A Cationic Nanomicellar Complex of the Quaternary Amphiphilic Amine RC16+ with Fenretinide as a New Multitasking System for Antitumor Therapy

Author(s): Isabella Orienti*, Timothy P. Cripe, Mark A. Currier, Cristina Cavallari, Gabriella Teti, Mirella Falconi.

Journal Name: Current Drug Delivery

Volume 16 , Issue 9 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Objectives: This study investigated the antitumor effect of a new nanomicellar complex obtained by combining the antitumor agent fenretinide with a quaternary amphiphilic amine RC16+ also endowed with antitumor activity.

Methods: The complex (Fen-RC16+) strongly improved the aqueous solubility of fenretinide (from 1,71 ± 0.08 µg/ml, pure fenretinide to 1500 ± 164 µg /ml, Fen-RC16+ complex) and provided a cytotoxic effect on SH-SY5Y neuroblastoma cell lines resulting from the intrinsic activity of both the complex components. Moreover, the mean size of the nanomicellar complex (ranging from 20 ± 1.97 nm to 40 ± 3.05 nm) was suitable for accumulation to the tumor site by the enhanced permeability and retention effect and the positive charge provided by the quaternary RC16+ induced adsorption of the complex on the tumor cell surface improving the intracellular concentration of fenretinide.

Results: All these characteristics made the Fen-RC16+ complex a multitasking system for antitumor therapy.

Conclusion: Indeed its in vivo activity, evaluated on SH-SY5Y xenografts, was strong, and the tumor growth did not resume after the treatment withdrawal.

Keywords: Cationic nanomicelles, quaternary amphiphilic amine RC16+, fenretinide, ionic interactions, tumor cell, antitumor activity.

[1]
Li, B.L.; Setyawati, M.I.; Chen, L.; Xie, J.; Ariga, K.; Lim, C.T.; Garaj, S.; Leong, D.T. Directing Assembly and Disassembly of 2D MoS(2) Nanosheets with DNA for Drug Delivery. ACS Appl. Mater. Interfaces, 2017, 9(18), 15286-15296.
[http://dx.doi.org/10.1021/acsami.7b02529]
[2]
Vlachogiannis, G.; Hedayat, S.; Vatsiou, A.; Jamin, Y.; Fernández-Mateos, J.; Khan, K.; Lampis, A.; Eason, K.; Huntingford, I.; Burke, R.; Rata, M.; Koh, D.M.; Tunariu, N.; Collins, D.; Hulkki-Wilson, S.; Ragulan, C.; Spiteri, I.; Moorcraft, S.Y.; Chau, I.; Rao, S.; Watkins, D.; Fotiadis, N.; Bali, M.; Darvish-Damavandi, M.; Lote, H.; Eltahir, Z.; Smyth, E.C.; Begum, R.; Clarke, P.A.; Hahne, J.C.; Dowsett, M.; de Bono, J.; Workman, P.; Sadanandam, A.; Fassan, M.; Sansom, O.J.; Eccles, S.; Starling, N.; Braconi, C.; Sottoriva, A.; Robinson, S.P.; Cunningham, D.; Valeri, N. Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science, 2018, 359(6378), 920-926.
[http://dx.doi.org/10.1126/science.aao2774] [PMID: 29472484]
[3]
Meier-Menches, S.M.; Gerner, C.; Berger, W.; Hartinger, C.G.; Keppler, B.K. Structure-activity relationships for ruthenium and osmium anticancer agents - towards clinical development. Chem. Soc. Rev., 2018, 47(3), 909-928.
[http://dx.doi.org/10.1039/C7CS00332C] [PMID: 29170783]
[4]
Chodak, G.W.; Rukstalis, D.; Kellman, H.M.; Williams, M. Phase II study of the retinoid analogue 4-HPR in men with carcinoma of the prostate. J. Urol., 1993, 149, 257.
[5]
Veronesi, U.; De Palo, G.; Marubini, E.; Costa, A.; Formelli, F.; Mariani, L.; Decensi, A.; Camerini, T.; Del Turco, M.R.; Di Mauro, M.G.; Muraca, M.G.; Del Vecchio, M.; Pinto, C.; D’Aiuto, G.; Boni, C.; Campa, T.; Magni, A.; Miceli, R.; Perloff, M.; Malone, W.F.; Sporn, M.B. Randomized trial of fenretinide to prevent second breast malignancy in women with early breast cancer. J. Natl. Cancer Inst., 1999, 91(21), 1847-1856.
[http://dx.doi.org/10.1093/jnci/91.21.1847] [PMID: 10547391]
[6]
Chiesa, F.; Tradati, N.; Grigolato, R.; Boracchi, P.; Biganzoli, E.; Crose, N.; Cavadini, E.; Formelli, F.; Costa, L.; Giardini, R.; Zurrida, S.; Costa, A.; De Palo, G.; Veronesi, U. Randomized trial of fenretinide (4-HPR) to prevent recurrences, new localizations and carcinomas in patients operated on for oral leukoplakia: Long-term results. Int. J. Cancer, 2005, 115(4), 625-629.
[http://dx.doi.org/10.1002/ijc.20923] [PMID: 15700313]
[7]
Formelli, F.; Barua, A.B.; Olson, J.A. Bioactivities of N-(4-hydroxyphenyl) retinamide and retinoyl β-glucuronide. FASEB J., 1996, 10(9), 1014-1024.
[http://dx.doi.org/10.1096/fasebj.10.9.8801162] [PMID: 8801162]
[8]
Ulukaya, E.; Kurt, A.; Wood, E.J. 4-(N-hydroxyphenyl)retinamide can selectively induce apoptosis in human epidermoid carcinoma cells but not in normal dermal fibroblasts. Cancer Invest., 2001, 19(2), 145-154.
[http://dx.doi.org/10.1081/CNV-100000149] [PMID: 11296619]
[9]
Darwiche, N.; Hatoum, A.; Dbaibo, G.; Kadara, H.; Nasr, R.; Abou-Lteif, G.; Bazzi, R.; Hermine, O.; de Thé, H.; Bazarbachi, A.N. -(4-hydroxyphenyl)retinamide induces growth arrest and apoptosis in HTLV-I-transformed cells. Leukemia, 2004, 18(3), 607-615.
[http://dx.doi.org/10.1038/sj.leu.2403245] [PMID: 14712289]
[10]
Asumendi, A.; Morales, M.C.; Alvarez, A.; Aréchaga, J.; Pérez-Yarza, G. Implication of mitochondria-derived ROS and cardiolipin peroxidation in N-(4-hydroxyphenyl)retinamide-induced apoptosis. Br. J. Cancer, 2002, 86(12), 1951-1956.
[http://dx.doi.org/10.1038/sj.bjc.6600356] [PMID: 12085192]
[11]
Broaddus, R.R.; Xie, S.; Hsu, C.J.; Wang, J.; Zhang, S.; Zou, C. The chemopreventive agents 4-HPR and DFMO inhibit growth and induce apoptosis in uterine leiomyomas. Am. J. Obstet. Gynecol., 2004, 190(3), 686-692.
[http://dx.doi.org/10.1016/j.ajog.2003.09.048] [PMID: 15042000]
[12]
Han, H.S.; Kwon, Y.J.; Park, S.H.; Kim, E.J.; Rho, Y.S.; Sin, H.S.; Um, S.J. Potent effect of 5-HPBR, a butanoate derivative of 4-HPR, on cell growth and apoptosis in cancer cells. Int. J. Cancer, 2004, 109(1), 58-64.
[http://dx.doi.org/10.1002/ijc.11643] [PMID: 14735468]
[13]
Oridate, N.; Suzuki, S.; Higuchi, M.; Mitchell, M.F.; Hong, W.K.; Lotan, R. Involvement of reactive oxygen species in N-(4-hydroxyphenyl)retinamide-induced apoptosis in cervical carcinoma cells. J. Natl. Cancer Inst., 1997, 89(16), 1191-1198.
[http://dx.doi.org/10.1093/jnci/89.16.1191] [PMID: 9274913]
[14]
Maurer, B.J.; Metelitsa, L.S.; Seeger, R.C.; Cabot, M.C.; Reynolds, C.P. Increase of ceramide and induction of mixed apoptosis/necrosis by N-(4-hydroxyphenyl)- retinamide in neuroblastoma cell lines. J. Natl. Cancer Inst., 1999, 91(13), 1138-1146.
[http://dx.doi.org/10.1093/jnci/91.13.1138] [PMID: 10393722]
[15]
Faderl, S.; Lotan, R.; Kantarjian, H.M.; Harris, D.; Van, Q.; Estrov, Z.N. -(4-Hydroxylphenyl)retinamide (fenretinide, 4-HPR), a retinoid compound with antileukemic and proapoptotic activity in acute lymphoblastic leukemia (ALL). Leuk. Res., 2003, 27(3), 259-266.
[http://dx.doi.org/10.1016/S0145-2126(02)00162-5] [PMID: 12537979]
[16]
Chan, L.N.; Zhang, S.; Shao, J.; Waikel, R.; Thompson, E.A.; Chan, T.S.N.N. -(4-hydroxyphenyl)retinamide induces apoptosis in T lymphoma and T lymphoblastoid leukemia cells. Leuk. Lymphoma, 1997, 25(3-4), 271-280.
[http://dx.doi.org/10.3109/10428199709114166] [PMID: 9168437]
[17]
Gopal, A.K.; Pagel, J.M.; Hedin, N.; Press, O.W. Fenretinide enhances rituximab-induced cytotoxicity against B-cell lymphoma xenografts through a caspase-dependent mechanism. Blood, 2004, 103(9), 3516-3520.
[http://dx.doi.org/10.1182/blood-2003-08-2795] [PMID: 14695237]
[18]
Orienti, I.; Zuccari, G.; Falconi, M.; Teti, G.; Illingworth, N.A.; Veal, G.J. Novel micelles based on amphiphilic branched PEG as carriers for fenretinide. Nanomedicine (Lond.), 2012, 8(6), 880-890.
[http://dx.doi.org/10.1016/j.nano.2011.10.008] [PMID: 22094120]
[19]
Orienti, I.; Zuccari, G.; Carosio, R.; Montaldo, P.G. Improvement of aqueous solubility of fenretinide and other hydrophobic anti-tumor drugs by complexation with amphiphilic dextrins. Drug Deliv., 2009, 16(7), 389-398.
[http://dx.doi.org/10.1080/10717540903101655] [PMID: 19624248]
[20]
Orienti, I.; Zuccari, G.; Bergamante, V.; Mileo, E.; Lucarini, M.; Carosio, R.; Montaldo, P.G. Amphiphilic poly(vinyl alcohol) derivatives as complexing agents for fenretinide. Biomacromolecules, 2006, 7(11), 3157-3163.
[http://dx.doi.org/10.1021/bm060482s] [PMID: 17096546]
[21]
Pignatta, S.; Orienti, I.; Falconi, M.; Teti, G.; Arienti, C.; Medri, L.; Zanoni, M.; Carloni, S.; Zoli, W.; Amadori, D.; Tesei, A. Albumin nanocapsules containing fenretinide: pre-clinical evaluation of cytotoxic activity in experimental models of human non-small cell lung cancer. Nanomedicine (Lond.), 2015, 11(2), 263-273.
[http://dx.doi.org/10.1016/j.nano.2014.10.004] [PMID: 25461293]
[22]
Durante, S.; Orienti, I.; Teti, G.; Salvatore, V.; Focaroli, S.; Tesei, A.; Pignatta, S.; Falconi, M. Anti-tumor activity of fenretinide complexed with human serum albumin in lung cancer xenograft mouse model. Oncotarget, 2014, 5(13), 4811-4820.
[http://dx.doi.org/10.18632/oncotarget.2038] [PMID: 25015569]
[23]
Falconi, M.; Focaroli, S.; Teti, G.; Salvatore, V.; Durante, S.; Nicolini, B.; Orienti, I. Novel PLA microspheres with hydrophilic and bioadhesive surfaces for the controlled delivery of fenretinide. J. Microencapsul., 2014, 31(1), 41-48.
[http://dx.doi.org/10.3109/02652048.2013.805838] [PMID: 23862726]
[24]
Di Paolo, D.; Pastorino, F.; Zuccari, G.; Caffa, I.; Loi, M.; Marimpietri, D.; Brignole, C.; Perri, P.; Cilli, M.; Nico, B.; Ribatti, D.; Pistoia, V.; Ponzoni, M.; Pagnan, G. Enhanced anti-tumor and anti-angiogenic efficacy of a novel liposomal fenretinide on human neuroblastoma. J. Control. Release, 2013, 170(3), 445-451.
[http://dx.doi.org/10.1016/j.jconrel.2013.06.015] [PMID: 23792118]
[25]
Singh, R.; Lillard, J.W., Jr Nanoparticle-based targeted drug delivery. Exp. Mol. Pathol., 2009, 86(3), 215-223.
[http://dx.doi.org/10.1016/j.yexmp.2008.12.004] [PMID: 19186176]
[26]
Haley, B.; Frenkel, E. Nanoparticles for drug delivery in cancer treatment. Urol. Oncol., 2008, 26(1), 57-64.
[http://dx.doi.org/10.1016/j.urolonc.2007.03.015] [PMID: 18190833]
[27]
Di Paolo, A.; Bocci, G. Drug distribution in tumors: mechanisms, role in drug resistance, and methods for modification. Curr. Oncol. Rep., 2007, 9(2), 109-114.
[http://dx.doi.org/10.1007/s11912-007-0006-3] [PMID: 17288875]
[28]
Heldin, C.H.; Rubin, K.; Pietras, K.; Ostman, A. High interstitial fluid pressure - an obstacle in cancer therapy. Nat. Rev. Cancer, 2004, 4(10), 806-813.
[http://dx.doi.org/10.1038/nrc1456] [PMID: 15510161]
[29]
Byrne, J.D.; Betancourt, T.; Brannon-Peppas, L. Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv. Drug Deliv. Rev., 2008, 60(15), 1615-1626.
[http://dx.doi.org/10.1016/j.addr.2008.08.005] [PMID: 18840489]
[30]
Yim, H.; Na, K. Polycationic nanodrug covered with hyaluronic acid for treatment of P-glycoprotein overexpressing cancer cells. Biomacromolecules, 2010, 11(9), 2387-2393.
[http://dx.doi.org/10.1021/bm100562z] [PMID: 20687538]
[31]
Xia, T.; Kovochich, M.; Liong, M.; Zink, J.I.; Nel, A.E. Cationic polystyrene nanosphere toxicity depends on cell-specific endocytic and mitochondrial injury pathways. ACS Nano, 2008, 2(1), 85-96.
[http://dx.doi.org/10.1021/nn700256c] [PMID: 19206551]
[32]
Leroueil, P.R.; Berry, S.A.; Duthie, K.; Han, G.; Rotello, V.M.; McNerny, D.Q.; Baker, J.R., Jr; Orr, B.G.; Holl, M.M. Wide varieties of cationic nanoparticles induce defects in supported lipid bilayers. Nano Lett., 2008, 8(2), 420-424.
[http://dx.doi.org/10.1021/nl0722929] [PMID: 18217783]
[33]
Yim, H.; Park, S.J.; Bae, Y.H.; Na, K. Biodegradable cationic nanoparticles loaded with an anticancer drug for deep penetration of heterogeneous tumours. Biomaterials, 2013, 34(31), 7674-7682.
[http://dx.doi.org/10.1016/j.biomaterials.2013.06.058] [PMID: 23871541]
[34]
Bernkop-Schnürch, A. Strategies to overcome the polycation dilemma in drug delivery. Adv. Drug Deliv. Rev., 2018, 136-137, 62-72.
[http://dx.doi.org/10.1016/j.addr.2018.07.017] [PMID: 30059702]
[35]
Fang, Y; Xue, J; Gao, S; Lu, A; Yang, D; Jiang, H; He, Y; Shi, K. Cleavable PEGylation: A strategy for overcoming the "PEG dilemma" in efficient drug delivery. Drug Deliv., 2017, 24(sup1), 22-32.
[36]
Jara, J.A.; Castro-Castillo, V.; Saavedra-Olavarría, J.; Peredo, L.; Pavanni, M.; Jaña, F.; Letelier, M.E.; Parra, E.; Becker, M.I.; Morello, A.; Kemmerling, U.; Maya, J.D.; Ferreira, J. Antiproliferative and uncoupling effects of delocalized, lipophilic, cationic gallic acid derivatives on cancer cell lines. Validation in vivo in singenic mice. J. Med. Chem., 2014, 57(6), 2440-2454.
[http://dx.doi.org/10.1021/jm500174v] [PMID: 24568614]
[37]
Orienti, I.; Falconi, M.; Teti, G.; Currier, M.A.; Wang, J.; Phelps, M.; Cripe, T.P. Preparation and evaluation of a novel class of amphiphilic amines as antitumor agents and nanocarriers for bioactive molecules. Pharm. Res., 2016, 33(11), 2722-2735.
[http://dx.doi.org/10.1007/s11095-016-1999-9] [PMID: 27457066]
[38]
Sanjeev, K. A DBU–diheteroaryl halide adduct as the fastest current N-diheteroarylating agent. RSC Advances, 2013, 3, 18783-18786.
[http://dx.doi.org/10.1039/C3RA43179G]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 9
Year: 2019
Page: [807 - 817]
Pages: 11
DOI: 10.2174/1567201816666191002100745
Price: $65

Article Metrics

PDF: 15
HTML: 2

Special-new-year-discount