Nanoparticles and Immune Cells

Author(s): Romina Mitarotonda, Exequiel Giorgi, Martín F. Desimone, Mauricio C. De Marzi*.

Journal Name: Current Pharmaceutical Design

Volume 25 , Issue 37 , 2019

Become EABM
Become Reviewer

Abstract:

Nanoparticles have gained ground in several fields. However, it is important to consider their potentially hazardous effects on humans, flora, and fauna. Human exposure to nanomaterials can occur unintentionally in daily life or in industrial settings, and the continuous exposure of the biological components (cells, receptors, proteins, etc.) of the immune system to these particles can trigger an unwanted immune response (activation or suppression). Here, we present different studies that have been carried out to evaluate the response of immune cells in the presence of nanoparticles and their possible applications in the biomedical field.

Keywords: Nanoparticles, immune system, immune system cells, receptors, biomedical field, proteins.

[1]
Foglia ML, Alvarez GS, Catalano PN, et al. Recent patents on the synthesis and application of silica nanoparticles for drug delivery. Recent Pat Biotechnol 2011; 5(1): 54-61.
[http://dx.doi.org/10.2174/187220811795655887] [PMID: 21517744]
[2]
Mebert AM, Alvarez GS, Peroni R, et al. Collagen-silica nanocomposites as dermal dressings preventing infection in vivo. Mater Sci Eng C 2018; 93: 170-7.
[http://dx.doi.org/10.1016/j.msec.2018.07.078] [PMID: 30274049]
[3]
Mebert AM, Aimé C, Alvarez GS, Shi Y, Flor SA, Lucangioli SE, et al. Silica core-shell particles for the dual delivery of gentamicin and rifamycin antibiotics. J Mater Chem B Mater Biol Med 2016; 4: 3135-44.
[http://dx.doi.org/10.1039/C6TB00281A]
[4]
Mebert AM, Baglole CJ, Desimone MF, Maysinger D. Nanoengineered silica: properties, applications and toxicity. Food Chem Toxicol 2017; 109(Pt 1): 753-70.
[http://dx.doi.org/10.1016/j.fct.2017.05.054] [PMID: 28578101]
[5]
Bacchetta C, Ale A, Simoniello MF, Gervasio S, Davico C, Rossi AS, et al. Genotoxicity and oxidative stress in fish after a short-term exposure to silver nanoparticles. Ecol Indic 2017; 76: 230-239 [Internet].
[http://dx.doi.org/10.1016/j.ecolind.2017.01.018]
[6]
Ale A, Bacchetta C, Rossi AS, Galdopórpora J, Desimone MF, de la Torre FR, et al. Nanosilver toxicity in gills of a neotropical fish: metal accumulation, oxidative stress, histopathology and other physiological effects. Ecotoxicol Environ Saf 2017; 2018(148): 976-84.
[http://dx.doi.org/10.1016/j.ecoenv.2017.11.072]
[7]
Ale A, Liberatori G, Vannuccini ML, et al. Exposure to a nanosilver-enabled consumer product results in similar accumulation and toxicity of silver nanoparticles in the marine mussel Mytilus galloprovincialis. Aquat Toxicol 2019; 211: 46-56.
[http://dx.doi.org/10.1016/j.aquatox.2019.03.018] [PMID: 30946994]
[8]
Magnani ND, Marchini T, Garcés M, et al. Role of transition metals present in air particulate matter on lung oxygen metabolism Int J Biochem Cell Biol 2016; 81(Pt B): 419-26.
[http://dx.doi.org/10.1016/j.biocel.2016.10.009] [PMID: 27751881]
[9]
Pulit-Prociak J, Grabowska A, Chwastowski J, Majka TM, Banach M. Safety of the application of nanosilver and nanogold in topical cosmetic preparations. Colloids Surf B Biointerfaces 2019; 183 110416
[http://dx.doi.org/10.1016/j.colsurfb.2019.110416] [PMID: 31398622]
[10]
Ballottin D, Fulaz S, Cabrini F, et al. Antimicrobial textiles: Biogenic silver nanoparticles against Candida and Xanthomonas. Mater Sci Eng C 2017; 75: 582-9.
[http://dx.doi.org/10.1016/j.msec.2017.02.110] [PMID: 28415502]
[11]
Liu Z, Song Y, Wang Q, et al. Solvothermal fabrication and construction of highly photoelectrocatalytic TiO2 NTs/Bi2MoO6 heterojunction based on titanium mesh. J Colloid Interface Sci 2019; 556: 92-101.
[http://dx.doi.org/10.1016/j.jcis.2019.08.038] [PMID: 31430709]
[12]
Murphy K, Walport M, Travers P. Inmunobiología de Janeway. 7th ed. McGraw-Hill 2014.
[13]
Kölliker Frers R. Inmunología: inmunopatogenia y fundamentos clínico-terapéuticos. 1st ed. Corpus 2016.
[14]
Gómez S, Gamazo C, San Roman B, et al. A novel nanoparticulate adjuvant for immunotherapy with Lolium perenne. J Immunol Methods 2009; 348(1-2): 1-8.
[http://dx.doi.org/10.1016/j.jim.2009.06.005] [PMID: 19545572]
[15]
Pali-Schöll I, Szöllösi H, Starkl P, et al. Protamine nanoparticles with CpG-oligodeoxynucleotide prevent an allergen-induced Th2- response in BALB/c mice. Eur J Pharm Biopharm 2013; 85(3 Pt A)(3 PART A): 656-64.
[http://dx.doi.org/10.2217/imt.14.97] [PMID: 25496331]
[16]
Salem AK. A promising CpG adjuvant-loaded nanoparticle-based vaccine for treatment of dust mite allergies. Immunotherapy 2014; 6(11): 1161-3.
[http://dx.doi.org/10.1016/j.ejpb.2013.03.003] [PMID: 23523543]
[17]
Licciardi M, Montana G, Bondì ML, et al. An allergen-polymeric nanoaggregate as a new tool for allergy vaccination. Int J Pharm 2014; 465(1-2): 275-83.
[http://dx.doi.org/10.1016/j.ijpharm.2014.01.031] [PMID: 24491528]
[18]
Nouri HR, Varasteh A, Jaafari MR, Davies JM, Sankian M. Induction of a Th1 immune response and suppression of IgE via immunotherapy with a recombinant hybrid molecule encapsulated in liposome-protamine-DNA nanoparticles in a model of experimental allergy. Immunol Res 2015; 62(3): 280-91.
[http://dx.doi.org/10.1007/s12026-015-8659-8] [PMID: 25957889]
[19]
Walczak-Drzewiecka A, Wyczólkowska J, Dastych J. Environmentally relevant metal and transition metal ions enhance Fc epsilon RI-mediated mast cell activation. Environ Health Perspect 2003; 111(5): 708-13.
[http://dx.doi.org/10.1289/ehp.5960] [PMID: 12727598]
[20]
Aldossari AA, Shannahan JH, Podila R, Brown JM. Influence of physicochemical properties of silver nanoparticles on mast cell activation and degranulation. Toxicol In Vitro 2015; 29(1): 195-203.
[http://dx.doi.org/10.1016/j.tiv.2014.10.008] [PMID: 25458489]
[21]
Alsaleh NB, Persaud I, Brown JM. Silver nanoparticle-directed mast cell degranulation is mediated through calcium and PI3K signaling independent of the high affinity IgE receptor. PLoS One 2016; 11(12)e0167366
[http://dx.doi.org/10.1371/journal.pone.0167366] [PMID: 27907088]
[22]
Kang H, Kim S, Lee KH, et al. 5 nm silver nanoparticles amplify clinical features of atopic dermatitis in mice by activating mast cells. Small 2017; 13(9): 1-10.
[http://dx.doi.org/10.1002/smll.201602363] [PMID: 28005305]
[23]
Johnson MM, Mendoza R, Raghavendra AJ, Podila R, Brown JM. Contribution of engineered nanomaterials physicochemical properties to mast cell degranulation. Sci Rep 2016; 2017(7): 1-12.
[http://dx.doi.org/10.1038/srep43570] [PMID: 28262689]
[24]
Johnson M, Alsaleh N, Mendoza RP, et al. Genomic and transcriptomic comparison of allergen and silver nanoparticle-induced mast cell degranulation reveals novel non-immunoglobulin E mediated mechanisms. PLoS One 2018; 13(3)e0193499
[http://dx.doi.org/10.1371/journal.pone.0193499] [PMID: 29566008]
[25]
Feltis BN, Elbaz A, Wright PFA, Mackay GA, Turney TW, Lopata AL. Characterizing the inhibitory action of zinc oxide nanoparticles on allergic-type mast cell activation. Mol Immunol 2015; 66(2): 139-46.
[http://dx.doi.org/10.1016/j.molimm.2015.02.021] [PMID: 25771180]
[26]
Oyarzun-Ampuero FA, Brea J, Loza MI, Alonso MJ, Torres D. A potential nanomedicine consisting of heparin-loaded polysaccharide nanocarriers for the treatment of asthma. Macromol Biosci 2012; 12(2): 176-83.
[http://dx.doi.org/10.1002/mabi.201100102] [PMID: 22109995]
[27]
Pati R, Mehta RK, Mohanty S, et al. Topical application of zinc oxide nanoparticles reduces bacterial skin infection in mice and exhibits antibacterial activity by inducing oxidative stress response and cell membrane disintegration in macrophages. Nanomedicine (Lond) 2014; 10(6): 1195-208.
[http://dx.doi.org/10.1016/j.nano.2014.02.012] [PMID: 24607937]
[28]
Kim MH, Seo JH, Kim HM, Jeong HJ. Zinc oxide nanoparticles, a novel candidate for the treatment of allergic inflammatory diseases. Eur J Pharmacol 2014; 738: 31-9.
[http://dx.doi.org/10.1016/j.ejphar.2014.05.030] [PMID: 24877691]
[29]
Kim M-H, Jeong H-J. Zinc oxide nanoparticles suppress lps-induced NF-κB activation by inducing a20, a negative regulator of NF-κB, in RAW 264.7 macrophages. J Nanosci Nanotechnol 2015; 15(9): 6509-15.
[http://dx.doi.org/10.1166/jnn.2015.10319] [PMID: 26716206]
[30]
Kim MH, Seo JH, Kim HM, Jeong HJ. Aluminum-doped zinc oxide nanoparticles attenuate the TSLP levels via suppressing caspase-1 in activated mast cells. J Biomater Appl 2016; 30(9): 1407-16.
[http://dx.doi.org/10.1177/0885328216629822] [PMID: 26825457]
[31]
Kim M-H, Jeong H-J. Zinc oxide nanoparticles demoted MDM2 expression to suppress TSLP-induced mast cell proliferation. J Nanosci Nanotechnol 2016; 16(3): 2492-8.
[http://dx.doi.org/10.1166/jnn.2016.10785] [PMID: 27455660]
[32]
Lu L, Arizmendi N, Kulka M, Unsworth LD. The spontaneous adhesion of bmmc onto self-assembled peptide nanoscaffold without activation inhibits its IGE-mediated degranulation. Adv Healthc Mater 2017; 6(18): 1-12.
[http://dx.doi.org/10.1002/adhm.201700334] [PMID: 28665558]
[33]
Ryan JJ, Bateman HR, Stover A, et al. Fullerene nanomaterials inhibit the allergic response. J Immunol 2007; 179(1): 665-72.
[http://dx.doi.org/10.4049/jimmunol.179.1.665] [PMID: 17579089]
[34]
Sabareeswaran A, Ansar EB, Harikrishna Varma PRV, Mohanan PV, Kumary TV. Effect of surface-modified superparamagnetic iron oxide nanoparticles (SPIONS) on mast cell infiltration: an acute in vivo study. Nanomedicine (Lond) 2016; 12(6): 1523-33.
[http://dx.doi.org/10.1016/j.nano.2016.02.018] [PMID: 27013127]
[35]
Marycz K, Marędziak M, Lewandowski D, et al. The effect of Co0.2Mn0.8Fe2O4 ferrite nanoparticles on the C2 canine mastocytoma cell line and adipose-derived mesenchymal stromal stem cells (ascs) cultured under a static magnetic field: possible implications in the treatment of dog mastocytoma. Cell Mol Bioeng 2017; 10(3): 209-22.
[http://dx.doi.org/10.1007/s12195-017-0480-0] [PMID: 28580034]
[36]
Zhuravskii S, Yukina G, Kulikova O, et al. Mast cell accumulation precedes tissue fibrosis induced by intravenously administered amorphous silica nanoparticles. Toxicol Mech Methods 2016; 26(4): 260-9.
[http://dx.doi.org/10.3109/15376516.2016.1169341] [PMID: 27055490]
[37]
Yasinska IM, Calzolai L, Raap U, et al. Targeting of basophil and mast cell pro-allergic reactivity using functionalised gold nanoparticles. Front Pharmacol 2019; 10: 333.
[http://dx.doi.org/10.3389/fphar.2019.00333] [PMID: 30984005]
[38]
Chakraborty S, Kar N, Kumari L, De A, Bera T. Inhibitory effect of a new orally active cedrol-loaded nanostructured lipid carrier on compound 48/80-induced mast cell degranulation and anaphylactic shock in mice. Int J Nanomedicine 2017; 12: 4849-68.
[http://dx.doi.org/10.2147/IJN.S132114] [PMID: 28744120]
[39]
Duguay BA, Huang KWC, Kulka M. Lipofection of plasmid DNA into human mast cell lines using lipid nanoparticles generated by microfluidic mixing. J Leukoc Biol 2018; 104(3): 587-96.
[http://dx.doi.org/10.1002/JLB.3TA0517-192R] [PMID: 29668121]
[40]
Jesus S, Soares E, Borchard G, Borges O. Adjuvant activity of poly-ε-caprolactone/chitosan nanoparticles characterized by mast cell activation and IFN-γ and IL-17 production. Mol Pharm 2018; 15(1): 72-82.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b00730] [PMID: 29160080]
[41]
Siracusa MC, Kim BS, Spergel JM, Artis D. Basophils and allergic inflammation. J Allergy Clin Immunol 2013; 132(4): 789-801.
[http://dx.doi.org/10.1016/j.jaci.2013.07.046] [PMID: 24075190]
[42]
Gholami-Ahangaran M, Zia-Jahromi N. Effect of nanosilver on blood parameters in chickens having aflatoxicosis. Toxicol Ind Health 2014; 30(2): 192-6.
[http://dx.doi.org/10.1177/0748233712452611] [PMID: 22782710]
[43]
Bouallegui Y, Ben Younes R, Turki F, Oueslati R. Impact of exposure time, particle size and uptake pathway on silver nanoparticle effects on circulating immune cells in mytilus galloprovincialis. J Immunotoxicol 2017; 14(1): 116-24.
[http://dx.doi.org/10.1080/1547691X.2017.1335810] [PMID: 28604134]
[44]
Lozano-Fernández T, Ballester-Antxordoki L, Pérez-Temprano N, et al. Potential impact of metal oxide nanoparticles on the immune system: the role of integrins, L-selectin and the chemokine receptor CXCR4. Nanomedicine (Lond) 2014; 10(6): 1301-10.
[http://dx.doi.org/10.1016/j.nano.2014.03.007] [PMID: 24650882]
[45]
Park EJ, Lee SJ, Lee GH, et al. Comparison of subchronic immunotoxicity of four different types of aluminum-based nanoparticles. J Appl Toxicol 2018; 38(4): 575-84.
[http://dx.doi.org/10.1002/jat.3564] [PMID: 29168566]
[46]
Radauer-Preiml I, Andosch A, Hawranek T, et al. Nanoparticle-allergen interactions mediate human allergic responses: protein corona characterization and cellular responses. Part Fibre Toxicol 2016; 13(1): 3.
[http://dx.doi.org/10.1186/s12989-016-0113-0] [PMID: 26772182]
[47]
Kiss-Tóth Dojcsák E, Ferenczi Z, Szalai Juhász A, Kiss-Tóth E, Rácz O, Fodor B. Flow cytometric analysis of the basophil cell activating impact of potential drug delivery nanoparticle-candidate. Acta Microbiol Immunol Hung 2014; 61(1): 49-60.
[http://dx.doi.org/10.1556/AMicr.61.2014.1.5] [PMID: 24631753]
[48]
Palmer BC, Phelan-Dickenson SJ, DeLouise LA. Multi-walled carbon nanotube oxidation dependent keratinocyte cytotoxicity and skin inflammation. Part Fibre Toxicol 2019; 16(1): 3.
[http://dx.doi.org/10.1186/s12989-018-0285-x] [PMID: 30621720]
[49]
Kratzer B, Köhler C, Hofer S, et al. Prevention of allergy by virus-like nanoparticles (VNP) delivering shielded versions of major allergens in a humanized murine allergy model. Allergy 2019; 74(2): 246-60.
[50]
Bondì ML, Montana G, Craparo EF, et al. Lipid nanoparticles as delivery vehicles for the Parietaria judaica major allergen Par j 2. Int J Nanomedicine 2011; 6: 2953-62.
[http://dx.doi.org/10.2147/IJN.S24264] [PMID: 22162654]
[51]
Molina N, Martin-Serrano A, Fernandez TD, et al. Dendrimeric antigens for drug allergy diagnosis: a new approach for basophil activation tests. Molecules 2018; 23(5): 1-13.
[http://dx.doi.org/10.3390/molecules23050997] [PMID: 29695102]
[52]
Chhay P, Murphy-Marion M, Samson Y, Girard D. Activation of human eosinophils with palladium nanoparticles (Pd NPs): importance of the actin cytoskeleton in Pd NPs-induced cellular adhesion. Environ Toxicol Pharmacol 2018; 57(57): 95-103.
[http://dx.doi.org/10.1016/j.etap.2017.12.002] [PMID: 29245060]
[53]
Vallières F, Simard JC, Noël C, Murphy-Marion M, Lavastre V, Girard D. Activation of human AML14.3D10 eosinophils by nanoparticles: modulatory activity on apoptosis and cytokine production. J Immunotoxicol 2016; 13(6): 817-26.
[http://dx.doi.org/10.1080/1547691X.2016.1203379] [PMID: 27404512]
[54]
Silva LR, Girard D. Human eosinophils are direct targets to nanoparticles: zinc oxide nanoparticles (ZnO) delay apoptosis and increase the production of the pro-inflammatory cytokines IL-1β and IL-8. Toxicol Lett 2016; 259: 11-20.
[http://dx.doi.org/10.1016/j.toxlet.2016.07.020] [PMID: 27452280]
[55]
Murphy-Marion M, Girard D. Titanium dioxide nanoparticles induce human eosinophil adhesion onto endothelial EA.hy926 cells via activation of phosphoinositide 3-kinase/Akt cell signalling pathway. Immunobiology 2018; 223(2): 162-70.
[http://dx.doi.org/10.1016/j.imbio.2017.10.030] [PMID: 29054588]
[56]
Ahmed OB, Mahmoud UT, Elganady S, Nafady AM, Afifi SMH. Immunomodulatory effect of gelatin-coated silver nanoparticles in mice: ultrastructural evaluation. Ultrastruct Pathol 2016; 40(6): 342-50.
[http://dx.doi.org/10.1080/01913123.2016.1239666] [PMID: 27786576]
[57]
Seiffert J, Buckley A, Leo B, et al. Pulmonary effects of inhalation of spark-generated silver nanoparticles in Brown-Norway and Sprague-Dawley rats. Respir Res 2016; 17(1): 85.
[http://dx.doi.org/10.1186/s12931-016-0407-7] [PMID: 27435725]
[58]
Bawage SS, Tiwari PM, Singh A, et al. Gold nanorods inhibit respiratory syncytial virus by stimulating the innate immune response. Nanomedicine (Lond) 2016; 12(8): 2299-310.
[http://dx.doi.org/10.1016/j.nano.2016.06.006] [PMID: 27381068]
[59]
Vandebriel RJ, Vermeulen JP, van Engelen LB, et al. The crystal structure of titanium dioxide nanoparticles influences immune activity in vitro and in vivo. Part Fibre Toxicol 2018; 15(1): 9.
[http://dx.doi.org/10.1186/s12989-018-0245-5] [PMID: 29382351]
[60]
Carvalho S, Ferrini M, Herritt L, Holian A, Jaffar Z, Roberts K. Multi-walled carbon nanotubes augment allergic airway eosinophilic inflammation by promoting cysteinyl leukotriene production. Front Pharmacol 2018; 9(585): 585.
[http://dx.doi.org/10.3389/fphar.2018.00585] [PMID: 29922162]
[61]
Meldrum K, Robertson SB, Römer I, et al. Cerium dioxide nanoparticles exacerbate house dust mite induced type II airway inflammation. Part Fibre Toxicol 2018; 15(1): 24.
[http://dx.doi.org/10.1186/s12989-018-0261-5] [PMID: 29792201]
[62]
Vennemann A, Alessandrini F, Wiemann M. differential effects of surface-functionalized zirconium oxide nanoparticles on alveolar macrophages, rat lung, and a mouse allergy model. Nanomaterials (Basel) 2017; 7(9): 280.
[http://dx.doi.org/10.3390/nano7090280] [PMID: 28925985]
[63]
Napp J, Markus MA, Heck JG, et al. Therapeutic fluorescent hybrid nanoparticles for traceable delivery of glucocorticoids to inflammatory sites. Theranostics 2018; 8(22): 6367-83.
[http://dx.doi.org/10.7150/thno.28324] [PMID: 30613305]
[64]
Grozdanovic M, Laffey KG, Abdelkarim H, et al. Novel peptide nanoparticle-biased antagonist of CCR3 blocks eosinophil recruitment and airway hyperresponsiveness. J Allergy Clin Immunol 2019; 143(2): 669-680.e12.
[http://dx.doi.org/10.1016/j.jaci.2018.05.003] [PMID: 29778505]
[65]
Lee J, Park N, Park JY, et al. Induction of immunosuppressive CD8+CD25+FOXP3+ regulatory T cells by suboptimal stimulation with Staphylococcal enterotoxin C1. J Immunol 2018; 200(2): 669-80.
[http://dx.doi.org/10.4049/jimmunol.1602109] [PMID: 29237775]
[66]
Athari SS, Pourpak Z, Folkerts G, et al. Conjugated Alpha-Alumina nanoparticle with vasoactive intestinal peptide as a Nano-drug in treatment of allergic asthma in mice. Eur J Pharmacol 2016; 791: 811-20.
[http://dx.doi.org/10.1016/j.ejphar.2016.10.014] [PMID: 27771365]
[67]
Halwani R, Sultana Shaik A, Ratemi E, et al. A novel anti-IL4Rα nanoparticle efficiently controls lung inflammation during asthma. Exp Mol Med 2016; 48(10)e262
[http://dx.doi.org/10.1038/emm.2016.89] [PMID: 27713399]
[68]
Lin MH, Lin CF, Yang SC, Hung CF, Fang JY. The interplay between nanoparticles and neutrophils. J Biomed Nanotechnol 2018; 14(1): 66-85.
[http://dx.doi.org/10.1166/jbn.2018.2459] [PMID: 29463366]
[69]
Boraschi D, Italiani P, Palomba R, et al. Nanoparticles and innate immunity: new perspectives on host defence. Semin Immunol 2017; 34: 33-51.
[http://dx.doi.org/10.1016/j.smim.2017.08.013] [PMID: 28869063]
[70]
Saito E, Kuo R, Pearson RM, et al. Designing drug-free biodegradable nanoparticles to modulate inflammatory monocytes and neutrophils for ameliorating inflammation. J Control Release 2019; 300: 185-96.
[http://dx.doi.org/10.1016/j.jconrel.2019.02.025] [PMID: 30822435]
[71]
Mo Y, Jiang M, Zhang Y, et al. Comparative mouse lung injury by nickel nanoparticles with differential surface modification. J Nanobiotechnology 2019; 17(1): 2.
[http://dx.doi.org/10.1186/s12951-018-0436-0] [PMID: 30616599]
[72]
Furlani F, Sacco P, Decleva E, et al. Chitosan acetylation degree influences the physical properties of polysaccharide nanoparticles: implication for the innate immune cells response. ACS Appl Mater Interfaces 2019; 11(10): 9794-803.
[73]
Sanfins E, Correia AB, Gunnarsson S, Vilanova M, Cedervall T. Nanoparticle effect on neutrophil produced myeloperoxidase. PLoS One 2018; 13(1)e0191445
[http://dx.doi.org/10.1371/journal.pone.0191445] [PMID: 29346422]
[74]
Bisso PW, Gaglione S, Guimarães PPG, Mitchell MJ, Langer R. Nanomaterial interactions with human neutrophils. ACS Biomater Sci Eng 2018; 4(12): 4255-65.
[http://dx.doi.org/10.1021/acsbiomaterials.8b01062] [PMID: 31497639]
[75]
Fromen CA, Kelley WJ, Fish MB, et al. Neutrophil-particle interactions in blood circulation drive particle clearance and alter neutrophil responses in acute inflammation. ACS Nano 2017; 11(11): 10797-807.
[http://dx.doi.org/10.1021/acsnano.7b03190] [PMID: 29028303]
[76]
Kishimoto TK, Maldonado RA. Nanoparticles for the induction of antigen-specific immunological tolerance. Front Immunol 2018; 9(230): 230.
[http://dx.doi.org/10.3389/fimmu.2018.00230] [PMID: 29515571]
[77]
Evans ER, Bugga P, Asthana V, Drezek R. Metallic nanoparticles for cancer immunotherapy. Mater Today (Kidlington) 2018; 21(6): 673-85.
[http://dx.doi.org/10.1016/j.mattod.2017.11.022] [PMID: 30197553]
[78]
Napierska D, Thomassen LCJ, Lison D, Martens JA, Hoet PH. The nanosilica hazard: another variable entity. Part Fibre Toxicol 2010; 7(1): 39.
[http://dx.doi.org/10.1186/1743-8977-7-39] [PMID: 21126379]
[79]
Buzea C, Pacheco II, Robbie K. Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2007; 2(4): MR17-71.
[http://dx.doi.org/10.1116/1.2815690] [PMID: 20419892]
[80]
Fromen CA, Robbins GR, Shen TW, Kai MP, Ting JPY, DeSimone JM. Controlled analysis of nanoparticle charge on mucosal and systemic antibody responses following pulmonary immunization. Proc Natl Acad Sci USA 2015; 112(2): 488-93.
[http://dx.doi.org/10.1073/pnas.1422923112] [PMID: 25548169]
[81]
Hardy CL, LeMasurier JS, Belz GT, et al. Inert 50-nm polystyrene nanoparticles that modify pulmonary dendritic cell function and inhibit allergic airway inflammation. J Immunol 2012; 188(3): 1431-41.
[http://dx.doi.org/10.4049/jimmunol.1100156] [PMID: 22190179]
[82]
Park EJ, Bae E, Yi J, et al. Repeated-dose toxicity and inflammatory responses in mice by oral administration of silver nanoparticles. Environ Toxicol Pharmacol 2010; 30(2): 162-8.
[http://dx.doi.org/10.1016/j.etap.2010.05.004] [PMID: 21787647]
[83]
Stead SO, McInnes SJP, Kireta S, et al. Manipulating human dendritic cell phenotype and function with targeted porous silicon nanoparticles. Biomaterials 2018; 155: 92-102.
[http://dx.doi.org/10.1016/j.biomaterials.2017.11.017] [PMID: 29175084]
[84]
Lu F, Mencia A, Bi L, Taylor A, Yao Y. HogenEsch H. Dendrimer-like alpha-d-glucan nanoparticles activate dendritic cells and are effective vaccine adjuvants. J Control Release 2015; 204: 51-9.
[http://dx.doi.org/10.1016/j.jconrel.2015.03.002] [PMID: 25747143]
[85]
Castro F, Pinto ML, Silva AM, et al. Pro-inflammatory chitosan/poly(γ-glutamic acid) nanoparticles modulate human antigen-presenting cells phenotype and revert their pro-invasive capacity. Acta Biomater 2017; 63: 96-109.
[http://dx.doi.org/10.1016/j.actbio.2017.09.016] [PMID: 28919508]
[86]
Cremonini E, Zonaro E, Donini M, et al. Biogenic selenium nanoparticles: characterization, antimicrobial activity and effects on human dendritic cells and fibroblasts. Microb Biotechnol 2016; 9(6): 758-71.
[http://dx.doi.org/10.1111/1751-7915.12374] [PMID: 27319803]
[87]
Moran HBT, Turley JL, Andersson M, Lavelle EC. Immunomodulatory properties of chitosan polymers. Biomaterials 2018; 184: 1-9.
[http://dx.doi.org/10.1016/j.biomaterials.2018.08.054] [PMID: 30195140]
[88]
Warashina S, Nakamura T, Sato Y, et al. A lipid nanoparticle for the efficient delivery of siRNA to dendritic cells. J Control Release 2016; 225: 183-91.
[http://dx.doi.org/10.1016/j.jconrel.2016.01.042] [PMID: 26820519]
[89]
Choi MR, Stanton-Maxey KJ, Stanley JK, et al. A cellular Trojan Horse for delivery of therapeutic nanoparticles into tumors. Nano Lett 2007; 7(12): 3759-65.
[http://dx.doi.org/10.1021/nl072209h] [PMID: 17979310]
[90]
Shao K, Singha S, Clemente-Casares X, Tsai S, Yang Y, Santamaria P. Nanoparticle-based immunotherapy for cancer. ACS Nano 2015; 9(1): 16-30.
[http://dx.doi.org/10.1021/nn5062029] [PMID: 25469470]
[91]
Yudoh K, Karasawa R, Masuko K, Kato T. Water-soluble fullerene (C60) inhibits the development of arthritis in the rat model of arthritis. Int J Nanomedicine 2009; 4: 217-25.
[http://dx.doi.org/10.2147/IJN.S7653] [PMID: 19918368]
[92]
Hirst SM, Karakoti AS, Tyler RD, Sriranganathan N, Seal S, Reilly CM. Anti-inflammatory properties of cerium oxide nanoparticles. Small 2009; 5(24): 2848-56.
[http://dx.doi.org/10.1002/smll.200901048] [PMID: 19802857]
[93]
Schanen BC, Das S, Reilly CM, et al. Immunomodulation and T helper TH1/TH2 response polarization by CeO2 and TiO2 nanoparticles. PLoS One 2013; 8(5)e62816
[http://dx.doi.org/10.1371/journal.pone.0062816] [PMID: 23667525]
[94]
Mueller SN, Tian S, DeSimone JM. Rapid and persistent delivery of antigen by lymph node targeting PRINT nanoparticle vaccine carrier to promote humoral immunity. Mol Pharm 2015; 12(5): 1356-65.
[http://dx.doi.org/10.1021/mp500589c] [PMID: 25817072]
[95]
Gojova A, Guo B, Kota RS, Rutledge JC, Kennedy IM, Barakat AI. Induction of inflammation in vascular endothelial cells by metal oxide nanoparticles: effect of particle composition. Environ Health Perspect 2007; 115(3): 403-9.
[http://dx.doi.org/10.1289/ehp.8497] [PMID: 17431490]
[96]
De Marzi MC, Saraceno M, Mitarotonda R, et al. Evidence of size-dependent effect of silica micro- and nano-particles on basal and specialized monocyte functions. Ther Deliv 2017; 8(12): 1035-49.
[http://dx.doi.org/10.4155/tde-2017-0053] [PMID: 29125067]
[97]
Lovrić J, Cho SJ, Winnik FM, Maysinger D. Unmodified cadmium telluride quantum dots induce reactive oxygen species formation leading to multiple organelle damage and cell death. Chem Biol 2005; 12(11): 1227-34.
[http://dx.doi.org/10.1016/j.chembiol.2005.09.008] [PMID: 16298302]
[98]
Nguyen KC, Seligy VL, Tayabali AF. Cadmium telluride quantum dot nanoparticle cytotoxicity and effects on model immune responses to Pseudomonas aeruginosa. Nanotoxicology 2013; 7(2): 202-11.
[http://dx.doi.org/10.3109/17435390.2011.648667] [PMID: 22264036]
[99]
Hoshino A, Hanada S, Manabe N, Nakayama T, Yamamoto K. nanocrystal quantum dots in vitro and in vivo. 52. IEEE Trans Nanobioscience 2009; 8(1): 51-7.
[http://dx.doi.org/10.1109/TNB.2009.2016550] [PMID: 19304501]
[100]
Bruneau A, Fortier M, Gagne F, et al. Size distribution effects of cadmium tellurium quantum dots (CdS/CdTe) immunotoxicity on aquatic organisms. Environ Sci Process Impacts 2013; 15(3): 596-607.
[http://dx.doi.org/10.1039/c2em30896g] [PMID: 23738358]
[101]
Choi MR, Bardhan R, Stanton-Maxey KJ, et al. Delivery of nanoparticles to brain metastases of breast cancer using a cellular Trojan horse. Cancer Nanotechnol 2012; 3(1-6): 47-54.
[http://dx.doi.org/10.1007/s12645-012-0029-9] [PMID: 23205151]
[102]
Pal R, Chakraborty B, Nath A, et al. Noble metal nanoparticle-induced oxidative stress modulates tumor associated macrophages (TAMs) from an M2 to M1 phenotype: an in vitro approach. Int Immunopharmacol 2016; 38: 332-41.
[http://dx.doi.org/10.1016/j.intimp.2016.06.006] [PMID: 27344639]
[103]
Fuchs AK, Syrovets T, Haas KA, et al. Carboxyl- and amino-functionalized polystyrene nanoparticles differentially affect the polarization profile of M1 and M2 macrophage subsets. Biomaterials 2016; 85: 78-87.
[http://dx.doi.org/10.1016/j.biomaterials.2016.01.064] [PMID: 26854393]
[104]
Cao Q, Yan X, Chen K, et al. Macrophages as a potential tumor-microenvironment target for noninvasive imaging of early response to anticancer therapy. Biomaterials 2017; 152: 63-76.
[PMID: 29111494]
[105]
Leuschner F, Dutta P, Gorbatov R, et al. Therapeutic siRNA silencing in inflammatory monocytes in mice. Nat Biotechnol 2011; 29(11): 1005-10.
[http://dx.doi.org/10.1038/nbt.1989] [PMID: 21983520]
[106]
Widmer J, Thauvin C, Mottas I, et al. Polymer-based nanoparticles loaded with a TLR7 ligand to target the lymph node for immunostimulation. Int J Pharm 2018; 535(1-2): 444-51.
[http://dx.doi.org/10.1016/j.ijpharm.2017.11.031] [PMID: 29157965]
[107]
Hunter Z, McCarthy DP, Yap WT, et al. A biodegradable nanoparticle platform for the induction of antigen-specific immune tolerance for treatment of autoimmune disease. ACS Nano 2014; 8(3): 2148-60.
[http://dx.doi.org/10.1021/nn405033r] [PMID: 24559284]
[108]
Getts DR, Martin AJ, McCarthy DP, et al. Microparticles bearing encephalitogenic peptides induce T-cell tolerance and ameliorate experimental autoimmune encephalomyelitis. Nat Biotechnol 2012; 30(12): 1217-24.
[http://dx.doi.org/10.1038/nbt.2434] [PMID: 23159881]
[109]
Klauber TCB, Laursen JM, Zucker D, Brix S, Jensen SS, Andresen TL. Delivery of TLR7 agonist to monocytes and dendritic cells by DCIR targeted liposomes induces robust production of anti-cancer cytokines. Acta Biomater 2017; 53: 367-77.
[http://dx.doi.org/10.1016/j.actbio.2017.01.072] [PMID: 28153581]
[110]
Asthana S, Jaiswal AK, Gupta PK, Dube A, Chourasia MK. Th-1 biased immunomodulation and synergistic antileishmanial activity of stable cationic lipid-polymer hybrid nanoparticle: biodistribution and toxicity assessment of encapsulated amphotericin B. Eur J Pharm Biopharm 2015; 89: 62-73.
[http://dx.doi.org/10.1016/j.ejpb.2014.11.019] [PMID: 25477079]
[111]
Li Y, Liu W, Sun C, et al. Hybrids of carbon dots with subunit B of ricin toxin for enhanced immunomodulatory activity. J Colloid Interface Sci 2018; 523: 226-33.
[http://dx.doi.org/10.1016/j.jcis.2018.03.108] [PMID: 29626760]
[112]
Pu HL, Chiang WL, Maiti B, et al. Nanoparticles with dual responses to oxidative stress and reduced pH for drug release and anti-inflammatory applications. ACS Nano 2014; 8(2): 1213-21.
[http://dx.doi.org/10.1021/nn4058787] [PMID: 24386907]
[113]
Burga RA, Khan DH, Agrawal N, Bollard CM, Fernandes R. designing magnetically responsive biohybrids composed of cord blood-derived natural killer cells and iron oxide nanoparticles. Bioconjug Chem 2019; 30(3): 552-60.
[http://dx.doi.org/10.1021/acs.bioconjchem.9b00048] [PMID: 30779553]
[114]
Wu L, Zhang F, Wei Z, et al. Magnetic delivery of Fe3O4@polydopamine nanoparticle-loaded natural killer cells suggest a promising anticancer treatment. Biomater Sci 2018; 6(10): 2714-25.
[http://dx.doi.org/10.1039/C8BM00588E] [PMID: 30151523]
[115]
Müller L, Steiner SK, Rodriguez-Lorenzo L, Petri-Fink A, Rothen-Rutishauser B, Latzin P. Exposure to silver nanoparticles affects viability and function of natural killer cells, mostly via the release of ions. Cell Biol Toxicol 2018; 34(3): 167-76.
[http://dx.doi.org/10.1007/s10565-017-9403-z] [PMID: 28721573]
[116]
Loftus C, Saeed M, Davis DM, Dunlop IE. Activation of human natural killer cells by graphene oxide-templated antibody nanoclusters. Nano Lett 2018; 18(5): 3282-9.
[http://dx.doi.org/10.1021/acs.nanolett.8b01089] [PMID: 29676151]
[117]
Huang B, Abraham WD, Zheng Y, Bustamante López SC, Luo SS, Irvine DJ. Active targeting of chemotherapy to disseminated tumors using nanoparticle-carrying T cells. Sci Transl Med 2015; 7(291)291ra94
[http://dx.doi.org/10.1126/scitranslmed.aaa5447] [PMID: 26062846]
[118]
Mi Y, Smith CC, Yang F, et al. A dual immunotherapy nanoparticle improves t-cell activation and cancer immunotherapy. Adv Mater 2018; 30(25)e1706098
[http://dx.doi.org/10.1002/adma.201706098] [PMID: 29691900]
[119]
Schütz C, Varela JC, Perica K, Haupt C, Oelke M, Schneck JP. Antigen-specific t cell redirectors: a nanoparticle based approach for redirecting t cells. Oncotarget 2016; 7(42): 68503-12.
[http://dx.doi.org/10.18632/oncotarget.11785] [PMID: 27602488]
[120]
Perica K, Tu A, Richter A, Bieler JG, Edidin M, Schneck JP. Magnetic field-induced T cell receptor clustering by nanoparticles enhances T cell activation and stimulates antitumor activity. ACS Nano 2014; 8(3): 2252-60.
[http://dx.doi.org/10.1021/nn405520d] [PMID: 24564881]
[121]
Ben-Akiva E, Est Witte S, Meyer RA, Rhodes KR, Green JJ. Polymeric micro- and nanoparticles for immune modulation. Biomater Sci 2018; 7(1): 14-30.
[http://dx.doi.org/10.1039/C8BM01285G] [PMID: 30418444]
[122]
Nam J, Son S, Park KS, Zou W, Shea LD, Moon JJ. Cancer nanomedicine for combination cancer immunotherapy. Nat Rev Mater 2019; 4: 398-414.
[123]
Wang J, Li Y, Duan J, et al. Silica nanoparticles induce autophagosome accumulation via activation of the EIF2AK3 and ATF6 UPR pathways in hepatocytes. Autophagy 2018; 14(7): 1185-200.
[http://dx.doi.org/10.1080/15548627.2018.1458174] [PMID: 29940794]
[124]
Jakobczyk H, Sciortino F, Chevance S, Gauffre F, Troadec MB. Promises and limitations of nanoparticles in the era of cell therapy: example with CD19-targeting chimeric antigen receptor (CAR)-modified T cells. Int J Pharm 2017; 532(2): 813-24.
[http://dx.doi.org/10.1016/j.ijpharm.2017.07.075] [PMID: 28764981]
[125]
Sau S, Alsaab HO, Bhise K, Alzhrani R, Nabil G, Iyer AK. Multifunctional nanoparticles for cancer immunotherapy: a groundbreaking approach for reprogramming malfunctioned tumor environment. J Control Release 2018; 274(274): 24-34.
[http://dx.doi.org/10.1016/j.jconrel.2018.01.028] [PMID: 29391232]
[126]
Siriwon N, Kim YJ, Siegler E, et al. CAR-T cells surface-engineered with drug-encapsulated nanoparticles can ameliorate intratumoral t-cell hypofunction. Cancer Immunol Res 2018; 6(7): 812-24.
[http://dx.doi.org/10.1158/2326-6066.CIR-17-0502] [PMID: 29720380]
[127]
Kosmides AK, Necochea K, Hickey JW, Schneck JP. Separating T cell targeting components onto magnetically clustered nanoparticles boosts activation. Nano Lett 2018; 18(3): 1916-24.
[http://dx.doi.org/10.1021/acs.nanolett.7b05284] [PMID: 29488768]
[128]
Sanz-Ortega L, Rojas JM, Marcos A, Portilla Y, Stein JV, Barber DF. T cells loaded with magnetic nanoparticles are retained in peripheral lymph nodes by the application of a magnetic field. J Nanobiotechnology 2019; 17(1): 14.
[http://dx.doi.org/10.1186/s12951-019-0440-z] [PMID: 30670029]
[129]
Hickey JW, Schneck JP. enrich and expand rare antigen-specific T cells with magnetic nanoparticles. J Vis Exp 2018; (141): 1-10.
[http://dx.doi.org/10.3791/58640] [PMID: 30507913]
[130]
Chen CL, Siow TY, Chou CH, et al. Targeted superparamagnetic iron oxide nanoparticles for in vivo magnetic resonance imaging of t-cells in rheumatoid arthritis. Mol Imaging Biol 2017; 19(2): 233-44.
[http://dx.doi.org/10.1007/s11307-016-1001-6] [PMID: 27572293]
[131]
Jin WN, Yang X, Li Z, et al. Non-invasive tracking of CD4+ T cells with a paramagnetic and fluorescent nanoparticle in brain ischemia. J Cereb Blood Flow Metab 2016; 36(8): 1464-76.
[http://dx.doi.org/10.1177/0271678X15611137] [PMID: 26661207]
[132]
Mittrücker HW, Visekruna A, Huber M. Heterogeneity in the differentiation and function of CD8+ T cells. Arch Immunol Ther Exp (Warsz) 2014; 62(6): 449-58.
[http://dx.doi.org/10.1007/s00005-014-0293-y] [PMID: 24879097]
[133]
Yang YSS, Moynihan KD, Bekdemir A, et al. Targeting small molecule drugs to T cells with antibody-directed cell-penetrating gold nanoparticles. Biomater Sci 2018; 7(1): 113-24.
[http://dx.doi.org/10.1039/C8BM01208C] [PMID: 30444251]
[134]
Mansouri A, Abnous K, Alibolandi M, Taghdisi SM, Ramezani M. Targeted delivery of tacrolimus to T cells by pH-responsive aptamer-chitosan- poly(lactic-co-glycolic acid) nanocomplex. J Cell Physiol 2018; 2019: 1-10.
[http://dx.doi.org/10.1002/jcp.28458] [PMID: 30883749]
[135]
Shahzad KA, Wan X, Zhang L, et al. On-target and direct modulation of alloreactive T cells by a nanoparticle carrying MHC alloantigen, regulatory molecules and CD47 in a murine model of alloskin transplantation. Drug Deliv 2018; 25(1): 703-15.
[http://dx.doi.org/10.1080/10717544.2018.1447049] [PMID: 29508634]
[136]
Luo WH, Yang YW. Activation of antigen-specific CD8(+) T cells by poly-dl-lactide/glycolide (PLGA) nanoparticle-primed gr-1(high) cells. Pharm Res 2016; 33(4): 942-55.
[http://dx.doi.org/10.1007/s11095-015-1840-x] [PMID: 26715415]
[137]
Nembrini C, Stano A, Dane KY, et al. Nanoparticle conjugation of antigen enhances cytotoxic T-cell responses in pulmonary vaccination. Proc Natl Acad Sci USA 2011; 108(44): e989-97.
[http://dx.doi.org/10.1073/pnas.1104264108] [PMID: 21969597]
[138]
Abdelmegeed H, Nakamura T, Harashima H. In vivo inverse correlation in the activation of natural killer t cells through dual-signal stimulation via a combination of α-galactosylceramide-loaded liposomes and interleukin-12. J Pharm Sci 2016; 105(1): 250-6.
[http://dx.doi.org/10.1016/j.xphs.2015.10.009] [PMID: 26852856]
[139]
Macho Fernandez E, Chang J, Fontaine J, et al. Activation of invariant Natural Killer T lymphocytes in response to the α-galactosylceramide analogue KRN7000 encapsulated in PLGA-based nanoparticles and microparticles. Int J Pharm 2012; 423(1): 45-54.
[http://dx.doi.org/10.1016/j.ijpharm.2011.04.068] [PMID: 21575695]
[140]
Deng ZJ, Liang M, Toth I, Monteiro M, Minchin RF. Plasma protein binding of positively and negatively charged polymer-coated gold nanoparticles elicits different biological responses. Nanotoxicology 2013; 7(3): 314-22.
[http://dx.doi.org/10.3109/17435390.2012.655342] [PMID: 22394123]
[141]
Saravia J, Chapman NM, Chi H. Helper T cell differentiation. Cell Mol Immunol 2019; 16(7): 634-43.
[http://dx.doi.org/10.1038/s41423-019-0220-6] [PMID: 30867582]
[142]
Côté-Maurais G, Bernier J. Silver and fullerene nanoparticles’ effect on interleukin-2-dependent proliferation of CD4 (+) T cells. Toxicol In Vitro 2014; 28(8): 1474-81.
[http://dx.doi.org/10.1016/j.tiv.2014.08.005] [PMID: 25172299]
[143]
Toda T, Yoshino S. Enhancement of ovalbumin-specific Th1, Th2, and Th17 immune responses by amorphous silica nanoparticles. Int J Immunopathol Pharmacol 2016; 29(3): 408-20.
[http://dx.doi.org/10.1177/0394632016656192] [PMID: 27343242]
[144]
Strehl C, Schellmann S, Maurizi L, et al. Effects of PVA-coated nanoparticles on human T helper cell activity. Toxicol Lett 2016; 245: 52-8.
[http://dx.doi.org/10.1016/j.toxlet.2016.01.003] [PMID: 26774940]
[145]
Seydoux E, Rodriguez-Lorenzo L, Blom RAM, et al. Pulmonary delivery of cationic gold nanoparticles boost antigen-specific CD4+ T Cell Proliferation. Nanomedicine (Lond) 2016; 12(7): 1815-26.
[http://dx.doi.org/10.1016/j.nano.2016.02.020] [PMID: 27013126]
[146]
Noormehr H, Zavaran Hosseini A, Soudi S, Beyzay F. Enhancement of Th1 immune response against Leishmania cysteine peptidase A, B by PLGA nanoparticle. Int Immunopharmacol 2018; 59(59): 97-105.
[http://dx.doi.org/10.1016/j.intimp.2018.03.012] [PMID: 29649772]
[147]
Amini Y, Moradi B, Fasihi-Ramandi M. Aluminum hydroxide nanoparticles show strong activity to stimulate Th-1 immune response against tuberculosis. Artif Cells Nanomed Biotechnol 2017; 45(7): 1331-5.
[http://dx.doi.org/10.1080/21691401.2016.1233111] [PMID: 27647321]
[148]
Wang X, Li X, Ito A, et al. Biodegradable metal ion-doped mesoporous silica nanospheres stimulate anticancer TH1 immune response in vivo. ACS Appl Mater Interfaces 2017; 9(50): 43538-44.
[http://dx.doi.org/10.1021/acsami.7b16118] [PMID: 29192493]
[149]
Shen C-C, Liang H-J, Wang C-C, Liao M-H, Jan T-R. A role of cellular glutathione in the differential effects of iron oxide nanoparticles on antigen-specific T cell cytokine expression. Int J Nanomedicine 2011; 6: 2791-8.
[http://dx.doi.org/10.2147/IJN.S25588] [PMID: 22114506]
[150]
Shen C-C, Wang C-C, Liao M-H, Jan T-R. A single exposure to iron oxide nanoparticles attenuates antigen-specific antibody production and T-cell reactivity in ovalbumin-sensitized BALB/c mice. Int J Nanomedicine 2011; 6: 1229-35.
[http://dx.doi.org/10.2147/IJN.S21019] [PMID: 21753874]
[151]
Shen C-C, Liang H-J, Wang C-C, Liao M-H, Jan T-R. Iron oxide nanoparticles suppressed T helper 1 cell-mediated immunity in a murine model of delayed-type hypersensitivity. Int J Nanomedicine 2012; 7: 2729-37.
[http://dx.doi.org/10.2147/IJN.S31054] [PMID: 22701318]
[152]
Yagi R, Zhu J, Paul WE. An updated view on transcription factor GATA3-mediated regulation of Th1 and Th2 cell differentiation. Int Immunol 2011; 23(7): 415-20.
[http://dx.doi.org/10.1093/intimm/dxr029] [PMID: 21632975]
[153]
Salari F, Varasteh AR, Vahedi F, Hashemi M, Sankian M. Down-regulation of Th2 immune responses by sublingual administration of poly (lactic-co-glycolic) acid (PLGA)-encapsulated allergen in BALB/c mice. Int Immunopharmacol 2015; 29(2): 672-8.
[http://dx.doi.org/10.1016/j.intimp.2015.09.011] [PMID: 26404189]
[154]
Smarr CB, Yap WT, Neef TP, et al. Biodegradable antigen-associated PLG nanoparticles tolerize Th2-mediated allergic airway inflammation pre- and postsensitization. Proc Natl Acad Sci USA 2016; 113(18): 5059-64.
[http://dx.doi.org/10.1073/pnas.1505782113] [PMID: 27091976]
[155]
Lefebvre DE, Pearce B, Fine JH, et al. In vitro enhancement of mouse T helper 2 cell sensitization to ovalbumin allergen by carbon black nanoparticles. Toxicol Sci 2014; 138(2): 322-32.
[http://dx.doi.org/10.1093/toxsci/kfu010] [PMID: 24449417]
[156]
Schaefers MM, Duan B, Mizrahi B, et al. PLGA-encapsulation of the Pseudomonas aeruginosa PopB vaccine antigen improves Th17 responses and confers protection against experimental acute pneumonia. Vaccine 2018; 36(46): 6926-32.
[http://dx.doi.org/10.1016/j.vaccine.2018.10.010] [PMID: 30314911]
[157]
McCarthy DP, Yap JWT, Harp CT, et al. An antigen-encapsulating nanoparticle platform for TH1/17 immune tolerance therapy. Nanomedicine (Lond) 2017; 13(1): 191-200.
[http://dx.doi.org/10.1016/j.nano.2016.09.007] [PMID: 27720992]
[158]
Hsiao YP, Shen CC, Huang CH, Lin YC, Jan TR. Iron oxide nanoparticles attenuate T helper 17 cell responses in vitro and in vivo. Int Immunopharmacol 2018; 58(58): 32-9.
[http://dx.doi.org/10.1016/j.intimp.2018.03.007] [PMID: 29549717]
[159]
Serra P, Santamaria P. Nanoparticle-based approaches to immune tolerance for the treatment of autoimmune diseases. Eur J Immunol 2018; 48(5): 751-6.
[http://dx.doi.org/10.1002/eji.201747059] [PMID: 29427438]
[160]
LaMothe RA, Kolte PN, Vo T, et al. Tolerogenic nanoparticles induce antigen-specific regulatory T cells and provide therapeutic efficacy and transferrable tolerance against experimental autoimmune encephalomyelitis. Front Immunol 2018; 9(MAR): 281.
[http://dx.doi.org/10.3389/fimmu.2018.00281] [PMID: 29552007]
[161]
McHugh MD, Park J, Uhrich R, Gao W, Horwitz DA, Fahmy TM. Paracrine co-delivery of TGF-β and IL-2 using CD4-targeted nanoparticles for induction and maintenance of regulatory T cells. Biomaterials 2015; 59: 172-81.
[http://dx.doi.org/10.1016/j.biomaterials.2015.04.003] [PMID: 25974747]
[162]
Nosratabadi R, Rastin M, Sankian M, Haghmorad D, Mahmoudi M. Hyperforin-loaded gold nanoparticle alleviates experimental autoimmune encephalomyelitis by suppressing Th1 and Th17 cells and upregulating regulatory T cells. Nanomedicine (Lond) 2016; 12(7): 1961-71.
[http://dx.doi.org/10.1016/j.nano.2016.04.001] [PMID: 27107531]
[163]
Kuo R, Saito E, Miller SD, Shea LD. Peptide-conjugated nanoparticles reduce positive co-stimulatory expression and T cell activity to induce tolerance. Mol Ther 2017; 25(7): 1676-85.
[http://dx.doi.org/10.1016/j.ymthe.2017.03.032] [PMID: 28408181]
[164]
Ohno M, Nishida A, Sugitani Y, et al. Nanoparticle curcumin ameliorates experimental colitis via modulation of gut microbiota and induction of regulatory T cells. PLoS One 2017; 12(10)e0185999
[http://dx.doi.org/10.1371/journal.pone.0185999] [PMID: 28985227]
[165]
Moon JJ, Suh H, Li AV, Ockenhouse CF, Yadava A, Irvine DJ. Enhancing humoral responses to a malaria antigen with nanoparticle vaccines that expand Tfh cells and promote germinal center induction. Proc Natl Acad Sci USA 2012; 109(4): 1080-5.
[http://dx.doi.org/10.1073/pnas.1112648109] [PMID: 22247289]
[166]
Paul S. Shilpi, Lal G. Role of gamma-delta (γδ) T cells in autoimmunity. J Leukoc Biol 2015; 97(2): 259-71.
[http://dx.doi.org/10.1189/jlb.3RU0914-443R] [PMID: 25502468]
[167]
Zhao Y, Lin L, Xiao Z, et al. Protective role of γδ t cells in different pathogen infections and its potential clinical application. J Immunol Res 2018; 2018 5081634
[http://dx.doi.org/10.1155/2018/5081634] [PMID: 30116753]
[168]
Morrow ES, Roseweir A, Edwards J. The role of gamma delta T lymphocytes in breast cancer: a review. Transl Res 2019; 203: 88-96.
[http://dx.doi.org/10.1016/j.trsl.2018.08.005] [PMID: 30194922]
[169]
Das I, Padhi A, Mukherjee S, Dash DP, Kar S, Sonawane A. Biocompatible chitosan nanoparticles as an efficient delivery vehicle for Mycobacterium tuberculosis lipids to induce potent cytokines and antibody response through activation of γδ T cells in mice. Nanotechnology 2017; 28(16)165101
[http://dx.doi.org/10.1088/1361-6528/aa60fd] [PMID: 28206982]
[170]
Hodgins NO, Wang JTW, Al-Jamal KT. Nano-technology based carriers for nitrogen-containing bisphosphonates delivery as sensitisers of γδ T cells for anticancer immunotherapy. Adv Drug Deliv Rev 2017; 114: 143-60.
[http://dx.doi.org/10.1016/j.addr.2017.07.003] [PMID: 28694026]
[171]
Parente-Pereira AC, Shmeeda H, Whilding LM, et al. Adoptive immunotherapy of epithelial ovarian cancer with Vγ9Vδ2 T cells, potentiated by liposomal alendronic acid. J Immunol 2014; 193(11): 5557-66.
[http://dx.doi.org/10.4049/jimmunol.1402200] [PMID: 25339667]
[172]
Gutman D, Epstein-barash H, Tsuriel M, Golomb G. Nano-Biotechnology for biomedical and diagnostic research 2012 Available at.http://link.springer.com/10.1007/978-94-007-2555-3
[173]
Siegers GM, Ribot EJ, Keating A, Foster PJ. Extensive expansion of primary human gamma delta T cells generates cytotoxic effector memory cells that can be labeled with Feraheme for cellular MRI. Cancer Immunol Immunother 2013; 62(3): 571-83.
[http://dx.doi.org/10.1007/s00262-012-1353-y] [PMID: 23100099]
[174]
Cutrone G, Li X, Casas-Solvas JM, et al. Design of engineered cyclodextrin derivatives for spontaneous coating of highly porous metal-organic framework nanoparticles in aqueous media. Nanomaterials (Basel) 2019; 9(8): 1103.
[http://dx.doi.org/10.3390/nano9081103] [PMID: 31374940]
[175]
González-Ballesteros N, Diego-González L, Lastra-Valdor M, et al. Immunostimulant and biocompatible gold and silver nanoparticles synthesized using the Ulva intestinalis L. aqueous extract. J Mater Chem B Mater Biol Med 2019; 7(30): 4677-91.
[http://dx.doi.org/10.1039/C9TB00215D] [PMID: 31364682]
[176]
Mu W, Wang Y, Huang C, et al. Effect of long-term intake of dietary titanium dioxide nanoparticles on intestine inflammation in mice. J Agric Food Chem 2019; 67(33): 9382-9.
[http://dx.doi.org/10.1021/acs.jafc.9b02391] [PMID: 31361959]
[177]
Sawutdeechaikul P, Jiangchareon B, Wanichwecharungruang S, Palaga T. Oxidized carbon nanoparticles as an effective protein antigen delivery system targeting the cell-mediated immune response. Int J Nanomedicine 2019; 14: 4867-80.
[http://dx.doi.org/10.2147/IJN.S204134] [PMID: 31308663]
[178]
Wang C, Beiss V, Steinmetz NF. Cowpea mosaic virus nanoparticles and empty virus-like particles show distinct but overlapping immunostimulatory properties. J Virol 2019; 93(21): e00129-19.
[http://dx.doi.org/10.1128/JVI.00129-19] [PMID: 31375592]
[179]
Bobo D, Robinson KJ, Islam J, Thurecht KJ, Corrie SR. Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharm Res 2016; 33(10): 2373-87.
[http://dx.doi.org/10.1007/s11095-016-1958-5] [PMID: 27299311]
[180]
Dilnawaz F, Acharya S, Sahoo SK. Recent trends of nanomedicinal approaches in clinics. Int J Pharm 2018; 538(1-2): 263-78.
[http://dx.doi.org/10.1016/j.ijpharm.2018.01.016] [PMID: 2933924]
[181]
Adrianzen Herrera D, Ashai N, Perez-Soler R, Cheng H. Nanoparticle albumin bound-paclitaxel for treatment of advanced non-small cell lung cancer: an evaluation of the clinical evidence. Expert Opin Pharmacother 2019; 20(1): 95-102.
[http://dx.doi.org/10.1080/14656566.2018.1546290] [PMID: 30439289]
[182]
Takashima A, Shitara K, Fujitani K, et al. Peritoneal metastasis as a predictive factor for nab-paclitaxel in patients with pretreated advanced gastric cancer: an exploratory analysis of the phase III ABSOLUTE trial. Gastric Cancer 2019; 22(1): 155-63.
[http://dx.doi.org/10.1007/s10120-018-0838-6] [PMID: 29855738]
[183]
Blum JL, Savin MA, Edelman G, et al. Phase II study of weekly albumin-bound paclitaxel for patients with metastatic breast cancer heavily pretreated with taxanes. Clin Breast Cancer 2007; 7(11): 850-6.http://www.ncbi.nlm.nih.gov/pubmed/18269774
[http://dx.doi.org/10.3816/CBC.2007.n.049] [PMID: 18269774]
[184]
Hawkins MJ, Soon-Shiong P, Desai N. Protein nanoparticles as drug carriers in clinical medicine. Adv Drug Deliv Rev 2008; 60(8): 876-85.
[http://dx.doi.org/10.1016/j.addr.2007.08.044] [PMID: 18423779]
[185]
Mandal A, Gote V, Pal D, Ogundele A, Mitra AK. Ocular pharmacokinetics of a topical ophthalmic nanomicellar solution of cyclosporine (Cequa®) for dry eye disease. Pharm Res 2019; 36(2): 36.
[http://dx.doi.org/10.1007/s11095-018-2556-5] [PMID: 30617777]
[186]
Shi Y, Hélary C, Haye B, Coradin T. extracellular versus intracellular degradation of nanostructured silica particles. Langmuir 2018; 34(1): 406-15.
[http://dx.doi.org/10.1021/acs.langmuir.7b03980] [PMID: 29224358]
[187]
Podder S, Chanda D, Mukhopadhyay AK, et al. effect of morphology and concentration on crossover between antioxidant and pro-oxidant activity of MgO nanostructures. Inorg Chem 2018; 57(20): 12727-39.
[http://dx.doi.org/10.1021/acs.inorgchem.8b01938] [PMID: 30281293]
[188]
Tutar R, Motealleh A, Khademhosseini A, Kehr NS. Functional nanomaterials on 2D surfaces and in 3D nanocomposite hydrogels for biomedical applications. Adv Funct Mater 2019; 1904344: 1-29.https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.201904344
[http://dx.doi.org/10.1002/adfm.201904344]
[189]
Wagner AM, Knipe JM, Orive G, Peppas NA. Quantum dots in biomedical applications. Acta Biomater 2019; 94: 44-63.
[http://dx.doi.org/10.1016/j.actbio.2019.05.022] [PMID: 31082570]
[190]
Ciriza J, Saenz Del Burgo L, Gurruchaga H, et al. Graphene oxide enhances alginate encapsulated cells viability and functionality while not affecting the foreign body response. Drug Deliv 2018; 25(1): 1147-60.
[http://dx.doi.org/10.1080/10717544.2018.1474966] [PMID: 29781340]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 25
ISSUE: 37
Year: 2019
Page: [3960 - 3982]
Pages: 23
DOI: 10.2174/1381612825666190926161209
Price: $65

Article Metrics

PDF: 15
HTML: 6