pH-Sensitive Magnetite Nanoparticles Modified with Hyperbranched Polymers and Folic Acid for Targeted Imaging and Therapy

Author(s): Seyed Jamal Tabatabaei Rezaei*, Asemeh Mashhadi Malekzadeh, Ali Ramazani, Hassan Niknejad.

Journal Name: Current Drug Delivery

Volume 16 , Issue 9 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Objective: A novel pH-sensitive superparamagnetic drug delivery system was developed based on quercetin loaded hyperbranched polyamidoamine-b-polyethylene glycol-folic acid-modified Fe3O4 nanoparticles (Fe3O4@PAMAM-b-PEG-FA).

Methods: The nanoparticles exhibit excellent water dispersity with well-defined size distribution (around 51.8 nm) and strong magnetisability. In vitro release studies demonstrated that the quercetinloaded Fe3O4@PAMAM-b-PEG-FA nanoparticles are stable at normal physiologic conditions (pH 7.4 and 37°C) but sensitive to acidic conditions (pH 5.6 and 37°C), which led to the rapid release of the loaded drug.

Results: Fluorescent microscopy results indicated that the Fe3O4@PAMAM-b-PEG-FA nanoparticles could be efficiently accumulated in tumor tissue compared with non-folate conjugated nanoparticles. Also, in comparison with free quercetin, the quercetin loaded Fe3O4@PAMAM-b-PEG-FA exerts higher cytotoxicity. Furthermore, this magnetic nanocarrier showed high MRI sensitivity, even in its lower iron content.

Conclusion: The results indicated that the prepared nanoparticles are an effective chemotherapy and diagnosis system to inhibit proliferation and monitor the progression of tumor cells, respectively.

Keywords: Magnetic nanoparticles, targeted drug delivery, pH-sensitive, magnetic resonance imaging, nanoparticles, hyperbranched polymers.

[1]
Petrylak, D.P.; Vogelzang, N.J.; Budnik, N.; Wiechno, P.J.; Sternberg, C.N.; Doner, K.; Bellmunt, J.; Burke, J.M.; de Olza, M.O.; Choudhury, A.; Gschwend, J.E.; Kopyltsov, E.; Flechon, A.; Van As, N.; Houede, N.; Barton, D.; Fandi, A.; Jungnelius, U.; Li, S.; de Wit, R.; Fizazi, K. Docetaxel and prednisone with or without lenalidomide in chemotherapy-naive patients with metastatic castration-resistant prostate cancer (MAINSAIL): A randomised, double-blind, placebo-controlled phase 3 trial. Lancet Oncol., 2015, 16(4), 417-425.
[http://dx.doi.org/10.1016/S1470-2045(15)70025-2] [PMID: 25743937]
[2]
Association, B.T. A controlled trial of six months chemotherapy in pulmonary tuberculosis. Am. Rev. Respir. Dis., 1982, 126(3), 460-462.
[http://dx.doi.org/10.1164/arrd1982.126.3.460] [PMID: 6751175]
[3]
Liu, F-S. Mechanisms of chemotherapeutic drug resistance in cancer therapy--a quick review. Taiwan. J. Obstet. Gynecol., 2009, 48(3), 239-244.
[http://dx.doi.org/10.1016/S1028-4559(09)60296-5] [PMID: 19797012]
[4]
Howes, M. Dangers of antioxidants in cancer patients: a review, 2009.
[5]
Zhou, H.; Zou, P.; Chen, Z.C.; You, Y. A novel vicious cycle cascade in tumor chemotherapy. Med. Hypotheses, 2007, 69(6), 1230-1233.
[http://dx.doi.org/10.1016/j.mehy.2007.03.038] [PMID: 17555885]
[6]
Han, R.; Yang, Y.M.; Dietrich, J.; Luebke, A.; Mayer-Pröschel, M.; Noble, M. Systemic 5-fluorouracil treatment causes a syndrome of delayed myelin destruction in the central nervous system. J. Biol., 2008, 7(4), 12.
[http://dx.doi.org/10.1186/jbiol69] [PMID: 18430259]
[7]
Constantinou, C.; Papas, A.; Constantinou, A.I. Vitamin E and cancer: An insight into the anticancer activities of vitamin E isomers and analogs. Int. J. Cancer, 2008, 123(4), 739-752.
[http://dx.doi.org/10.1002/ijc.23689] [PMID: 18512238]
[8]
Johnstone, R.W.; Ruefli, A.A.; Lowe, S.W. Apoptosis: A link between cancer genetics and chemotherapy. Cell, 2002, 108(2), 153-164.
[http://dx.doi.org/10.1016/S0092-8674(02)00625-6] [PMID: 11832206]
[9]
Kovacic, P. Unifying mechanism for anticancer agents involving electron transfer and oxidative stress: Clinical implications. Med. Hypotheses, 2007, 69(3), 510-516.
[http://dx.doi.org/10.1016/j.mehy.2006.08.046] [PMID: 17383109]
[10]
Bansal, T.; Jaggi, M.; Khar, R.K.; Talegaonkar, S. Emerging significance of flavonoids as P-glycoprotein inhibitors in cancer chemotherapy. J. Pharm. Pharm. Sci., 2009, 12(1), 46-78.
[http://dx.doi.org/10.18433/J3RC77] [PMID: 19470292]
[11]
Kumari, A.; Yadav, S.K.; Pakade, Y.B.; Singh, B.; Yadav, S.C. Development of biodegradable nanoparticles for delivery of quercetin. Colloids Surf. B Biointerfaces, 2010, 80(2), 184-192.
[http://dx.doi.org/10.1016/j.colsurfb.2010.06.002] [PMID: 20598513]
[12]
Kakran, M.; Sahoo, N.G.; Li, L. Dissolution enhancement of quercetin through nanofabrication, complexation, and solid dispersion. Colloids Surf. B Biointerfaces, 2011, 88(1), 121-130.
[http://dx.doi.org/10.1016/j.colsurfb.2011.06.020] [PMID: 21764266]
[13]
Wang, P.; Heber, D.; Henning, S.M. Quercetin increased bioavailability and decreased methylation of green tea polyphenols in vitro and in vivo. Food Funct., 2012, 3(6), 635-642.
[http://dx.doi.org/10.1039/c2fo10254d] [PMID: 22438067]
[14]
Lamson, D.W.; Brignall, M.S. Antioxidants in cancer therapy; their actions and interactions with oncologic therapies. Altern. Med. Rev., 1999, 4(5), 304-329.
[PMID: 10559547]
[15]
Lamson, D.W.; Brignall, M.S. Antioxidants and cancer therapy II, quick reference guide. Altern. Med. Rev., 2000, 5, 152-163.
[16]
Lamson, D.W.; Brignall, M.S. Antioxidants and cancer, part 3, quercetin. Altern. Med. Rev., 2000, 5, 196-208.
[17]
Wätjen, W.; Michels, G.; Steffan, B.; Niering, P.; Chovolou, Y.; Kampkötter, A.; Tran-Thi, Q-H.; Proksch, P.; Kahl, R. Low concentrations of flavonoids are protective in rat H4IIE cells whereas high concentrations cause DNA damage and apoptosis. J. Nutr., 2005, 135(3), 525-531.
[http://dx.doi.org/10.1093/jn/135.3.525] [PMID: 15735088]
[18]
Osiecki, H.; Schloss, J.; Domagala, C.; Johnson, B. Cancer, A Nutritional, Biochemical Approach; Bio Concepts Publishing, 2002.
[19]
Mou, X.; Ali, Z.; Li, S.; He, N. Applications of magnetic nanoparticles in targeted drug delivery system. J. Nanosci. Nanotechnol., 2015, 15(1), 54-62.
[http://dx.doi.org/10.1166/jnn.2015.9585] [PMID: 26328305]
[20]
Kesharwani, P.; Iyer, A.K. Recent advances in dendrimer-based nanovectors for tumor-targeted drug and gene delivery. Drug Discov. Today, 2015, 20(5), 536-547.
[http://dx.doi.org/10.1016/j.drudis.2014.12.012] [PMID: 25555748]
[21]
Li, J.; Wang, Y.; Liang, R.; An, X.; Wang, K.; Shen, G.; Tu, Y.; Zhu, J.; Tao, J. Recent advances in targeted nanoparticles drug delivery to melanoma. Nanomedicine (Lond.), 2015, 11(3), 769-794.
[http://dx.doi.org/10.1016/j.nano.2014.11.006] [PMID: 25555352]
[22]
Yang, K.; Feng, L.; Liu, Z. The advancing uses of nano-graphene in drug delivery. Expert Opin. Drug Deliv., 2015, 12(4), 601-612.
[http://dx.doi.org/10.1517/17425247.2015.978760] [PMID: 25466364]
[23]
Jin, M.; Yu, D-G.; Wang, X.; Geraldes, C.F.G.C.; Williams, G.R.; Bligh, S.W.A. Electrospun Contrast-Agent-Loaded Fibers for Colon-Targeted MRI. Adv. Healthc. Mater., 2016, 5(8), 977-985.
[http://dx.doi.org/10.1002/adhm.201500872] [PMID: 26899401]
[24]
Jin, M.; Yu, D-G.; Geraldes, C.F.G.C.; Williams, G.R.; Bligh, S.W.A. Theranostic Fibers for Simultaneous Imaging and Drug Delivery. Mol. Pharm., 2016, 13(7), 2457-2465.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b00197] [PMID: 27280491]
[25]
Sun, L.; Liu, T.; Li, H.; Yang, L.; Meng, L.; Lu, Q.; Long, J. Fluorescent and cross-linked organic-inorganic hybrid nanoshells for monitoring drug delivery. ACS Appl. Mater. Interfaces, 2015, 7(8), 4990-4997.
[http://dx.doi.org/10.1021/acsami.5b00175] [PMID: 25651861]
[26]
Ko, H-W.; Chi, M-H.; Chang, C-W.; Chu, C-W.; Luo, K-H.; Chen, J-T. Fabrication of core-shell polymer nanospheres in the nanopores of anodic aluminum oxide templates using polymer blend solutions. ACS Macro Lett., 2015, 4, 717-720.
[http://dx.doi.org/10.1021/acsmacrolett.5b00297]
[27]
Estelrich, J.; Escribano, E.; Queralt, J.; Busquets, M.A. Iron oxide nanoparticles for magnetically-guided and magnetically-responsive drug delivery. Int. J. Mol. Sci., 2015, 16(4), 8070-8101.
[http://dx.doi.org/10.3390/ijms16048070] [PMID: 25867479]
[28]
Ulbrich, K.; Holá, K.; Šubr, V.; Bakandritsos, A.; Tuček, J.; Zbořil, R. Targeted drug delivery with polymers and magnetic nanoparticles: Covalent and noncovalent approaches, release control, and clinical studies. Chem. Rev., 2016, 116(9), 5338-5431.
[http://dx.doi.org/10.1021/acs.chemrev.5b00589] [PMID: 27109701]
[29]
Hai, T.; Wan, X.; Yu, D-G.; Wang, K.; Yang, Y.; Liu, Z-P. Electrospun lipid-coated medicated nanocomposites for an improved drug sustained-release profile. Mater. Des., 2019, 162, 70-79.
[http://dx.doi.org/10.1016/j.matdes.2018.11.036]
[30]
Wang, K.; Wen, H-F.; Yu, D-G.; Yang, Y.; Zhang, D-F. Electrosprayed hydrophilic nanocomposites coated with shellac for colon-specific delayed drug delivery. Mater. Des., 2018, 143, 248-255.
[http://dx.doi.org/10.1016/j.matdes.2018.02.016]
[31]
Cho, H-S.; Dong, Z.; Pauletti, G.M.; Zhang, J.; Xu, H.; Gu, H.; Wang, L.; Ewing, R.C.; Huth, C.; Wang, F.; Shi, D. Fluorescent, superparamagnetic nanospheres for drug storage, targeting, and imaging: a multifunctional nanocarrier system for cancer diagnosis and treatment. ACS Nano, 2010, 4(9), 5398-5404.
[http://dx.doi.org/10.1021/nn101000e] [PMID: 20707381]
[32]
Wu, Y.; Wang, Y.; Luo, G.; Dai, Y. In situ preparation of magnetic Fe3O4-chitosan nanoparticles for lipase immobilization by cross-linking and oxidation in aqueous solution. Bioresour. Technol., 2009, 100(14), 3459-3464.
[http://dx.doi.org/10.1016/j.biortech.2009.02.018] [PMID: 19329306]
[33]
Patton, D.L.; Cosgrove Sweeney, Y.T.; McCarthy, T.D.; Hillier, S.L. Preclinical safety and efficacy assessments of dendrimer-based (SPL7013) microbicide gel formulations in a nonhuman primate model. Antimicrob. Agents Chemother., 2006, 50(5), 1696-1700.
[http://dx.doi.org/10.1128/AAC.50.5.1696-1700.2006] [PMID: 16641437]
[34]
Cheng, Y.; Xu, Z.; Ma, M.; Xu, T. Dendrimers as drug carriers: applications in different routes of drug administration. J. Pharm. Sci., 2008, 97(1), 123-143.
[http://dx.doi.org/10.1002/jps.21079] [PMID: 17721949]
[35]
Kobayashi, H.; Kawamoto, S.; Saga, T.; Sato, N.; Hiraga, A.; Ishimori, T.; Konishi, J.; Togashi, K.; Brechbiel, M.W. Positive effects of polyethylene glycol conjugation to generation-4 polyamidoamine dendrimers as macromolecular MR contrast agents. Magn. Reson. Med., 2001, 46(4), 781-788.
[http://dx.doi.org/10.1002/mrm.1257] [PMID: 11590655]
[36]
Jackson, C.L.; Chanzy, H.D.; Booy, F.P.; Drake, B.J.; Tomalia, D.A.; Bauer, B.J.; Amis, E.J. Visualization of dendrimer molecules by transmission electron microscopy (TEM), Staining methods and cryo-TEM of vitrified solutions. Macromolecules, 1998, 31, 6259-6265.
[http://dx.doi.org/10.1021/ma9806155]
[37]
Caminade, A-M.; Laurent, R.; Majoral, J-P. Characterization of dendrimers. Adv. Drug Deliv. Rev., 2005, 57(15), 2130-2146.
[http://dx.doi.org/10.1016/j.addr.2005.09.011] [PMID: 16289434]
[38]
Tajabadi, M.; Khosroshahi, M.E.; Bonakdar, S. An efficient method of SPION synthesis coated with third generation PAMAM dendrimer. Colloids Surf. A Physicochem. Eng. Asp., 2013, 431, 18-26.
[http://dx.doi.org/10.1016/j.colsurfa.2013.04.003]
[39]
Falanga, A.; Tarallo, R.; Galdiero, E.; Cantisani, M.; Galdiero, M.; Galdiero, S. Review of a viral peptide nanosystem for intracellular delivery. J. Nanophotonics, 2013, 7, 071599-071599.
[http://dx.doi.org/10.1117/1.JNP.7.071599]
[40]
Alanagh, H.R.; Khosroshahi, M.; Tajabadi, M.; Keshvari, H. The effect of pH and magnetic field on the fluorescence spectra of fluorescein isothiocyanate conjugated SPION-dendrimer nanocomposites. J. Supercond. Nov. Magn., 2014, 27, 2337-2345.
[http://dx.doi.org/10.1007/s10948-014-2598-9]
[41]
El-Sayed, M.; Ginski, M.; Rhodes, C.; Ghandehari, H. Transepithelial transport of poly(amidoamine) dendrimers across Caco-2 cell monolayers. J. Control. Release, 2002, 81(3), 355-365.
[http://dx.doi.org/10.1016/S0168-3659(02)00087-1] [PMID: 12044574]
[42]
Kitchens, K.M.; Kolhatkar, R.B.; Swaan, P.W.; Eddington, N.D.; Ghandehari, H. Transport of poly(amidoamine) dendrimers across Caco-2 cell monolayers: Influence of size, charge and fluorescent labeling. Pharm. Res., 2006, 23(12), 2818-2826.
[http://dx.doi.org/10.1007/s11095-006-9122-2] [PMID: 17094034]
[43]
Wiwattanapatapee, R.; Carreño-Gómez, B.; Malik, N.; Duncan, R. Anionic PAMAM dendrimers rapidly cross adult rat intestine in vitro: a potential oral delivery system? Pharm. Res., 2000, 17(8), 991-998.
[http://dx.doi.org/10.1023/A:1007587523543] [PMID: 11028947]
[44]
El-Sayed, M.; Rhodes, C.A.; Ginski, M.; Ghandehari, H. Transport mechanism(s) of poly (amidoamine) dendrimers across Caco-2 cell monolayers. Int. J. Pharm., 2003, 265(1-2), 151-157.
[http://dx.doi.org/10.1016/S0378-5173(03)00391-0] [PMID: 14522128]
[45]
Lin, Y.; Fujimori, T.; Kawaguchi, N.; Tsujimoto, Y.; Nishimi, M.; Dong, Z.; Katsumi, H.; Sakane, T.; Yamamoto, A. Polyamidoamine dendrimers as novel potential absorption enhancers for improving the small intestinal absorption of poorly absorbable drugs in rats. J. Control. Release, 2011, 149(1), 21-28.
[http://dx.doi.org/10.1016/j.jconrel.2010.02.017] [PMID: 20184931]
[46]
Dayyani, N.; Khoee, S.; Ramazani, A. Design and synthesis of pH-sensitive polyamino-ester magneto-dendrimers: Surface functional groups effect on viability of human prostate carcinoma cell lines DU145. Eur. J. Med. Chem., 2015, 98, 190-202.
[http://dx.doi.org/10.1016/j.ejmech.2015.05.028] [PMID: 26021708]
[47]
Najlah, M.; Freeman, S.; Attwood, D.; D’Emanuele, A. In vitro evaluation of dendrimer prodrugs for oral drug delivery. Int. J. Pharm., 2007, 336(1), 183-190.
[http://dx.doi.org/10.1016/j.ijpharm.2006.11.047] [PMID: 17188439]
[48]
Goldberg, D.S.; Vijayalakshmi, N.; Swaan, P.W.; Ghandehari, H. G3.5 PAMAM dendrimers enhance transepithelial transport of SN38 while minimizing gastrointestinal toxicity. J. Control. Release, 2011, 150(3), 318-325.
[http://dx.doi.org/10.1016/j.jconrel.2010.11.022] [PMID: 21115079]
[49]
Ke, W.; Zhao, Y.; Huang, R.; Jiang, C.; Pei, Y. Enhanced oral bioavailability of doxorubicin in a dendrimer drug delivery system. J. Pharm. Sci., 2008, 97(6), 2208-2216.
[http://dx.doi.org/10.1002/jps.21155] [PMID: 17879294]
[50]
Huang, X.; Wu, Z.; Gao, W.; Chen, Q.; Yu, B. Polyamidoamine dendrimers as potential drug carriers for enhanced aqueous solubility and oral bioavailability of silybin. Drug Dev. Ind. Pharm., 2011, 37(4), 419-427.
[http://dx.doi.org/10.3109/03639045.2010.518150] [PMID: 20942611]
[51]
Nabid, M.R.; Tabatabaei Rezaei, S.J.; Sedghi, R.; Niknejad, H.; Entezami, A.A.; Oskooie, H.A.; Heravi, M.M. Self-assembled micelles of well-defined pentaerythritol-centered amphiphilic A4B8 star-block copolymers based on PCL and PEG for hydrophobic drug delivery. Polymer (Guildf.), 2011, 52, 2799-2809.
[http://dx.doi.org/10.1016/j.polymer.2011.04.054]
[52]
Rezaei, S.J.T.; Nabid, M.R.; Niknejad, H.; Entezami, A.A. Folate-decorated thermoresponsive micelles based on star-shaped amphiphilic block copolymers for efficient intracellular release of anticancer drugs. Int. J. Pharm., 2012, 437(1-2), 70-79.
[http://dx.doi.org/10.1016/j.ijpharm.2012.07.069] [PMID: 22884832]
[53]
Tabatabaei Rezaei, S.J.; Nabid, M.R.; Niknejad, H.; Entezami, A.A. Multifunctional and thermoresponsive unimolecular micelles for tumor-targeted delivery and site-specifically release of anticancer drugs. Polymer (Guildf.), 2012, 53, 3485-3497.
[http://dx.doi.org/10.1016/j.polymer.2012.05.056]
[54]
Abandansari, H.S.; Nabid, M.R.; Rezaei, S.J.T.; Niknejad, H. pH-sensitive nanogels based on Boltorn® H40 and poly(vinylpyridine) using mini-emulsion polymerization for delivery of hydrophobic anticancer drugs. Polymer (Guildf.), 2014, 55, 3579-3590.
[http://dx.doi.org/10.1016/j.polymer.2014.06.037]
[55]
Tabatabaei Rezaei, S.J.; Amani, V.; Nabid, M.R.; Safari, N.; Niknejad, H. Folate-decorated polymeric Pt(ii) prodrug micelles for targeted intracellular delivery and cytosolic glutathione-triggered release of platinum anticancer drugs. Polym. Chem., 2015, 6, 2844-2853.
[http://dx.doi.org/10.1039/C5PY00156K]
[56]
Tabatabaei Rezaei, S.J.; Sarbaz, L.; Niknejad, H. Folate-decorated redox/pH dual-responsive degradable prodrug micelles for tumor triggered targeted drug delivery. RSC Advances, 2016, 6, 62630-62639.
[http://dx.doi.org/10.1039/C6RA11824K]
[57]
Tabatabaei Rezaei, S.J.; Abandansari, H.S.; Nabid, M.R.; Niknejad, H. pH-responsive unimolecular micelles self-assembled from amphiphilic hyperbranched block copolymer for efficient intracellular release of poorly water-soluble anticancer drugs. J. Colloid Interface Sci., 2014, 425, 27-35.
[http://dx.doi.org/10.1016/j.jcis.2014.03.034] [PMID: 24776660]
[58]
Mashhadi Malekzadeh, A.; Ramazani, A.; Tabatabaei Rezaei, S.J.; Niknejad, H. Design and construction of multifunctional hyperbranched polymers coated magnetite nanoparticles for both targeting magnetic resonance imaging and cancer therapy. J. Colloid Interface Sci., 2017, 490, 64-73.
[http://dx.doi.org/10.1016/j.jcis.2016.11.014] [PMID: 27870961]
[59]
Khoee, S.; Abedini, N. One-pot synthesis of amphiphilic nanogels from vinylated SPIONs/HEMA/PEG via a combination of click chemistry and surfactant-free emulsion photopolymerization, Unveiling of the protein-nanoparticle interactions. Polymer (Guildf.), 2014, 55, 5635-5647.
[http://dx.doi.org/10.1016/j.polymer.2014.09.034]
[60]
Nabid, M.R.; Bide, Y.; Tabatabaei Rezaei, S.J. Pd nanoparticles immobilized on PAMAM-grafted MWCNTs hybrid materials as new recyclable catalyst for Mizoraki-Heck cross-coupling reactions. Appl. Catal. A Gen., 2011, 406, 124-132.
[http://dx.doi.org/10.1016/j.apcata.2011.08.021]
[61]
Tabatabaei Rezaei, S.J.; Malekzadeh, A.M.; Poulaei, S.; Ramazani, A.; Khorramabadi, H. Chemo-selective reduction of nitro and nitrile compounds using Ni nanoparticles immobilized on hyperbranched polymer-functionalized magnetic nanoparticles. Appl. Organomet. Chem., 2018, 32 e3975
[http://dx.doi.org/10.1002/aoc.3975]
[62]
Roger, E.; Kalscheuer, S.; Kirtane, A.; Guru, B.R.; Grill, A.E.; Whittum-Hudson, J.; Panyam, J. Folic acid functionalized nanoparticles for enhanced oral drug delivery. Mol. Pharm., 2012, 9(7), 2103-2110.
[http://dx.doi.org/10.1021/mp2005388] [PMID: 22670575]
[63]
Xu, Z.; Shi, X.; Hou, M.; Xue, P.; Gao, Y-E.; Liu, S.; Kang, Y. Disassembly of amphiphilic small molecular prodrug with fluorescence switch induced by pH and folic acid receptors for targeted delivery and controlled release. Colloids Surf. B Biointerfaces, 2017, 150, 50-58.
[http://dx.doi.org/10.1016/j.colsurfb.2016.11.021] [PMID: 27883931]
[64]
Li, J.J.; Yang, Y-Y.; Yu, D-G.; Du, Q.; Yang, X-L. Fast dissolving drug delivery membrane based on the ultra-thin shell of electrospun core-shell nanofibers. Eur. J. Pharm. Sci., 2018, 122, 195-204.
[http://dx.doi.org/10.1016/j.ejps.2018.07.002] [PMID: 30008429]
[65]
Yang, Y-Y.; Zhang, M.; Liu, Z-P.; Wang, K.; Yu, D-G. Meletin sustained-release gliadin nanoparticles prepared via solvent surface modification on blending electrospraying. Appl. Surf. Sci., 2018, 434, 1040-1047.
[http://dx.doi.org/10.1016/j.apsusc.2017.11.024]
[66]
Herea, D.; Chiriac, H. One-step preparation and surface activation of magnetic iron oxide nanoparticles for bio-medical applications. Optoelectron. Adv. Mater. Rapid Commun., 2008, 2, 549-552.
[67]
Wang, Q.; Yu, D-G.; Zhang, L-L.; Liu, X-K.; Deng, Y-C.; Zhao, M. Electrospun hypromellose-based hydrophilic composites for rapid dissolution of poorly water-soluble drug. Carbohydr. Polym., 2017, 174, 617-625.
[http://dx.doi.org/10.1016/j.carbpol.2017.06.075] [PMID: 28821112]
[68]
Yu, D-G.; Zheng, X-L.; Yang, Y.; Li, X-Y.; Williams, G.R.; Zhao, M. Immediate release of helicid from nanoparticles produced by modified coaxial electrospraying. Appl. Surf. Sci., 2019, 473, 148-155.
[http://dx.doi.org/10.1016/j.apsusc.2018.12.147]
[69]
Liu, W.; Li, X.; Wong, Y-S.; Zheng, W.; Zhang, Y.; Cao, W.; Chen, T. Selenium nanoparticles as a carrier of 5-fluorouracil to achieve anticancer synergism. ACS Nano, 2012, 6(8), 6578-6591.
[http://dx.doi.org/10.1021/nn202452c] [PMID: 22823110]
[70]
Wang, L.; Liu, Y.; Li, W.; Jiang, X.; Ji, Y.; Wu, X.; Xu, L.; Qiu, Y.; Zhao, K.; Wei, T.; Li, Y.; Zhao, Y.; Chen, C. Selective targeting of gold nanorods at the mitochondria of cancer cells: Implications for cancer therapy. Nano Lett., 2011, 11(2), 772-780.
[http://dx.doi.org/10.1021/nl103992v] [PMID: 21186824]
[71]
Yang, P-H.; Sun, X.; Chiu, J-F.; Sun, H.; He, Q-Y. Transferrin-mediated gold nanoparticle cellular uptake. Bioconjug. Chem., 2005, 16(3), 494-496.
[http://dx.doi.org/10.1021/bc049775d] [PMID: 15898713]
[72]
Casula, M.F.; Corrias, A.; Arosio, P.; Lascialfari, A.; Sen, T.; Floris, P.; Bruce, I.J. Design of water-based ferrofluids as contrast agents for magnetic resonance imaging. J. Colloid Interface Sci., 2011, 357(1), 50-55.
[http://dx.doi.org/10.1016/j.jcis.2011.01.088] [PMID: 21345440]
[73]
Ma, X.; Gong, A.; Chen, B.; Zheng, J.; Chen, T.; Shen, Z.; Wu, A. Exploring a new SPION-based MRI contrast agent with excellent water-dispersibility, high specificity to cancer cells and strong MR imaging efficacy. Colloids Surf. B Biointerfaces, 2015, 126, 44-49.
[http://dx.doi.org/10.1016/j.colsurfb.2014.11.045] [PMID: 25543982]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 9
Year: 2019
Page: [839 - 848]
Pages: 10
DOI: 10.2174/1567201816666191002102353
Price: $65

Article Metrics

PDF: 15
HTML: 2

Special-new-year-discount