Arecoline Increases the Production of Nitric Oxide and Post-Translational S-Nitrosoproteome in Endothelial Cells

Author(s): Chien-Yi Wu, Wun-Rong Lin, Cherng-Jye Jeng, Chien-Hsing Wu, Bin Huang*.

Journal Name: Current Proteomics

Volume 17 , Issue 3 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Arecoline is known as a carcinogenic toxicant. The refreshment effect of arecoline is mainly due to the increase in vasodilation and blood flow. This is essential to understand whether arecoline can induce the production of Nitric Oxide (NO•) and regulate the subsequent protein S-nitrosylation in Endothelial Cells (ECs).

Objective: The present study is focused on the promotion effect of arecoline in NO• production and the subsequent regulation of S-nitrosoproteome.

Methods: The phosphorylation of endothelial nitric oxide synthase serine 1177 residue (peNOSSer1177) was investigated by western blot. By using a specific FA-OMe fluorescent probe, the NO• molecules could be observed by fluorescent microscopy or flow cytometry. S-nitrosylated proteins were purified by biotin switch and then subjected to the Isobaric Tag for Relative and Absolute Quantitation (iTRAQ)-labeled shotgun proteomic analysis.

Results: Our study reveals that a lower concentration of arecoline can increase the phosphorylation of peNOSSer1177. Pretreatment of NG-nitro-L-arginine methyl ester (L-NAME) indicated that arecolineinduced NO• production was mediated by e-NOS. We identified 224 proteins with up-regulated S-nitrosylation and 159 proteins with down-regulated S-nitrosylation. The NO• binding sites of seven representative S-nitrosoproteins were illustrated. The effect of arecoline on the S-nitrosylation of HSP60 chaperonin and calnexin was verified.

Conclusion: Our experimental results proved that a lower concentration of arecoline could modulate the production of NO• and the subsequent protein S-nitrosylation. Therefore, it is worthy for further investigation and discussion if these S-nitrosoproteomes are important in maintaining endothelium homeostasis.

Keywords: Arecoline, nitric oxide, S-nitrosylation, iTRAQ, proteomics, endothelial cells.

[1]
Gupta, P.C.; Ray, C.S. Epidemiology of betel quid usage. Ann. Acad. Med. Singapore, 2004, 33(4)(Suppl.), 31-36.
[PMID: 15389304]
[2]
Javed, F.; Bello Correra, F.O.; Chotai, M.; Tappuni, A.R.; Almas, K. Systemic conditions associated with areca nut usage: a literature review. Scand. J. Public Health, 2010, 38(8), 838-844.
[http://dx.doi.org/10.1177/1403494810379291] [PMID: 20688790]
[3]
Ullah, M.; Cox, S.; Kelly, E.; Boadle, R.; Zoellner, H. Arecoline is cytotoxic for human endothelial cells. J. Oral Pathol. Med., 2014, 43(10), 761-769.
[http://dx.doi.org/10.1111/jop.12186] [PMID: 24761785]
[4]
Garg, A.; Chaturvedi, P.; Gupta, P.C. A review of the systemic adverse effects of areca nut or betel nut. Indian J. Med. Paediatr. Oncol., 2014, 35(1), 3-9.
[http://dx.doi.org/10.4103/0971-5851.133702] [PMID: 25006276]
[5]
Huang, B.; Cheng, J.K.; Wu, C.Y.; Chen, P.H.; Tu, P.S.; Fu, Y.S.; Wu, C.H. Camptothecin promotes the production of nitric oxide that triggers subsequent S-nitrosoproteome-mediated signaling cascades in endothelial cells. Vascul. Pharmacol., 2017, 90, 27-35.
[http://dx.doi.org/10.1016/j.vph.2015.07.014] [PMID: 26239883]
[6]
Chang, M.C.; Ho, Y.S.; Lee, P.H.; Chan, C.P.; Lee, J.J.; Hahn, L.J.; Wang, Y.J.; Jeng, J.H. Areca nut extract and arecoline induced the cell cycle arrest but not apoptosis of cultured oral KB epithelial cells: association of glutathione, reactive oxygen species and mitochondrial membrane potential. Carcinogenesis, 2001, 22(9), 1527-1535.
[http://dx.doi.org/10.1093/carcin/22.9.1527] [PMID: 11532876]
[7]
Neill, S.; Bright, J.; Desikan, R.; Hancock, J.; Harrison, J.; Wilson, I. Nitric oxide evolution and perception. J. Exp. Bot., 2008, 59(1), 25-35.
[http://dx.doi.org/10.1093/jxb/erm218] [PMID: 17975211]
[8]
Liu, L.; Yan, Y.; Zeng, M.; Zhang, J.; Hanes, M.A.; Ahearn, G.; McMahon, T.J.; Dickfeld, T.; Marshall, H.E.; Que, L.G.; Stamler, J.S. Essential roles of S-nitrosothiols in vascular homeostasis and endotoxic shock. Cell, 2004, 116(4), 617-628.
[http://dx.doi.org/10.1016/S0092-8674(04)00131-X] [PMID: 14980227]
[9]
Hare, J.M.; Stamler, J.S. NO/redox disequilibrium in the failing heart and cardiovascular system. J. Clin. Invest., 2005, 115(3), 509-517.
[http://dx.doi.org/10.1172/JCI200524459] [PMID: 15765132]
[10]
Stamler, J.S. S-nitrosothiols in the blood: roles, amounts, and methods of analysis. Circ. Res., 2004, 94(4), 414-417.
[http://dx.doi.org/10.1161/01.RES.0000122071.55721.BC] [PMID: 15001539]
[11]
Huang, B.; Chen, S.C.; Wang, D.L. Shear flow increases S-nitrosylation of proteins in endothelial cells. Cardiovasc. Res., 2009, 83(3), 536-546.
[http://dx.doi.org/10.1093/cvr/cvp154] [PMID: 19447776]
[12]
Kuo, F.C.; Wu, D.C.; Yuan, S.S.; Hsiao, K.M.; Wang, Y.Y.; Yang, Y.C.; Lo, Y.C. Effects of arecoline in relaxing human umbilical vessels and inhibiting endothelial cell growth. J. Perinat. Med., 2005, 33(5), 399-405.
[http://dx.doi.org/10.1515/JPM.2005.072] [PMID: 16238534]
[13]
Shiue, T.W.; Chen, Y.H.; Wu, C.M.; Singh, G.; Chen, H.Y.; Hung, C.H.; Liaw, W.F.; Wang, Y.M. Nitric oxide turn-on fluorescent probe based on deamination of aromatic primary monoamines. Inorg. Chem., 2012, 51(9), 5400-5408.
[http://dx.doi.org/10.1021/ic300379u] [PMID: 22486484]
[14]
Jaffrey, S.R.; Snyder, S.H. The biotin switch method for the detection of S-nitrosylated proteins. Sci. STKE, 2001, 2001(86), l1.
[PMID: 11752655]
[15]
Wiese, S.; Reidegeld, K.A.; Meyer, H.E.; Warscheid, B. Protein labeling by iTRAQ: a new tool for quantitative mass spectrometry in proteome research. Proteomics, 2007, 7(3), 340-350.
[http://dx.doi.org/10.1002/pmic.200600422] [PMID: 17177251]
[16]
de Souza, P.; Guarido, K.L.; Scheschowitsch, K.; da Silva, L.M.; Werner, M.F.; Assreuy, J.; da Silva-Santos, J.E. Impaired vascular function in sepsis-surviving rats mediated by oxidative stress and Rho-Kinase pathway. Redox Biol., 2016, 10, 140-147.
[http://dx.doi.org/10.1016/j.redox.2016.09.016] [PMID: 27744119]
[17]
Bryan, N.S.; Grisham, M.B. Methods to detect nitric oxide and its metabolites in biological samples. Free Radic. Biol. Med., 2007, 43(5), 645-657.
[http://dx.doi.org/10.1016/j.freeradbiomed.2007.04.026] [PMID: 17664129]
[18]
Ranford, J.C.; Coates, A.R.; Henderson, B. Chaperonins are cell-signalling proteins: the unfolding biology of molecular chaperones. Expert Rev. Mol. Med., 2000, 2(8), 1-17.
[http://dx.doi.org/10.1017/S1462399400002015] [PMID: 14585136]
[19]
Maguire, M.; Poole, S.; Coates, A.R.; Tormay, P.; Wheeler-Jones, C.; Henderson, B. Comparative cell signalling activity of ultrapure recombinant chaperonin 60 proteins from prokaryotes and eukaryotes. Immunology, 2005, 115(2), 231-238.
[http://dx.doi.org/10.1111/j.1365-2567.2005.02155.x] [PMID: 15885129]
[20]
Habich, C.; Sell, H. Heat shock proteins in obesity: links to cardiovascular disease. Horm. Mol. Biol. Clin. Investig., 2015, 21(2), 117-124.
[http://dx.doi.org/10.1515/hmbci-2014-0040] [PMID: 25781556]
[21]
Huang, B.; Li, F.A.; Wu, C.H.; Wang, D.L. The role of nitric oxide on rosuvastatin-mediated S-nitrosylation and translational proteomes in human umbilical vein endothelial cells. Proteome Sci., 2012, 10(1), 43.
[http://dx.doi.org/10.1186/1477-5956-10-43] [PMID: 22799578]
[22]
Benyair, R.; Ron, E.; Lederkremer, G.Z. Protein quality control, retention, and degradation at the endoplasmic reticulum. Int. Rev. Cell Mol. Biol., 2011, 292, 197-280.
[http://dx.doi.org/10.1016/B978-0-12-386033-0.00005-0] [PMID: 22078962]
[23]
Ni, M.; Lee, A.S. ER chaperones in mammalian development and human diseases. FEBS Lett., 2007, 581(19), 3641-3651.
[http://dx.doi.org/10.1016/j.febslet.2007.04.045] [PMID: 17481612]
[24]
Lenna, S.; Han, R.; Trojanowska, M. ER stress and endothelial dysfunction. IUBMB Life, 2014, 66(8), 530-537.
[http://dx.doi.org/10.1002/iub.1292] [PMID: 25130181]
[25]
Prior, K.K.; Wittig, I.; Leisegang, M.S.; Groenendyk, J.; Weissmann, N.; Michalak, M.; Jansen-Dürr, P.; Shah, A.M.; Brandes, R.P. The endoplasmic reticulum chaperone calnexin is a NADPH oxidase NOX4 interacting protein. J. Biol. Chem., 2016, 291(13), 7045-7059.
[http://dx.doi.org/10.1074/jbc.M115.710772] [PMID: 26861875]


Rights & PermissionsPrintExport Cite as


Article Details

VOLUME: 17
ISSUE: 3
Year: 2020
Page: [172 - 179]
Pages: 8
DOI: 10.2174/1570164617666191003112053
Price: $25

Article Metrics

PDF: 7