Current Study of the Detection and Treatment Targets of Spinal Tuberculosis

Author(s): Biao Wang*, Wenjie Gao, Dingjun Hao*.

Journal Name: Current Drug Targets

Volume 21 , Issue 4 , 2020

  Journal Home
Translate in Chinese
Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Spinal tuberculosis is a common manifestation of extrapulmonary tuberculosis and osteoarticular tuberculosis. Common clinical manifestations include constitutional symptoms, back pain, spinal tenderness, paraplegia, and spinal deformities. They are the common causes of paralysis and could increase the mortality in patients. Most cases of spinal tuberculosis remaining undiagnosed, and early clinical symptoms and imaging manifestations lack specificity, which explained the reason why it is difficult to identify from atypical spinal metastases, brucellosis and other diseases. The rate of missed diagnosis and misdiagnosis for spinal tuberculosis is high. If spinal tuberculosis diagnostic targets could be early detected, the therapeutic targets can be effectively treated, which can not only control the progress of the disease and shorten the course of treatment, but also reduce the economic pressure and avoid spinal deformity. Therefore, early diagnosis should be our focus. Comprehensive use of a variety of diagnostic targets can improve the early diagnosis rate of spinal tuberculosis. Here, we review the progress of laboratory, imaging and gene detection in the diagnosis of spinal tuberculosis in recent years.

Keywords: Tuberculosis, spinal tuberculosis, laboratory detection, imaging examination, gene diagnosis, spinal deformity.

[1]
Garg RK, Somvanshi DS. Spinal tuberculosis: a review. J Spinal Cord Med 2011; 34(5): 440-54.
[http://dx.doi.org/10.1179/2045772311Y.0000000023] [PMID: 22118251]
[2]
Thammaroj J, Kitkhuandee A, Sawanyawisuth K, Chowchuan P, Promon K. MR findings in spinal tuberculosis in an endemic country. J Med Imaging Radiat Oncol 2014; 58(3): 267-76.
[http://dx.doi.org/10.1111/1754-9485.12157] [PMID: 24529160]
[3]
Fuentes Ferrer M, Gutiérrez Torres L, Ayala Ramírez O, Rumayor Zarzuelo M, del Prado González N. Tuberculosis of the spine. A systematic review of case series. Int Orthop 2012; 36(2): 221-31.
[http://dx.doi.org/10.1007/s00264-011-1414-4] [PMID: 22116392]
[4]
Xu Z, Wang X, Shen X, Luo C, Wu P, Zeng H. One-stage lumbopelvic fixation in the treatment of lumbosacral junction tuberculosis. Eur Spine J 2015; 24(8): 1800-5.
[http://dx.doi.org/10.1007/s00586-015-3863-8] [PMID: 25757533]
[5]
Wang B, Kong L, Zhu Z, et al. Recurrent complex spinal tuberculosis accompanied by sinus tract formation: causes of recurrence and clinical treatments. Sci Rep 2018; 8(1): 6933.
[http://dx.doi.org/10.1038/s41598-018-25142-z] [PMID: 29720686]
[6]
Zhu Z, Hao D, Wang B, et al. Selection of surgical treatment approaches for cervicothoracic spinal tuberculosis: A 10-year case review. PLoS One 2018; 13(2)e0192581
[http://dx.doi.org/10.1371/journal.pone.0192581] [PMID: 29420648]
[7]
Dorman S. Advances in the diagnosis of tuberculosis: current status and future prospects. Int J Tuberc Lung Dis 2015; 19(5): 504-16.
[http://dx.doi.org/10.5588/ijtld.15.0048] [PMID: 25868017]
[8]
Chen CH, Chen YM, Lee CW, Chang YJ, Cheng CY, Hung JK. Early diagnosis of spinal tuberculosis. J Formos Med Assoc 2016; 115(10): 825-36.
[http://dx.doi.org/10.1016/j.jfma.2016.07.001] [PMID: 27522334]
[9]
Nagashima H, Yamane K, Nishi T, Nanjo Y, Teshima R. Recent trends in spinal infections: retrospective analysis of patients treated during the past 50 years. Int Orthop 2010; 34(3): 395-9.
[http://dx.doi.org/10.1007/s00264-009-0741-1] [PMID: 19277654]
[10]
Shi J, Wang Z, Li H, Yuan H. Diagnostic performance of the urinary deoxypyridinoline in spinal tuberculosis. Orthopedics 2012; 35(6): e922-6.
[http://dx.doi.org/10.3928/01477447-20120525-36] [PMID: 22691668]
[11]
Jain AK. Tuberculosis of the spine: a fresh look at an old disease. J Bone Joint Surg Br 2010; 92(7): 905-13.
[http://dx.doi.org/10.1302/0301-620X.92B7.24668] [PMID: 20595106]
[12]
Yu Y, Wang X, Du B, Yuan W, Ni B, Chen D. Isolated atypical spinal tuberculosis mistaken for neoplasia: case report and literature review. Eur Spine J 2013; 22(Suppl. 3): S302-5.
[http://dx.doi.org/10.1007/s00586-012-2294-z] [PMID: 22531896]
[13]
Go SW, Lee HY, Lim CH, et al. Atypical disseminated skeletal tuberculosis mimicking metastasis on PET-CT and MRI. Intern Med 2012; 51(20): 2961-5.
[http://dx.doi.org/10.2169/internalmedicine.51.8347] [PMID: 23064577]
[14]
Zheng CY, Liu DX, Luo SW, Du SX. Imaging presentation highly manifested as tuberculosis in a case of spinal metastatic carcinoma. Orthopedics 2011; 34(8): e436-8.
[http://dx.doi.org/10.3928/01477447-20110627-32] [PMID: 21815592]
[15]
Kilborn T, Janse van Rensburg P, Candy S. Pediatric and adult spinal tuberculosis: imaging and pathophysiology. Neuroimaging Clin N Am 2015; 25(2): 209-31.
[http://dx.doi.org/10.1016/j.nic.2015.01.002] [PMID: 25952174]
[16]
Galloway KM, Parker R. Could an increase in vigilance for spinal tuberculosis at primary health care level, enable earlier diagnosis at district level in a tuberculosis endemic country? Afr J Prim Health Care Fam Med 2018; 10(1): e1-9.
[http://dx.doi.org/10.4102/phcfm.v10i1.1666] [PMID: 29943617]
[17]
Jiao D, Yang HS, Yang DY, Tian W, Wang H, Ji HP. Application of digital tomosynthesis in diagnosing spinal tuberculosis. Clin Imaging 2016; 40(3): 461-4.
[http://dx.doi.org/10.1016/j.clinimag.2015.11.003] [PMID: 27133687]
[18]
Wang G, Dong W, Lan T, et al. Diagnostic accuracy evaluation of the conventional and molecular tests for Spinal Tuberculosis in a cohort, head-to-head study. Emerg Microbes Infect 2018; 7(1)
[http://dx.doi.org/10.1038/s41426-018-0114-1]
[19]
Garcia-Monco JC. Tuberculosis. Handb Clin Neurol 2014; 121: 1485-99.
[http://dx.doi.org/10.1016/B978-0-7020-4088-7.00100-0] [PMID: 24365432]
[20]
Hayes AJ, Choksey M, Barnes N, Sparrow OC. Spinal tuberculosis in developed countries: difficulties in diagnosis. J R Coll Surg Edinb 1996; 41(3): 192-6.
[PMID: 8763187]
[21]
Ansari S, Amanullah MF, Ahmad K, Rauniyar RK. Pott’s spine: diagnostic imaging modalities and technology advancements. N Am J Med Sci 2013; 5: 404.
[22]
Sudprasert W, Piyapromdee U, Lewsirirat S. Neurological Recovery Determined by C-Reactive Protein, Erythrocyte Sedimentation Rate and Two Different Posterior Decompressive Surgical Procedures: A Retrospective Clinical Study of Patients with Spinal Tuberculosis. J Med Assoc Thai 2015; 98(10): 993-1000.
[PMID: 26638591]
[23]
Javed G, Laghari AA, Ahmed SI, et al. Development of Criteria Highly Suggestive of Spinal Tuberculosis. World Neurosurg 2018; 116: e1002-6.
[http://dx.doi.org/10.1016/j.wneu.2018.05.149] [PMID: 29860015]
[24]
Szep Z, Kim R, Ratcliffe SJ, Gluckman S. Tuberculin skin test conversion rate among short-term health care workers returning from Gaborone, Botswana. Travel Med Infect Dis 2014; 12(4): 396-400.
[http://dx.doi.org/10.1016/j.tmaid.2013.07.002] [PMID: 23932600]
[25]
Al Marri MR. The tuberculin skin test in confirmed pulmonary tuberculosis in the state of Qatar: where we stand? Qatar Med J 2012; 2: 16-9.
[http://dx.doi.org/10.5339/qmj.2012.2.7]
[26]
Altet N, Dominguez J, Souza-Galvão ML, et al. Predicting the development of tuberculosis with the tuberculin skin test and quantiferon testing. Ann Am Thorac Soc 2015; 12(5): 680-8.
[http://dx.doi.org/10.1513/AnnalsATS.201408-394OC] [PMID: 25699406]
[27]
Mardani M, Farshidpour M, Nekoonam M, et al. Performance of QuantiFERON TB gold test compared with the tuberculin skin test for detecting latent tuberculosis infection in lung and heart transplant candidates. Exp Clin Transplant 2014; 12(2): 129-32.
[PMID: 24702145]
[28]
Steingart KR, Ng V, Henry M, et al. Sputum processing methods to improve the sensitivity of smear microscopy for tuberculosis: a systematic review. Lancet Infect Dis 2006; 6(10): 664-74.
[http://dx.doi.org/10.1016/S1473-3099(06)70602-8] [PMID: 17008175]
[29]
Rochefort C, Behr MA. Assessment of microbiological diagnosis of active pulmonary tuberculosis: culture on liquid medium with or without solid medium. J Clin Microbiol 2016; 54(12): 3064.
[http://dx.doi.org/10.1128/JCM.01902-16] [PMID: 27654335]
[30]
Moreira Ada S, Huf G, Vieira MA, et al. Liquid vs solid culture medium to evaluate proportion and time to change in management of suspects of tuberculosis-a pragmatic randomized trial in secondary and tertiary health care units in brazil. PLoS One 2015; 10(6)e0127588
[31]
Rageade F, Picot N, Blanc-Michaud A, et al. Performance of solid and liquid culture media for the detection of Mycobacterium tuberculosis in clinical materials: meta-analysis of recent studies. Eur J Clin Microbiol Infect Dis 2014; 33(6): 867-70.
[http://dx.doi.org/10.1007/s10096-014-2105-z] [PMID: 24760249]
[32]
Lawson L, Emenyonu N, Abdurrahman ST, et al. Comparison of Mycobacterium tuberculosis drug susceptibility using solid and liquid culture in Nigeria. BMC Res Notes 2013; 6: 215.
[http://dx.doi.org/10.1186/1756-0500-6-215] [PMID: 23721428]
[33]
Dhillon J, Fourie PB, Mitchison DA. Persister populations of Mycobacterium tuberculosis in sputum that grow in liquid but not on solid culture media. J Antimicrob Chemother 2014; 69(2): 437-40.
[http://dx.doi.org/10.1093/jac/dkt357] [PMID: 24072170]
[34]
Hatfull GF. Mycobacteriophages: windows into tuberculosis. PLoS Pathog 2014; 10(3)e1003953
[35]
Fu X, Ding M, Zhang N, Li J. Mycobacteriophages: an important tool for the diagnosis of Mycobacterium tuberculosis. (review). Mol Med Rep 2015; 12(1): 13-9. [review]
[http://dx.doi.org/10.3892/mmr.2015.3440] [PMID: 25760591]
[36]
Tokunaga T, Sellers MI. Streptomycin induction of premature lysis of bacteriophage infected mycobacteria. J Bacteriol 1965; 89: 537-8.
[37]
Wilson SM, al Suwaidi Z, McNerney R, et al. Evaluation of a new rapid bacteriophage based method for the drug susceptibility testing of Mycobacterium tuberculosis. Nat Med 1997; 3: 465-8.
[http://dx.doi.org/10.1038/nm0497-465]
[38]
McNerney R, Wilson SM, Sidhu AM, et al. Inactivation of mycobacteriophage D29 using ferrous ammonium sulphate as a tool for the detection of viable Mycobacterium smegmatis and M. tuberculosis. Res MicrobiolM 1998; 149: 487-95.
[39]
Mole RJ, Maskell TW. Phage as a diagnostic the use of phage in TB diagnosis. J Chem Technol Biotechnol 2001; 76: 683-8.
[40]
Seaman T, Trollip A, Mole R, et al. The use of a novel phage based technology as a practical tool for the diagnosis of tuberculosis in Africa. Afr J Biotechnol 2003; 2: 40-5.
[41]
Pai M, Denkinger CM, Kik SV, et al. Gamma interferon release assays for detection of Mycobacterium tuberculosis infection. Clin Microbiol Rev 2014; 27(1): 3-20.
[http://dx.doi.org/10.1128/CMR.00034-13] [PMID: 24396134]
[42]
Tagmouti S, Slater M, Benedetti A, et al. Reproducibility of interferon gamma (IFN-γ) release Assays. A systematic review. Ann Am Thorac Soc 2014; 11(8): 1267-76.
[http://dx.doi.org/10.1513/AnnalsATS.201405-188OC] [PMID: 25188809]
[43]
Thillai M, Pollock K, Pareek M, Lalvani A. Interferon-gamma release assays for tuberculosis: current and future applications. Expert Rev Respir Med 2014; 8(1): 67-78.
[http://dx.doi.org/10.1586/17476348.2014.852471] [PMID: 24308653]
[44]
Abubakar I, Drobniewski F, Southern J, et al. PREDICT Study Team. Prognostic value of interferon-γ release assays and tuberculin skin test in predicting the development of active tuberculosis (UK PREDICT TB): a prospective cohort study Lancet Infect Dis 2018; S1473-3099(18): 30355-4.
[45]
Pai M, Zwerling A, Menzies D. Systematic review: T-cell-based assays for the diagnosis of latent tuberculosis infection: an update. Ann Intern Med 2008; 149(3): 177-84.
[http://dx.doi.org/10.7326/0003-4819-149-3-200808050-00241] [PMID: 18593687]
[46]
Yan L, Xiao H, Han M, Zhang Q. Diagnostic value of T-SPOT.TB interferon-γ release assays for active tuberculosis. Exp Ther Med 2015; 10(1): 345-51.
[http://dx.doi.org/10.3892/etm.2015.2463] [PMID: 26170960]
[47]
Pan L, Jia H, Liu F, et al. Risk factors for false-negative T-SPOT.TB assay results in patients with pulmonary and extra-pulmonary TB. J Infect 2015; 70(4): 367-80.
[http://dx.doi.org/10.1016/j.jinf.2014.12.018] [PMID: 25597825]
[48]
Skoura E, Zumla A, Bomanji J. Imaging in tuberculosis. Int J Infect Dis 2015; 32: 87-93.
[http://dx.doi.org/10.1016/j.ijid.2014.12.007] [PMID: 25809762]
[49]
Rigotti S, Zorzi C. The importance of early diagnosis with magnetic resonance imaging in spinal tuberculosis. J Neurosci Rural Pract 2013; 4(2): 119.
[http://dx.doi.org/10.4103/0976-3147.112730] [PMID: 23914081]
[50]
Zhang H, Lu Z. Atypical imaging of spinal tuberculosis: a case report and review of literature. Pan Afr Med J 2016; 24: 101.
[http://dx.doi.org/10.11604/pamj.2016.24.101.9701] [PMID: 27642440]
[51]
Hoffman EB, Crosier JH, Cremin BJ. Imaging in children with spinal tuberculosis. A comparison of radiography, computed tomography and magnetic resonance imaging. J Bone Joint Surg Br 1993; 75(2): 233-9.
[http://dx.doi.org/10.1302/0301-620X.75B2.8444943] [PMID: 8444943]
[52]
Sinan T, Al-Khawari H, Ismail M, Ben-Nakhi A, Sheikh M. Spinal tuberculosis: CT and MRI feature. Ann Saudi Med 2004; 24(6): 437-41.
[http://dx.doi.org/10.5144/0256-4947.2004.437] [PMID: 15646161]
[53]
Gupta P, Prakash M, Sharma N, Kanojia R, Khandelwal N. Computed tomography detection of clinically unsuspected skeletal tuberculosis. Clin Imaging 2015; 39(6): 1056-60.
[http://dx.doi.org/10.1016/j.clinimag.2015.07.033] [PMID: 26338020]
[54]
Vorster M, Sathekge MM, Bomanji J. Advances in imaging of tuberculosis: the role of 18F-FDG PET and PET/CT. Curr Opin Pulm Med 2014; 20(3): 287-93.
[http://dx.doi.org/10.1097/MCP.0000000000000043] [PMID: 24614238]
[55]
Rivas-Garcia A, Sarria-Estrada S, Torrents-Odin C, Casas-Gomila L, Franquet E. Imaging findings of Pott’s disease. Eur Spine J 2013; 22(Suppl. 4): 567-78.
[http://dx.doi.org/10.1007/s00586-012-2333-9] [PMID: 22684257]
[56]
Dunn R, Zondagh I, Candy S. Spinal tuberculosis: magnetic resonance imaging and neurological impairment. Spine 2011; 36(6): 469-73.
[http://dx.doi.org/10.1097/BRS.0b013e3181d265c0] [PMID: 21488248]
[57]
Kumar Y, Gupta N, Chhabra A, Fukuda T, Soni N, Hayashi D. Magnetic resonance imaging of bacterial and tuberculous spondylodiscitis with associated complications and non-infectious spinal pathology mimicking infections: a pictorial review. BMC Musculoskelet Disord 2017; 18(1): 244.
[http://dx.doi.org/10.1186/s12891-017-1608-z] [PMID: 28583099]
[58]
Siddiqui MA, Sartaj S, Rizvi SWA, Khan MJ, Khan IA. Role of whole-spine screening magnetic resonance imaging using short tau inversion recovery or fat-suppressed t2 fast spin echo sequences for detecting noncontiguous multiple-level spinal tuberculosis. Asian Spine J 2018; 12(4): 686-90.
[http://dx.doi.org/10.31616/asj.2018.12.4.686] [PMID: 30060377]
[59]
Chandrasekhar YB, Rajesh A, Purohit AK, Rani YJ. Novel magnetic resonance imaging scoring system for diagnosis of spinal tuberculosis: A preliminary report. J Neurosci Rural Pract 2013; 4(2): 122-8.
[http://dx.doi.org/10.4103/0976-3147.112733] [PMID: 23914083]
[60]
Hance AJ, Grandchamp B, Lévy-Frébault V, et al. Detection and identification of mycobacteria by amplification of mycobacterial DNA. Mol Microbiol 1989; 3(7): 843-9.
[http://dx.doi.org/10.1111/j.1365-2958.1989.tb00233.x] [PMID: 2507865]
[61]
Lombard EH, Victor T, Jordaan A, van Helden PD. The detection of Mycobacterium tuberculosis in bone marrow aspirate using the polymerase chain reaction. Tuber Lung Dis 1994; 75(1): 65-9.
[http://dx.doi.org/10.1016/0962-8479(94)90106-6] [PMID: 8161769]
[62]
Sun Y, Zhang Y, Lu Z. Clinical study of polymerase chain reaction technique in the diagnosis of bone tuberculosis. Zhonghua Jie He He Hu Xi Za Zhi 1997; 20(3): 145-8.
[PMID: 10072817]
[63]
Sharma K, Meena RK, Aggarwal A, Chhabra R. Multiplex PCR as a novel method in the diagnosis of spinal tuberculosis-a pilot study. Acta Neurochir (Wien) 2017; 159(3): 503-7.
[http://dx.doi.org/10.1007/s00701-016-3065-0] [PMID: 28110400]
[64]
Colmenero JD, Morata P, Ruiz-Mesa JD, et al. Multiplex real-time polymerase chain reaction: a practical approach for rapid diagnosis of tuberculous and brucellar vertebral osteomyelitis. Spine 2010; 35(24): E1392-6.
[http://dx.doi.org/10.1097/BRS.0b013e3181e8eeaf] [PMID: 21030888]
[65]
Zhang Z, Li L, Luo F, et al. Rapid and accurate detection of RMP- and INH- resistant Mycobacterium tuberculosis in spinal tuberculosis specimens by CapitalBio™ DNA microarray: a prospective validation study. BMC Infect Dis 2012; 12: 303.
[http://dx.doi.org/10.1186/1471-2334-12-303] [PMID: 23151186]
[66]
Zimenkov DV, Antonova OV, Kuz’min AV, et al. Detection of second-line drug resistance in Mycobacterium tuberculosis using oligonucleotide microarrays. BMC Infect Dis 2013; 13: 240.
[http://dx.doi.org/10.1186/1471-2334-13-240] [PMID: 23705640]
[67]
Pang Y, Li Q, Ou X, et al. Cost-effectiveness comparison of Genechip and conventional drug susceptibility test for detecting multidrug-resistant tuberculosis in China. PLoS One 2013; 8(7)e69267
[68]
Moure R, Tudó G, Medina R, et al. Detection of streptomycin and quinolone resistance in Mycobacterium tuberculosis by a low-density DNA array. Tuberculosis (Edinb) 2013; 93(5): 508-14.
[http://dx.doi.org/10.1016/j.tube.2013.07.001] [PMID: 23906937]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 21
ISSUE: 4
Year: 2020
Page: [320 - 327]
Pages: 8
DOI: 10.2174/1389450120666191002151637
Price: $65

Article Metrics

PDF: 24
HTML: 3