hebert, M.F.; Gupta, S.K.; Rowland, M.; Gomez, D.Y.; Wacher, V.J. Differentiation of absorption and first-pass gut and hepatic metabolism in humans: studies with cyclosporine. Clin. Pharmacol. Ther., 1995, 58(5), 492-497.
[http://dx.doi.org/10.1016/0009-9236(95)90168-X] [PMID: 7586942]
[30]
Singh, B.N.; Kim, K.H. Drug delivery: oral route. In: Encyclopedia of Pharmaceutical Technology; Swarbrick, J., Ed.; Informa Healthcare: New York, 2007, pp. 1242-1265.
[31]
Barthe, L.; Woodley, J.; Houin, G. Gastrointestinal absorption of drugs: methods and studies. Fundam. Clin. Pharmacol., 1999, 13(2), 154-168.
[http://dx.doi.org/10.1111/j.1472-8206.1999.tb00334.x] [PMID: 10226759]
[32]
Shen, D.D.; Kunze, K.L.; Thummel, K.E. Enzyme-catalyzed processes of first-pass hepatic and intestinal drug extraction. Adv. Drug Deliv. Rev., 1997, 27(2-3), 99-127.
[http://dx.doi.org/10.1016/S0169-409X(97)00039-2] [PMID: 10837554]
[33]
Tabata, T.; Katoh, M.; Tokudome, S.; Nakajima, M.; Yokoi, T. Identification of the cytosolic carboxylesterase catalyzing the 5′-deoxy-5-fluorocytidine formation from capecitabine in human liver. Drug Metab. Dispos., 2004, 32(10), 1103-1110.
[http://dx.doi.org/10.1124/dmd.104.000554] [PMID: 15269188]
[34]
Brunton, L.L.; Lazo, J.S.; Parker, K.L. Goodman & Gilman’s The Pharmacological Basis of Therapeutics; McGraw-Hill Publishers: New York, 2006.
[35]
Mouly, S.; Paine, M.F. P-glycoprotein increases from proximal to distal regions of human small intestine. Pharm. Res., 2003, 20(10), 1595-1599.
[http://dx.doi.org/10.1023/A:1026183200740] [PMID: 14620513]
[36]
Mazzaferro, S.; Bouchemal, K.; Ponchel, G. Oral delivery of anticancer drugs III: formulation using drug delivery systems. Drug Discov. Today, 2013, 18(1-2), 99-104.
[http://dx.doi.org/10.1016/j.drudis.2012.08.007] [PMID: 22981667]
[37]
Agüeros, M.; Ruiz-Gatón, L.; Vauthier, C.; Bouchemal, K.; Espuelas, S.; Ponchel, G.; Irache, J.M. Combined hydroxypropyl-beta-cyclodextrin and poly(anhydride) nanoparticles improve the oral permeability of paclitaxel. Eur. J. Pharm. Sci., 2009, 38(4), 405-413.
[http://dx.doi.org/10.1016/j.ejps.2009.09.010] [PMID: 19765652]
[38]
Kola Srinivas, N.S.; Verma, R.; Pai Kulyadi, G.; Kumar, L. A quality by design approach on polymeric nanocarrier delivery of gefitinib: formulation, in vitro and in vivo characterization. Int. J. Nanomedicine, 2016, 12, 15-28.
[http://dx.doi.org/10.2147/IJN.S122729] [PMID: 28031710]
[39]
Katiyar, S.S.; Muntimadugu, E.; Rafeeqi, T.A.; Domb, A.J.; Khan, W. Co-delivery of rapamycin- and piperine-loaded polymeric nanoparticles for breast cancer treatment. Drug Deliv., 2016, 23(7), 2608-2616.
[PMID: 26036652]
[40]
Yin, J.; Xiang, C.; Song, X. Nanoencapsulation of psoralidin via chitosan and Eudragit S100 for enhancement of oral bioavailability. Int. J. Pharm., 2016, 510(1), 203-209.
[http://dx.doi.org/10.1016/j.ijpharm.2016.05.007] [PMID: 27154253]
[41]
Zhang, Y.; Zhu, W.; Zhang, H.; Han, J.; Zhang, L.; Lin, Q.; Ai, F. Carboxymethyl chitosan/phospholipid bilayer-capped mesoporous carbon nanoparticles with pH-responsive and prolonged release properties for oral delivery of the antitumor drug, Docetaxel. Int. J. Pharm., 2017, 532(1), 384-392.
[http://dx.doi.org/10.1016/j.ijpharm.2017.09.023] [PMID: 28903067]
[42]
Li, X.; Yang, Y.; Jia, Y.; Pu, X.; Yang, T.; Wang, Y.; Ma, X.; Chen, Q.; Sun, M.; Wei, D.; Kuang, Y.; Li, Y.; Liu, Y. Enhanced tumor targeting effects of a novel paclitaxel-loaded polymer: PEG-PCCL-modified magnetic iron oxide nanoparticles. Drug Deliv., 2017, 24(1), 1284-1294.
[http://dx.doi.org/10.1080/10717544.2017.1373167] [PMID: 28891337]
[43]
Wang, Q.; Li, C.; Ren, T.; Chen, S.; Ye, X.; Guo, H.; He, H.; Zhang, Y.; Yin, T.; Liang, X.J.; Tang, X. Poly(vinyl methyl ether/maleic anhydride) doped PEG-PLA nanoparticles for oral paclitaxel delivery to improve bioadhesive efficiency. Mol. Pharm., 2017, 14(10), 3598-3608.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b00612] [PMID: 28892400]
[44]
Li, X.; Hou, X.; Ding, W.; Cong, S.; Zhang, Y.; Chen, M.; Meng, Y.; Lei, J.; Liu, Y.; Li, G. Sirolimus-loaded polymeric micelles with honokiol for oral delivery. J. Pharm. Pharmacol., 2015, 67(12), 1663-1672.
[http://dx.doi.org/10.1111/jphp.12482] [PMID: 26454249]
[45]
Wang, Y.; Chen, L.; Tan, L.; Zhao, Q.; Luo, F.; Wei, Y.; Qian, Z. PEG-PCL based micelle hydrogels as oral docetaxel delivery systems for breast cancer therapy. Biomaterials, 2014, 35(25), 6972-6985.
[http://dx.doi.org/10.1016/j.biomaterials.2014.04.099] [PMID: 24836952]
[46]
Guo, X.; Chen, C.; Liu, X.; Hou, P.; Guo, X.; Ding, F.; Wang, Z.; Hu, Y.; Li, Z.; Zhang, Z. High oral bioavailability of 2-methoxyestradiol in PEG-PLGA micelles-microspheres for cancer therapy. Eur. J. Pharm. Biopharm., 2017, 117, 116-122.
[http://dx.doi.org/10.1016/j.ejpb.2017.04.003] [PMID: 28396280]
[47]
Chen, X.; Chen, J.; Li, B.; Yang, X.; Zeng, R.; Liu, Y.; Li, T.; Ho, R.J.Y.; Shao, J. PLGA-PEG-PLGA triblock copolymeric micelles as oral drug delivery system: in vitro drug release and we pharmacokinetics assessment. J. Colloid Interface Sci., 2017, 490, 542-552.
[http://dx.doi.org/10.1016/j.jcis.2016.11.089] [PMID: 27923139]
[48]
Silva, D.S.; Almeida, A.; Prezotti, F.; Cury, B.; Campana-Filho, S.P.; Sarmento, B. Synthesis and characterization of 3,6-O,O′- dimyristoyl chitosan micelles for oral delivery of paclitaxel. Colloids Surf. B Biointerfaces, 2017, 152, 220-228.
[http://dx.doi.org/10.1016/j.colsurfb.2017.01.029] [PMID: 28113124]
[49]
Shukla, M.; Jaiswal, S.; Sharma, A.; Srivastava, P.K.; Arya, A.; Dwivedi, A.K.; Lal, J. A combination of complexation and self-nanoemulsifying drug delivery system for enhancing oral bioavailability and anticancer efficacy of curcumin. Drug Dev. Ind. Pharm., 2017, 43(5), 847-861.
[http://dx.doi.org/10.1080/03639045.2016.1239732] [PMID: 27648633]
[50]
Sandhu, P.S.; Beg, S.; Mehta, F.; Singh, B.; Trivedi, P. Novel dietary lipid-based self-nanoemulsifying drug delivery systems of paclitaxel with p-gp inhibitor: implications on cytotoxicity and biopharmaceutical performance. Expert Opin. Drug Deliv., 2015, 12(11), 1809-1822.
[http://dx.doi.org/10.1517/17425247.2015.1060219] [PMID: 26144859]
[51]
Shehata, E.M.; Elnaggar, Y.S.; Galal, S.; Abdallah, O.Y. Self-emulsifying phospholipid pre-concentrates (SEPPs) for improved oral delivery of the anti-cancer genistein: development, appraisal and ex-vivo intestinal permeation. Int. J. Pharm., 2016, 511(2), 745-756.
[http://dx.doi.org/10.1016/j.ijpharm.2016.07.078] [PMID: 27492016]
[52]
Valicherla, G.R.; Dave, K.M.; Syed, A.A.; Riyazuddin, M.; Gupta, A.P.; Singh, A. Wahajuddin; Mitra, K.; Datta, D.; Gayen, J.R. Formulation optimization of docetaxel loaded self-emulsifying drug delivery system to enhance bioavailability and anti-tumor activity. Sci. Rep., 2016, 6, 26895.
[http://dx.doi.org/10.1038/srep26895] [PMID: 27241877]
[53]
Dhaundiyal, A.; Jena, S.K.; Samal, S.K.; Sonvane, B.; Chand, M.; Sangamwar, A.T. Alpha-lipoic acid-stearylamine conjugate-based solid lipid nanoparticles for tamoxifen delivery: formulation, optimization, in-vivo pharmacokinetic and hepatotoxicity study. J. Pharm. Pharmacol., 2016, 68(12), 1535-1550.
[http://dx.doi.org/10.1111/jphp.12644] [PMID: 27709612]
[54]
Pooja, D.; Kulhari, H.; Kuncha, M.; Rachamalla, S.S.; Adams, D.J.; Bansal, V.; Sistla, R. Improving efficacy, oral bioavailability, and delivery of paclitaxel using protein-grafted solid lipid nanoparticles. Mol. Pharm., 2016, 13(11), 3903-3912.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b00691] [PMID: 27696858]
[55]
Liu, B.; He, D.; Wu, J.; Sun, Q.; Zhang, M.; Tan, Q.; Li, Y.; Zhang, J. Catan-ionic hybrid lipidic nano-carriers for enhanced bioavailability and anti-tumor efficacy of chemodrugs. Oncotarget, 2017, 8(19), 30922-30932.
[http://dx.doi.org/10.18632/oncotarget.15942] [PMID: 28427235]
[56]
Feng, H.; Zhu, Y.; Fu, Z.; Li, D. Preparation, characterization, and in vivo study of rhein solid lipid nanoparticles for oral delivery. Chem. Biol. Drug Des., 2017, 90(5), 867-872.
[http://dx.doi.org/10.1111/cbdd.13007] [PMID: 28432812]
[57]
Baek, J.S.; Cho, C.W. Surface modification of solid lipid nanoparticles for oral delivery of curcumin: improvement of bioavailability through enhanced cellular uptake, and lymphatic uptake. Eur. J. Pharm. Biopharm., 2017, 117, 132-140.
[http://dx.doi.org/10.1016/j.ejpb.2017.04.013] [PMID: 28412471]
[58]
Ling, G.; Zhang, T.; Zhang, P.; Sun, J.; He, Z. Nanostructured lipid-carrageenan hybrid carriers (NLCCs) for controlled delivery of mitoxantrone hydrochloride to enhance anticancer activity bypassing the BCRP-mediated efflux. Drug Dev. Ind. Pharm., 2016, 42(8), 1351-1359.
[http://dx.doi.org/10.3109/03639045.2015.1135937] [PMID: 26754913]
[59]
Tran, T.H.; Chu, D.T.; Truong, D.H.; Tak, J.W.; Jeong, J.H.; Hoang, V.L.; Yong, C.S.; Kim, J.O. Development of lipid nanoparticles for a histone deacetylases inhibitor as a promising anticancer therapeutic. Drug Deliv., 2016, 23(4), 1335-1343.
[PMID: 25547270]
[60]
Gao, X.; Zhang, J.; Xu, Q.; Huang, Z.; Wang, Y.; Shen, Q. Hyaluronic acid-coated cationic nanostructured lipid carriers for oral vincristine sulfate delivery. Drug Dev. Ind. Pharm., 2017, 43(4), 661-667.
[http://dx.doi.org/10.1080/03639045.2016.1275671] [PMID: 28043185]
[61]
Singh, A.; Neupane, Y.R.; Panda, B.P.; Kohli, K. Lipid Based nanoformulation of lycopene improves oral delivery: formulation optimization, ex vivo assessment and its efficacy against breast cancer. J. Microencapsul., 2017, 34(4), 416-429.
[http://dx.doi.org/10.1080/02652048.2017.1340355] [PMID: 28595495]
[62]
Tian, C.; Asghar, S.; Wu, Y.; Kambere Amerigos, D.; Chen, Z.; Zhang, M.; Yin, L.; Huang, L.; Ping, Q.; Xiao, Y. N-acetyl-L-cysteine functionalized nanostructured lipid carrier for improving oral bioavailability of curcumin: preparation, in vitro and in vivo evaluations. Drug Deliv., 2017, 24(1), 1605-1616.
[http://dx.doi.org/10.1080/10717544.2017.1391890] [PMID: 29063815]
[63]
Ke, W.; Zhao, Y.; Huang, R.; Jiang, C.; Pei, Y. Enhanced oral bioavailability of doxorubicin in a dendrimer drug delivery system. J. Pharm. Sci., 2008, 97(6), 2208-2216.
[http://dx.doi.org/10.1002/jps.21155] [PMID: 17879294]
[64]
Kolhatkar, R.B.; Swaan, P.; Ghandehari, H. Potential oral delivery of 7-ethyl-10-hydroxy-camptothecin (SN-38) using poly (amidoamine) dendrimers. Pharm. Res., 2008, 25(7), 1723-1729.
[http://dx.doi.org/10.1007/s11095-008-9572-9] [PMID: 18438703]


Rights & PermissionsPrintExport Cite as


Article Details

VOLUME: 20
ISSUE: 14
Year: 2019
Page: [1132 - 1140]
Pages: 9
DOI: 10.2174/1389200220666191007154017
Price: $58

Article Metrics

PDF: 24
HTML: 4