The Emerging Role of the SLCO1B3 Protein in Cancer Resistance

Author(s): Ruipu Sun, Ying Ying, Zhimin Tang, Ting Liu, Fuli Shi, Huixia Li, Taichen Guo, Shibo Huang*, Ren Lai*.

Journal Name: Protein & Peptide Letters

Volume 27 , Issue 1 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Currently, chemotherapy is one of the mainstays of oncologic therapies. But the efficacy of chemotherapy is often limited by drug resistance and severe side effects. Consequently, it is becoming increasingly important to investigate the underlying mechanism and overcome the problem of anticancer chemotherapy resistance. The solute carrier organic anion transporter family member 1B3 (SLCO1B3), a functional transporter normally expressed in the liver, transports a variety of endogenous and exogenous compounds, including hormones and their conjugates as well as some anticancer drugs. The extrahepatic expression of SLCO1B3 has been detected in different cancer cell lines and cancer tissues. Recently, accumulating data indicates that the abnormal expression and function of SLCO1B3 are involved in resistance to anticancer drugs, such as taxanes, camptothecin and its analogs, SN-38, and Androgen Deprivation Therapy (ADT) in breast, prostate, lung, hepatic, and colorectal cancer, respectively. Thus, more investigations have been implemented to identify the potential SLCO1B3-related mechanisms of cancer drug resistance. In this review, we focus on the emerging roles of SLCO1B3 protein in the development of cancer chemotherapy resistance and briefly discuss the mechanisms of resistance. Elucidating the function of SLCO1B3 in chemoresistance may bring out novel therapeutic strategies for cancer treatment.

Keywords: Cancer, chemotherapy, SLCO1B3, drug resistance, anticancer drugs, androgen deprivation therapy.

[1]
Goodman, L.S.; Wintrobe, M.M.; Dameshek, W.; Goodman, M.J.; Gilman, A.; Mclennan, M.T. Nitrogen mustard therapy; use of methyl-bis (beta-chloroethyl) amine hydrochloride and tris (beta-chloroethyl) amine hydrochloride for Hodgkin’s disease, lymphosarcoma, leukemia and certain allied and miscellaneous disorders. J. Am. Med. Assoc., 1946, 132, 126-132.
[http://dx.doi.org/10.1001/jama.1946.02870380008004] [PMID: 20997191]
[2]
Masood, I.; Kiani, M.H.; Ahmad, M.; Masood, M.I.; Sadaquat, H. Major contributions towards finding a cure for cancer through chemotherapy: A historical review. Tumori, 2016, 102(1), 6-17.
[http://dx.doi.org/10.5301/tj.5000387] [PMID: 26350183]
[3]
Gottesman, M.M. Mechanisms of cancer drug resistance. Annu. Rev. Med., 2002, 53(1), 615-627.
[http://dx.doi.org/10.1146/annurev.med.53.082901.103929] [PMID: 11818492]
[4]
Gottesman, M.M.; Lavi, O.; Hall, M.D.; Gillet, J-P. Toward a better understanding of the complexity of cancer drug resistance. Annu. Rev. Pharmacol. Toxicol., 2016, 56(1), 85-102.
[http://dx.doi.org/10.1146/annurev-pharmtox-010715-103111] [PMID: 26514196]
[5]
Holohan, C.; Van Schaeybroeck, S.; Longley, D.B.; Johnston, P.G. Cancer drug resistance: an evolving paradigm. Nat. Rev. Cancer, 2013, 13(10), 714-726.
[http://dx.doi.org/10.1038/nrc3599] [PMID: 24060863]
[6]
Kischkel, F.C.; Meyer, C.; Eich, J.; Nassir, M.; Mentze, M.; Braicu, I.; Kopp-Schneider, A.; Sehouli, J. Prediction of clinical response to drugs in ovarian cancer using the chemotherapy resistance test (CTR-test). J. Ovarian Res., 2017, 10(1), 72.
[http://dx.doi.org/10.1186/s13048-017-0365-9] [PMID: 29078793]
[7]
Colombo, P.E.; Fabbro, M.; Theillet, C.; Bibeau, F.; Rouanet, P.; Ray-Coquard, I. Sensitivity and resistance to treatment in the primary management of epithelial ovarian cancer. Crit. Rev. Oncol. Hematol., 2014, 89(2), 207-216.
[http://dx.doi.org/10.1016/j.critrevonc.2013.08.017] [PMID: 24071502]
[8]
Li, X.; Lewis, M.T.; Huang, J.; Gutierrez, C.; Osborne, C.K.; Wu, M.F.; Hilsenbeck, S.G.; Pavlick, A.; Zhang, X.; Chamness, G.C.; Wong, H.; Rosen, J.; Chang, J.C. Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J. Natl. Cancer Inst., 2008, 100(9), 672-679.
[http://dx.doi.org/10.1093/jnci/djn123] [PMID: 18445819]
[9]
Luqmani, Y.A. Mechanisms of drug resistance in cancer chemotherapy. Med. Princ. Pract., 2005, 14, 35-48.
[http://dx.doi.org/10.1159/000086183]
[10]
Gottesman, M.M.; Fojo, T.; Bates, S.E. Multidrug resistance in cancer: role of ATP-dependent transporters. Nat. Rev. Cancer, 2002, 2(1), 48-58.
[http://dx.doi.org/10.1038/nrc706] [PMID: 11902585]
[11]
Keogh, J.P. Membrane transporters in drug development. Adv. Pharmacol., 2012, 63, 1-42.
[http://dx.doi.org/10.1016/B978-0-12-398339-8.00001-X] [PMID: 22776638]
[12]
Tew, K.D. Glutathione-associated enzymes in anticancer drug resistance. Cancer Res., 1994, 54(16), 4313-4320.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-3143] [PMID: 8044778]
[13]
Rodriguez-Antona, C.; Ingelman-Sundberg, M. Cytochrome P450 pharmacogenetics and cancer. Oncogene, 2006, 25(11), 1679-1691.
[http://dx.doi.org/10.1038/sj.onc.1209377] [PMID: 16550168]
[14]
Li, Y.J.; Lei, Y.H.; Yao, N.; Wang, C.R.; Hu, N.; Ye, W.C.; Zhang, D.M.; Chen, Z.S. Autophagy and multidrug resistance in cancer. Chin. J. Cancer, 2017, 36(1), 52.
[http://dx.doi.org/10.1186/s40880-017-0219-2] [PMID: 28646911]
[15]
Shoemaker, R.H. Genetic and epigenetic factors in anticancer drug resistance. J. Natl. Cancer Inst., 2000, 92(1), 4-5.
[http://dx.doi.org/10.1093/jnci/92.1.4] [PMID: 10620620]
[16]
Xu, N.; Zhang, J.; Shen, C.; Luo, Y.; Xia, L.; Xue, F.; Xia, Q. Cisplatin-induced downregulation of miR-199a-5p increases drug resistance by activating autophagy in HCC cell. Biochem. Biophys. Res. Commun., 2012, 423(4), 826-831.
[http://dx.doi.org/10.1016/j.bbrc.2012.06.048] [PMID: 22713463]
[17]
Zhang, J.T. Use of arrays to investigate the contribution of ATP-binding cassette transporters to drug resistance in cancer chemotherapy and prediction of chemosensitivity. Cell Res., 2007, 17(4), 311-323.
[http://dx.doi.org/10.1038/cr.2007.15] [PMID: 17404598]
[18]
Senthebane, D.A.; Rowe, A.; Thomford, N.E.; Shipanga, H.; Munro, D.; Mazeedi, M.A.M.A.; Almazyadi, H.A.M.; Kallmeyer, K.; Dandara, C.; Pepper, M.S.; Parker, M.I.; Dzobo, K. The role of tumor microenvironment in chemoresistance: to survive, keep your enemies closer. Int. J. Mol. Sci., 2017, 18(7)E1586
[http://dx.doi.org/10.3390/ijms18071586] [PMID: 28754000]
[19]
Berrazouane, S.; Boisvert, M.; Salti, S.; Mourad, W.; Al-Daccak, R.; Barabé, F.; Aoudjit, F. Beta1 integrin blockade overcomes doxorubicin resistance in human T-cell acute lymphoblastic leukemia. Cell Death Dis., 2019, 10(5), 357.
[http://dx.doi.org/10.1038/s41419-019-1593-2] [PMID: 31043590]
[20]
Johansen, S.; Brenner, A.K.; Bartaula-Brevik, S.; Reikvam, H.; Bruserud, O. The possible importance of β3 integrins for leukemogenesis and chemoresistance in acute myeloid leukemia. Int. J. Mol. Sci., 2018, 19(1)E251
[http://dx.doi.org/10.3390/ijms19010251] [PMID: 29342970]
[21]
Guo, F.; Zhang, H.; Jia, Z.; Cui, M.; Tian, J. Chemoresistance and targeting of growth factors/cytokines signalling pathways: towards the development of effective therapeutic strategy for endometrial cancer. Am. J. Cancer Res., 2018, 8(7), 1317-1331.
[PMID: 30094104]
[22]
Milane, L.; Duan, Z.; Amiji, M. Role of hypoxia and glycolysis in the development of multi-drug resistance in human tumor cells and the establishment of an orthotopic multi-drug resistant tumor model in nude mice using hypoxic pre-conditioning. Cancer Cell Int., 2011, 11, 3.
[http://dx.doi.org/10.1186/1475-2867-11-3] [PMID: 21320311]
[23]
Dean, M.; Fojo, T.; Bates, S. Tumour stem cells and drug resistance. Nat. Rev. Cancer, 2005, 5(4), 275-284.
[http://dx.doi.org/10.1038/nrc1590] [PMID: 15803154]
[24]
Li, Q.; Shu, Y. Role of solute carriers in response to anticancer drugs. Mol. Cell. Ther., 2014, 2(1), 15.
[http://dx.doi.org/10.1186/2052-8426-2-15] [PMID: 26056583]
[25]
McFeely, S.J.; Ritchie, T.K.; Yu, J.; Nordmark, A.; Levy, R.H.; Ragueneau-Majlessi, I. Identification and evaluation of clinical substrates of organic anion transporting polypeptides 1B1 and 1B3. Clin. Transl. Sci., 2019, 12(4), 379-387.
[http://dx.doi.org/10.1111/cts.12623] [PMID: 30706983]
[26]
Abe, T.; Unno, M.; Onogawa, T.; Tokui, T.; Kondo, T.N.; Nakagomi, R.; Adachi, H.; Fujiwara, K.; Okabe, M.; Suzuki, T.; Nunoki, K.; Sato, E.; Kakyo, M.; Nishio, T.; Sugita, J.; Asano, N.; Tanemoto, M.; Seki, M.; Date, F.; Ono, K.; Kondo, Y.; Shiiba, K.; Suzuki, M.; Ohtani, H.; Shimosegawa, T.; Iinuma, K.; Nagura, H.; Ito, S.; Matsuno, S. LST-2, a human liver-specific organic anion transporter, determines methotrexate sensitivity in gastrointestinal cancers. Gastroenterology, 2001, 120(7), 1689-1699.
[http://dx.doi.org/10.1053/gast.2001.24804] [PMID: 11375950]
[27]
Muto, M.; Onogawa, T.; Suzuki, T.; Ishida, T.; Rikiyama, T.; Katayose, Y.; Ohuchi, N.; Sasano, H.; Abe, T.; Unno, M. Human liver-specific organic anion transporter-2 is a potent prognostic factor for human breast carcinoma. Cancer Sci., 2007, 98(10), 1570-1576.
[http://dx.doi.org/10.1111/j.1349-7006.2007.00570.x] [PMID: 17760952]
[28]
Hagenbuch, B.; Meier, P.J. The superfamily of organic anion transporting polypeptides. Biochim. Biophys. Acta, 2003, 1609(1), 1-18.
[http://dx.doi.org/10.1016/S0005-2736(02)00633-8] [PMID: 12507753]
[29]
König, J.; Cui, Y.; Nies, A.T.; Keppler, D. Localization and genomic organization of a new hepatocellular organic anion transporting polypeptide. J. Biol. Chem., 2000, 275(30), 23161-23168.
[http://dx.doi.org/10.1074/jbc.M001448200] [PMID: 10779507]
[30]
Hagenbuch, B.; Gui, C. Xenobiotic transporters of the human organic anion transporting polypeptides (OATP) family. Xenobiotica, 2008, 38(7-8), 778-801.
[http://dx.doi.org/10.1080/00498250801986951] [PMID: 18668430]
[31]
Nagai, M.; Furihata, T.; Matsumoto, S.; Ishii, S.; Motohashi, S.; Yoshino, I.; Ugajin, M.; Miyajima, A.; Matsumoto, S.; Chiba, K. Identification of a new organic anion transporting polypeptide 1B3 mRNA isoform primarily expressed in human cancerous tissues and cells. Biochem. Biophys. Res. Commun., 2012, 418(4), 818-823.
[http://dx.doi.org/10.1016/j.bbrc.2012.01.115] [PMID: 22326869]
[32]
Thakkar, N.; Kim, K.; Jang, E.R.; Han, S.; Kim, K.; Kim, D.; Merchant, N.; Lockhart, A.C.; Lee, W. A cancer-specific variant of the SLCO1B3 gene encodes a novel human organic anion transporting polypeptide 1B3 (OATP1B3) localized mainly in the cytoplasm of colon and pancreatic cancer cells. Mol. Pharm., 2013, 10(1), 406-416.
[http://dx.doi.org/10.1021/mp3005353] [PMID: 23215050]
[33]
Furihata, T.; Sun, Y.; Chiba, K. Cancer-type organic anion transporting polypeptide 1B3: current knowledge of the gene structure, expression profile, functional implications and future perspectives. Curr. Drug Metab., 2015, 16(6), 474-485.
[http://dx.doi.org/10.2174/1389200216666150812142715] [PMID: 26264344]
[34]
Sewda, K.; Coppola, D.; Enkemann, S.; Yue, B.; Kim, J.; Lopez, A.S.; Wojtkowiak, J.W.; Stark, V.E.; Morse, B.; Shibata, D.; Vignesh, S.; Morse, D.L. Cell-surface markers for colon adenoma and adenocarcinoma. Oncotarget, 2016, 7(14), 17773-17789.
[http://dx.doi.org/10.18632/oncotarget.7402] [PMID: 26894861]
[35]
Sun, Y.; Harada, M.; Shimozato, O.; Souda, H.; Takiguchi, N.; Nabeya, Y.; Kamijo, T.; Akita, H.; Anzai, N.; Chiba, K.; Furihata, T. Cancer-type OATP1B3 mRNA has the potential to become a detection and prognostic biomarker for human colorectal cancer. Biomarkers Med., 2017, 11(8), 629-639.
[http://dx.doi.org/10.2217/bmm-2017-0098] [PMID: 28592144]
[36]
Hays, A.; Apte, U.; Hagenbuch, B. Organic anion transporting polypeptides expressed in pancreatic cancer may serve as potential diagnostic markers and therapeutic targets for early stage adenocarcinomas. Pharm. Res., 2013, 30(9), 2260-2269.
[http://dx.doi.org/10.1007/s11095-012-0962-7] [PMID: 23307416]
[37]
Smith, N.F.; Acharya, M.R.; Desai, N.; Figg, W.D.; Sparreboom, A. Identification of OATP1B3 as a high-affinity hepatocellular transporter of paclitaxel. Cancer Biol. Ther., 2005, 4(8), 815-818.
[http://dx.doi.org/10.4161/cbt.4.8.1867] [PMID: 16210916]
[38]
Lee, H.H.; Leake, B.F.; Teft, W.; Tirona, R.G.; Kim, R.B.; Ho, R.H. Contribution of hepatic organic anion-transporting polypeptides to docetaxel uptake and clearance. Mol. Cancer Ther., 2015, 14(4), 994-1003.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0547] [PMID: 25695959]
[39]
Lancaster, C.S.; Sprowl, J.A.; Walker, A.L.; Hu, S.; Gibson, A.A.; Sparreboom, A. Modulation of OATP1B-type transporter function alters cellular uptake and disposition of platinum chemotherapeutics. Mol. Cancer Ther., 2013, 12(8), 1537-1544.
[http://dx.doi.org/10.1158/1535-7163.MCT-12-0926] [PMID: 23757163]
[40]
Yamaguchi, H.; Kobayashi, M.; Okada, M.; Takeuchi, T.; Unno, M.; Abe, T.; Goto, J.; Hishinuma, T.; Mano, N. Rapid screening of antineoplastic candidates for the human organic anion transporter OATP1B3 substrates using fluorescent probes. Cancer Lett., 2008, 260(1-2), 163-169.
[http://dx.doi.org/10.1016/j.canlet.2007.10.040] [PMID: 18082941]
[41]
Hu, S.; Franke, R.M.; Filipski, K.K.; Hu, C.; Orwick, S.J.; de Bruijn, E.A.; Burger, H.; Baker, S.D.; Sparreboom, A. Interaction of imatinib with human organic ion carriers. Clin. Cancer Res., 2008, 14(10), 3141-3148.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-4913] [PMID: 18483382]
[42]
Polli, J.W.; Humphreys, J.E.; Harmon, K.A.; Castellino, S.; O’Mara, M.J.; Olson, K.L.; John-Williams, L.S.; Koch, K.M.; Serabjit-Singh, C.J. The role of efflux and uptake transporters in Lapatinib (Tykerb, GW572016) disposition and drug interactions. Drug Metab. Dispos., 2008, 36(4), 695-701.
[http://dx.doi.org/10.1124/dmd.107.018374] [PMID: 18216274]
[43]
de Morrée, E.S.; Böttcher, R.; van Soest, R.J.; Aghai, A.; de Ridder, C.M.; Gibson, A.A.; Mathijssen, R.H.J.; Burger, H.; Wiemer, E.A.C.; Sparreboom, A.; de Wit, R.; van Weerden, W.M. Loss of SLCO1B3 drives taxane resistance in prostate cancer. Br. J. Cancer, 2016, 115(6), 674-681.
[http://dx.doi.org/10.1038/bjc.2016.251] [PMID: 27537383]
[44]
Lee, W.; Belkhiri, A.; Lockhart, A.C.; Merchant, N.; Glaeser, H.; Harris, E.I.; Washington, M.K.; Brunt, E.M.; Zaika, A.; Kim, R.B.; El-Rifai, W. Overexpression of OATP1B3 confers apoptotic resistance in colon cancer. Cancer Res., 2008, 68(24), 10315-10323.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-1984] [PMID: 19074900]
[45]
Hamada, A.; Sissung, T.; Price, D.K.; Danesi, R.; Chau, C.H.; Sharifi, N.; Venzon, D.; Maeda, K.; Nagao, K.; Sparreboom, A.; Mitsuya, H.; Dahut, W.L.; Figg, W.D. Effect of SLCO1B3 haplotype on testosterone transport and clinical outcome in caucasian patients with androgen-independent prostatic cancer. Clin. Cancer Res., 2008, 14(11), 3312-3318.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-4118] [PMID: 18519758]
[46]
Sissung, T.M.; Reece, K.M.; Spencer, S.; Figg, W.D. Contribution of the OATP1B subfamily to cancer biology and treatment. Clin. Pharmacol. Ther., 2012, 92(5), 658-660.
[http://dx.doi.org/10.1038/clpt.2012.127] [PMID: 23010650]
[47]
Meier-Abt, F.; Mokrab, Y.; Mizuguchi, K. Organic anion transporting polypeptides of the OATP/SLCO superfamily: identification of new members in nonmammalian species, comparative modeling and a potential transport mode. J. Membr. Biol., 2005, 208(3), 213-227.
[http://dx.doi.org/10.1007/s00232-005-7004-x] [PMID: 16648940]
[48]
Mandery, K.; Sticht, H.; Bujok, K.; Schmidt, I.; Fahrmayr, C.; Balk, B.; Fromm, M.F.; Glaeser, H. Functional and structural relevance of conserved positively charged lysine residues in organic anion transporting polypeptide 1B3. Mol. Pharmacol., 2011, 80(3), 400-406.
[http://dx.doi.org/10.1124/mol.111.071282] [PMID: 21642393]
[49]
Glaeser, H.; Mandery, K.; Sticht, H.; Fromm, M.F.; König, J. Relevance of conserved lysine and arginine residues in transmembrane helices for the transport activity of organic anion transporting polypeptide 1B3. Br. J. Pharmacol., 2010, 159(3), 698-708.
[http://dx.doi.org/10.1111/j.1476-5381.2009.00568.x] [PMID: 20100277]
[50]
Schwarz, U.I.; Meyer zu Schwabedissen, H.E.; Tirona, R.G.; Suzuki, A.; Leake, B.F.; Mokrab, Y.; Mizuguchi, K.; Ho, R.H.; Kim, R.B. Identification of novel functional organic anion-transporting polypeptide 1B3 polymorphisms and assessment of substrate specificity. Pharmacogenet. Genomics, 2011, 21(3), 103-114.
[http://dx.doi.org/10.1097/FPC.0b013e328342f5b1] [PMID: 21278621]
[51]
Gui, C.; Hagenbuch, B. Amino acid residues in transmembrane domain 10 of organic anion transporting polypeptide 1B3 are critical for cholecystokinin octapeptide transport. Biochemistry, 2008, 47(35), 9090-9097.
[http://dx.doi.org/10.1021/bi8008455] [PMID: 18690707]
[52]
Suga, T.; Yamaguchi, H.; Sato, T.; Maekawa, M.; Goto, J.; Mano, N. Preference of conjugated bile acids over unconjugated bile acids as substrates for OATP1B1 and OATP1B3. PLoS One, 2017, 12(1)e0169719
[http://dx.doi.org/10.1371/journal.pone.0169719] [PMID: 28060902]
[53]
Chiou, W.J.; de Morais, S.M.; Kikuchi, R.; Voorman, R.L.; Li, X.; Bow, D.A.J. In vitro OATP1B1 and OATP1B3 inhibition is associated with observations of benign clinical unconjugated hyperbilirubinemia. Xenobiotica, 2014, 44(3), 276-282.
[http://dx.doi.org/10.3109/00498254.2013.820006] [PMID: 23886114]
[54]
Maeda, K.; Kambara, M.; Tian, Y.; Hofmann, A.F.; Sugiyama, Y. Uptake of ursodeoxycholate and its conjugates by human hepatocytes: role of Na(+)-taurocholate cotransporting polypeptide (NTCP), organic anion transporting polypeptide (OATP) 1B1 (OATP-C), and oatp1B3 (OATP8). Mol. Pharm., 2006, 3(1), 70-77.
[http://dx.doi.org/10.1021/mp050063u] [PMID: 16686371]
[55]
Letschert, K.; Keppler, D.; König, J. Mutations in the SLCO1B3 gene affecting the substrate specificity of the hepatocellular uptake transporter OATP1B3 (OATP8). Pharmacogenetics, 2004, 14(7), 441-452.
[http://dx.doi.org/10.1097/01.fpc.0000114744.08559.92] [PMID: 15226676]
[56]
Smith, N.F.; Figg, W.D.; Sparreboom, A. Role of the liver-specific transporters OATP1B1 and OATP1B3 in governing drug elimination. Expert Opin. Drug Metab. Toxicol., 2005, 1(3), 429-445.
[http://dx.doi.org/10.1517/17425255.1.3.429] [PMID: 16863454]
[57]
Nozawa, T.; Tamai, I.; Sai, Y.; Nezu, J.; Tsuji, A. Contribution of organic anion transporting polypeptide OATP-C to hepatic elimination of the opioid pentapeptide analogue [D-Ala2, D-Leu5]-enkephalin. J. Pharm. Pharmacol., 2003, 55(7), 1013-1020.
[http://dx.doi.org/10.1211/0022357021440] [PMID: 12906759]
[58]
Ishiguro, N.; Maeda, K.; Kishimoto, W.; Saito, A.; Harada, A.; Ebner, T.; Roth, W.; Igarashi, T.; Sugiyama, Y. Predominant contribution of OATP1B3 to the hepatic uptake of telmisartan, an angiotensin II receptor antagonist, in humans. Drug Metab. Dispos., 2006, 34(7), 1109-1115.
[http://dx.doi.org/10.1124/dmd.105.009175] [PMID: 16611857]
[59]
Keppler, D. The roles of MRP2, MRP3, OATP1B1, and OATP1B3 in conjugated hyperbilirubinemia. Drug Metab. Dispos., 2014, 42(4), 561-565.
[http://dx.doi.org/10.1124/dmd.113.055772] [PMID: 24459177]
[60]
Van de Steeg, E.; Stránecký, V.; Hartmannová, H.; Nosková, L.; Hřebíček, M.; Wagenaar, E.; van Esch, A.; de Waart, D.R.; Oude Elferink, R.P.J.; Kenworthy, K.E.; Sticová, E.; al-Edreesi, M.; Knisely, A.S.; Kmoch, S.; Jirsa, M.; Schinkel, A.H. Complete OATP1B1 and OATP1B3 deficiency causes human Rotor syndrome by interrupting conjugated bilirubin reuptake into the liver. J. Clin. Invest., 2012, 122(2), 519-528.
[http://dx.doi.org/10.1172/JCI59526] [PMID: 22232210]
[61]
Maeda, K. Organic Anion Transporting Polypeptide (OATP)1B1 and OATP1B3 as important regulators of the pharmacokinetics of substrate drugs. Biol. Pharm. Bull. Pharm. Bull., 2015, 38(2), 155-168.
[http://dx.doi.org/https://doi.org/10.1248/bpb.b14-00767]
[62]
Kullak-Ublick, G.A.; Ismair, M.G.; Stieger, B.; Landmann, L.; Huber, R.; Pizzagalli, F.; Fattinger, K.; Meier, P.J.; Hagenbuch, B. Organic anion-transporting polypeptide B (OATP-B) and its functional comparison with three other OATPs of human liver. Gastroenterology, 2001, 120(2), 525-533.
[http://dx.doi.org/10.1053/gast.2001.21176] [PMID: 11159893]
[63]
Ismair, M.G.; Stieger, B.; Cattori, V.; Hagenbuch, B.; Fried, M.; Meier, P.J.; Kullak-Ublick, G.A. Hepatic uptake of cholecystokinin octapeptide by organic anion-transporting polypeptides OATP4 and OATP8 of rat and human liver. Gastroenterology, 2001, 121(5), 1185-1190.
[http://dx.doi.org/10.1053/gast.2001.28704] [PMID: 11677211]
[64]
Meier-Abt, F.; Faulstich, H.; Hagenbuch, B. Identification of phalloidin uptake systems of rat and human liver. Biochim. Biophys. Acta, 2004, 1664(1), 64-69.
[http://dx.doi.org/10.1016/j.bbamem.2004.04.004] [PMID: 15238259]
[65]
Fischer, W.J.; Altheimer, S.; Cattori, V.; Meier, P.J.; Dietrich, D.R.; Hagenbuch, B. Organic anion transporting polypeptides expressed in liver and brain mediate uptake of microcystin. Toxicol. Appl. Pharmacol., 2005, 203(3), 257-263.
[http://dx.doi.org/10.1016/j.taap.2004.08.012] [PMID: 15737679]
[66]
Zimmerman, E.I.; Hu, S.; Roberts, J.L.; Gibson, A.A.; Orwick, S.J.; Li, L.; Sparreboom, A.; Baker, S.D. Contribution of OATP1B1 and OATP1B3 to the disposition of sorafenib and sorafenib-glucuronide. Clin. Cancer Res., 2013, 19(6), 1458-1466.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-3306] [PMID: 23340295]
[67]
Durmus, S.; Naik, J.; Buil, L.; Wagenaar, E.; van Tellingen, O.; Schinkel, A.H. In vivo disposition of doxorubicin is affected by mouse Oatp1a/1b and human OATP1A/1B transporters. Int. J. Cancer, 2014, 135(7), 1700-1710.
[http://dx.doi.org/10.1002/ijc.28797] [PMID: 24554572]
[68]
Adane, E.D.; Monks, N.; Roberts, M.J.; Horn, J.; Moscow, J.A.; Transporter, L.M. Pathways for the Novel Camptothecin Analog DB-67. AAPS Abstract M1032 AAPS Workshop on Drug Transporters in ADME: From the Bench to the Bedside, 2007.
[69]
König, J.; Cui, Y.; Nies, A.T.; Keppler, D. A novel human organic anion transporting polypeptide localized to the basolateral hepatocyte membrane. Am. J. Physiol. Gastrointest. Liver Physiol., 2000, 278(1), G156-G164.
[http://dx.doi.org/10.1152/ajpgi.2000.278.1.G156] [PMID: 10644574]
[70]
Cui, Y.; König, J.; Nies, A.T.; Pfannschmidt, M.; Hergt, M.; Franke, W.W.; Alt, W.; Moll, R.; Keppler, D. Detection of the human organic anion transporters SLC21A6 (OATP2) and SLC21A8 (OATP8) in liver and hepatocellular carcinoma. Lab. Invest., 2003, 83, 527-538.
[http://dx.doi.org/10.1097/01.LAB.0000065015.02412.48]
[71]
Vavricka, S.R.; Jung, D.; Fried, M.; Grützner, U.; Meier, P.J.; Kullak-Ublick, G.A. The human organic anion transporting polypeptide 8 (SLCO1B3) gene is transcriptionally repressed by hepatocyte nuclear factor 3β in hepatocellular carcinoma. J. Hepatol., 2004, 40(2), 212-218.
[http://dx.doi.org/10.1016/j.jhep.2003.10.008] [PMID: 14739090]
[72]
Miura, T.; Ban, D.; Tanaka, S.; Mogushi, K.; Kudo, A.; Matsumura, S.; Mitsunori, Y.; Ochiai, T.; Tanaka, H.; Tanabe, M. Distinct clinicopathological phenotype of hepatocellular carcinoma with ethoxybenzyl-magnetic resonance imaging hyperintensity: association with gene expression signature. Am. J. Surg., 2015, 210(3), 561-569.
[http://dx.doi.org/10.1016/j.amjsurg.2015.03.027] [PMID: 26105803]
[73]
Hidaka, M.; Takatsuki, M.; Okudaira, S.; Soyama, A.; Muraoka, I.; Tanaka, T.; Yamaguchi, I.; Hara, T.; Miyaaki, H.; Ichikawa, T.; Hayashi, T.; Sakamoto, I.; Nakao, K.; Kuroki, T.; Kanematsu, T.; Eguchi, S. The expression of transporter OATP2/OATP8 decreases in undetectable hepatocellular carcinoma by Gd-EOB-MRI in the explanted cirrhotic liver. Hepatol. Int., 2013, 7(2), 655-661.
[http://dx.doi.org/10.1007/s12072-012-9379-y] [PMID: 26201798]
[74]
Alsinnawi, M.; Zhang, A.; Bianchi-Frias, D.; Burns, J.; Cho, E.; Zhang, X.; Sowalsky, A.; Ye, H.; Slee, A.E.; True, L.; Porter, C.; Taplin, M.E.; Balk, S.; Nelson, P.S.; Montgomery, R.B.; Mostaghel, E.A. Association of prostate cancer SLCO gene expression with Gleason grade and alterations following androgen deprivation therapy. Prostate Cancer Prostatic Dis., 2019. Epub ahead of print
[http://dx.doi.org/10.1038/s41391-019-0141-6] [PMID: 30890759]
[75]
Alam, K.; Farasyn, T.; Ding, K.; Yue, W. Characterization of liver- and cancer-type-organic anion transporting polypeptide (OATP) 1B3 messenger RNA expression in normal and cancerous human tissues. Drug Metab. Lett., 2018, 12(1), 24-32.
[http://dx.doi.org/10.2174/1872312812666180326110146] [PMID: 29577869]
[76]
Zancanella, V.; Giantin, M.; Lopparelli, R.M.; Nebbia, C.; Dacasto, M. Tissue distribution and phenobarbital induction of target SLC- and ABC- transporters in cattle. J. Vet. Pharmacol. Ther., 2013, 36(4), 358-369.
[http://dx.doi.org/10.1111/j.1365-2885.2012.01427.x] [PMID: 22897113]
[77]
Okabe, M.; Szakács, G.; Reimers, M.A.; Suzuki, T.; Hall, M.D.; Abe, T.; Weinstein, J.N.; Gottesman, M.M. Profiling SLCO and SLC22 genes in the NCI-60 cancer cell lines to identify drug uptake transporters. Mol. Cancer Ther., 2008, 7(9), 3081-3091.
[http://dx.doi.org/10.1158/1535-7163.MCT-08-0539] [PMID: 18790787]
[78]
Monks, N.R.; Liu, S.; Xu, Y.; Yu, H.; Bendelow, A.S.; Moscow, J.A. Potent cytotoxicity of the phosphatase inhibitor microcystin LR and microcystin analogues in OATP1B1- and OATP1B3-expressing HeLa cells. Mol. Cancer Ther., 2007, 6(2), 587-598.
[http://dx.doi.org/10.1158/1535-7163.MCT-06-0500] [PMID: 17308056]
[79]
Pressler, H.; Sissung, T.M.; Venzon, D.; Price, D.K.; Figg, W.D. Expression of OATP family members in hormone-related cancers: potential markers of progression. PLoS One, 2011, 6(5)e20372
[http://dx.doi.org/10.1371/journal.pone.0020372] [PMID: 21625523]
[80]
Wall, M.E.; Wani, M.C. Camptothecin and taxol: discovery to clinic--thirteenth Bruce F. Cain memorial award lecture. Cancer Res., 1995, 55(4), 753-760.
[http://dx.doi.org/10.1057/dbm.2008.2] [PMID: 7850785]
[81]
Gupta, E.; Luo, F.; Lallo, A.; Ramanathan, S.; Vyas, V.; Rubin, E.; Sinko, P. The intestinal absorption of camptothecin, a highly lipophilic drug, across Caco-2 cells is mediated by active transporter(s). Anticancer Res., 2000, 20(2A), 1013-1016.
[PMID: 10810389]
[82]
Beretta, G.L.; Zunino, F. Relevance of extracellular and intracellular interactions of camptothecins as determinants of antitumor activity. Biochem. Pharmacol., 2007, 74(10), 1437-1444.
[http://dx.doi.org/10.1016/j.bcp.2007.04.027] [PMID: 17540344]
[83]
Fuchs, C.; Mitchell, E.P.; Hoff, P.M. Irinotecan in the treatment of colorectal cancer. Cancer Treat. Rev., 2006, 32(7), 491-503.
[http://dx.doi.org/10.1016/j.ctrv.2006.07.001] [PMID: 16959432]
[84]
Fujita, K.; Kubota, Y.; Ishida, H.; Sasaki, Y. Irinotecan, a key chemotherapeutic drug for metastatic colorectal cancer. World J. Gastroenterol., 2015, 21(43), 12234-12248.
[http://dx.doi.org/10.3748/wjg.v21.i43.12234] [PMID: 26604633]
[85]
Teft, W.A.; Welch, S.; Lenehan, J.; Parfitt, J.; Choi, Y.H.; Winquist, E.; Kim, R.B. OATP1B1 and tumour OATP1B3 modulate exposure, toxicity, and survival after irinotecan-based chemotherapy. Br. J. Cancer, 2015, 112(5), 857-865.
[http://dx.doi.org/10.1038/bjc.2015.5] [PMID: 25611302]
[86]
Kounnis, V.; Chondrogiannis, G.; Mantzaris, M.D.; Tzakos, A.G.; Fokas, D.; Papanikolaou, N.A.; Galani, V.; Sainis, I.; Briasoulis, E.; Microcystin, L.R. Microcystin LR shows cytotoxic activity against pancreatic cancer cells expressing the membrane OATP1B1 and OATP1B3 transporters. Anticancer Res., 2015, 35(11), 5857-5865.
[PMID: 26504008]
[87]
Bom, D.; Curran, D.P.; Kruszewski, S.; Zimmer, S.G.; Thompson Strode, J.; Kohlhagen, G.; Du, W.; Chavan, A.J.; Fraley, K.A.; Bingcang, A.L.; Latus, L.J.; Pommier, Y.; Burke, T.G. The novel silatecan 7-tert-butyldimethylsilyl-10-hydroxycamptothecin displays high lipophilicity, improved human blood stability, and potent anticancer activity. J. Med. Chem., 2000, 43(21), 3970-3980.
[http://dx.doi.org/10.1021/jm000144o] [PMID: 11052802]
[88]
Curran, D.P.; Josien, H.; Bom, D.; Gabarda, A.E.; Du, W. The cascade radical annulation approach to new analogues of camptothecins: combinatorial synthesis of silatecans and homosilatecans. Ann. N. Y. Acad. Sci., 2000, 922, 112-121.
[http://dx.doi.org/10.1111/j.1749-6632.2000.tb07030.x]
[89]
Bom, D.; Curran, D.P.; Zhang, J.; Zimmer, S.G.; Bevins, R.; Kruszewski, S.; Howe, J.N.; Bingcang, A.; Latus, L.J.; Burke, T.G. The highly lipophilic DNA topoisomerase I inhibitor DB-67 displays elevated lactone levels in human blood and potent anticancer activity. J. Control. Release, 2001, 74(1-3), 325-333.
[PMID: 11489514]
[90]
Tsakalozou, E.; Adane, E.D.; Kuo, K.L.; Daily, A.; Moscow, J.A.; Leggas, M. The effect of breast cancer resistance protein, multidrug resistant protein 1, and organic anion-transporting polypeptide 1B3 on the antitumor efficacy of the lipophilic camptothecin 7-t-butyldimethylsilyl-10-hydroxycamptothecin (AR-67) in vitro. Drug Metab. Dispos., 2013, 41(7), 1404-1413.
[http://dx.doi.org/10.1124/dmd.112.050021] [PMID: 23620484]
[91]
Horwitz, S.B. Mechanism of action of taxol. Trends Pharmacol. Sci., 1992, 13(4), 134-136.
[http://dx.doi.org/10.1016/0165-6147(92)90048-B] [PMID: 1350385]
[92]
Ojima, I.; Lichtenthal, B.; Lee, S.; Wang, C.; Wang, X. Taxane anticancer agents: a patent perspective. Expert Opin. Ther. Pat., 2016, 26(1), 1-20.
[http://dx.doi.org/10.1517/13543776.2016.1111872]
[93]
Gross, M.E.; Dorff, T.B.; Quinn, D.I.; Diaz, P.M.; Castellanos, O.O.; Agus, D.B. Safety and Efficacy of Docetaxel, Bevacizumab, and Everolimus for Castration-resistant Prostate Cancer (CRPC). Clin. Genitourin. Cancer, 2017, S1558-7673(17), 30200-8.
[http://dx.doi.org/10.1016/j.clgc.2017.07.003] [PMID: 28826933]
[94]
de Bono, J.S.; Oudard, S.; Ozguroglu, M.; Hansen, S.; Machiels, J.P.; Kocak, I.; Gravis, G.; Bodrogi, I.; Mackenzie, M.J.; Shen, L.; Roessner, M.; Gupta, S.; Sartor, A.O. Prednisone plus cabazitaxel or mitoxantrone for metastatic castration-resistant prostate cancer progressing after docetaxel treatment: A randomised open-label trial. Lancet, 2010, 376(9747), 1147-1154.
[http://dx.doi.org/10.1016/S0140-6736(10)61389-X] [PMID: 20888992]
[95]
Dorman, S.N.; Baranova, K.; Knoll, J.H.M.; Urquhart, B.L.; Mariani, G.; Carcangiu, M.L.; Rogan, P.K. Genomic signatures for paclitaxel and gemcitabine resistance in breast cancer derived by machine learning. Mol. Oncol., 2016, 10(1), 85-100.
[http://dx.doi.org/10.1016/j.molonc.2015.07.006] [PMID: 26372358]
[96]
Rogan, P.K.; Mucaki, E.J.; Baranova, K.; Pham, H.Q.; Rezaeian, I.; Angelov, D.; Ngom, A.; Rueda, L. predicting outcomes of hormone and chemotherapy in the molecular taxonomy of breast cancer international consortium (METABRIC) study by biochemically-inspired machine learning. F1000 Res., 2017, 5, 2124.
[http://dx.doi.org/10.12688/f1000research.9417.3]
[97]
Takano, M.; Otani, Y.; Tanda, M.; Kawami, M.; Nagai, J.; Yumoto, R. Paclitaxel-resistance conferred by altered expression of efflux and influx transporters for paclitaxel in the human hepatoma cell line, HepG2. Drug Metab. Pharmacokinet., 2009, 24(5), 418-427.
[http://dx.doi.org/10.2133/dmpk.24.418] [PMID: 19881253]
[98]
Ogane, N.; Yasuda, M.; Kameda, Y.; Yokose, T.; Kato, H.; Itoh, A.; Nishino, S.; Hashimoto, Y.; Kamoshida, S. Prognostic value of organic anion transporting polypeptide 1B3 and copper transporter 1 expression in endometrial cancer patients treated with paclitaxel and carboplatin. Biomed. Res., 2013, 34(3), 143-151.
[http://dx.doi.org/10.2220/biomedres.34.143] [PMID: 23782748]
[99]
Mcleod, D.G. Hormonal therapy: historical perspective to future directions. Urology, 2003, 61(2)(Suppl. 1), 3-7.
[http://dx.doi.org/10.1016/S0090-4295(02)02393-2] [PMID: 12667881]
[100]
Klotz, L.; O’Callaghan, C.; Ding, K.; Toren, P.; Dearnaley, D.; Higano, C.S.; Horwitz, E.; Malone, S.; Goldenberg, L.; Gospodarowicz, M.; Crook, J.M. Nadir testosterone within first year of androgen-deprivation therapy (ADT) predicts for time to castration-resistant progression: A secondary analysis of the PR-7 trial of intermittent versus continuous ADT. J. Clin. Oncol., 2015, 33(10), 1151-1156.
[http://dx.doi.org/10.1200/JCO.2014.58.2973] [PMID: 25732157]
[101]
Rane, J.K.; Pellacani, D.; Maitland, N.J. Advanced prostate cancer--a case for adjuvant differentiation therapy. Nat. Rev. Urol., 2012, 9(10), 595-602.
[http://dx.doi.org/10.1038/nrurol.2012.157] [PMID: 22890299]
[102]
Sharifi, N.; Hamada, A.; Sissung, T.; Danesi, R.; Venzon, D.; Baum, C.; Gulley, J.L.; Price, D.K.; Dahut, W.L.; Figg, W.D. A polymorphism in a transporter of testosterone is a determinant of androgen independence in prostate cancer. BJU Int., 2008, 102(5), 617-621.
[http://dx.doi.org/10.1111/j.1464-410X.2008.07629.x] [PMID: 18537956]
[103]
Sissung, T.M.; Ley, A.M.; Strope, J.D.; McCrea, E.M.; Beedie, S.; Peer, C.J.; Shukla, S.; van Velkinburgh, J.; Reece, K.; Troutman, S.; Campbell, T.; Fernandez, E.; Huang, P.; Smith, J.; Thakkar, N.; Venzon, D.J.; Brenner, S.; Lee, W.; Merino, M.; Luo, J.; Jager, W.; Price, D.K.; Chau, C.H.; Figg, W.D. Differential expression of OATP1B3 mediates unconjugated testosterone influx. Mol. Cancer Res., 2017, 15(8), 1096-1105.
[http://dx.doi.org/10.1158/1541-7786.MCR-16-0477] [PMID: 28389619]
[104]
Yang, M.; Xie, W.; Mostaghel, E.; Nakabayashi, M.; Werner, L.; Sun, T.; Pomerantz, M.; Freedman, M.; Ross, R.; Regan, M.; Sharifi, N.; Figg, W.D.; Balk, S.; Brown, M.; Taplin, M.E.; Oh, W.K.; Lee, G.S.; Kantoff, P.W. SLCO2B1 and SLCO1B3 may determine time to progression for patients receiving androgen deprivation therapy for prostate cancer. J. Clin. Oncol., 2011, 29(18), 2565-2573.
[http://dx.doi.org/10.1200/JCO.2010.31.2405] [PMID: 21606417]
[105]
Banerjee, N.; Allen, C.; Bendayan, R. Differential role of organic anion-transporting polypeptides in estrone-3-sulphate uptake by breast epithelial cells and breast cancer cells. J. Pharmacol. Exp. Ther., 2012, 342(2), 510-519.
[http://dx.doi.org/10.1124/jpet.112.192344] [PMID: 22588260]
[106]
Han, S.; Kim, K.; Thakkar, N.; Kim, D.; Lee, W. Role of hypoxia inducible factor-1α in the regulation of the cancer-specific variant of organic anion transporting polypeptide 1B3 (OATP1B3), in colon and pancreatic cancer. Biochem. Pharmacol., 2013, 86(6), 816-823.
[http://dx.doi.org/10.1016/j.bcp.2013.07.020] [PMID: 23924606]
[107]
Ichihara, S.; Kikuchi, R.; Kusuhara, H.; Imai, S.; Maeda, K.; Sugiyama, Y. DNA methylation profiles of organic anion transporting polypeptide 1B3 in cancer cell lines. Pharm. Res., 2010, 27(3), 510-516.
[http://dx.doi.org/10.1007/s11095-010-0064-3] [PMID: 20130966]
[108]
Imai, S.; Kikuchi, R.; Tsuruya, Y.; Naoi, S.; Nishida, S.; Kusuhara, H.; Sugiyama, Y. Epigenetic regulation of organic anion transporting polypeptide 1B3 in cancer cell lines. Pharm. Res., 2013, 30(11), 2880-2890.
[http://dx.doi.org/10.1007/s11095-013-1117-1] [PMID: 23812637]
[109]
Hanahan, D.; Weinberg, R.A. The hallmarks of cancer. Cell, 2000, 100(1), 57-70.
[http://dx.doi.org/10.1016/S0092-8674(00)81683-9] [PMID: 10647931]
[110]
He, C.; Li, L.; Guan, X.; Xiong, L.; Miao, X. Mutant p53 gain of function and chemoresistance: the role of mutant p53 in response to clinical chemotherapy. Chemotherapy, 2017, 62(1), 43-53.
[http://dx.doi.org/10.1159/000446361] [PMID: 27322648]
[111]
Maji, S.; Panda, S.; Samal, S.K.; Shriwas, O.; Rath, R.; Pellecchia, M.; Emdad, L.; Das, S.K.; Fisher, P.B.; Dash, R. Bcl-2 Antiapoptotic family proteins and chemoresistance in cancer. Adv. Cancer Res., 2018, 137, 37-75.
[http://dx.doi.org/10.1016/bs.acr.2017.11.001] [PMID: 29405977]
[112]
Dai, X.; Fang, M.; Li, S.; Yan, Y.; Zhong, Y.; Du, B. miR-21 is involved in transforming growth factor β1-induced chemoresistance and invasion by targeting PTEN in breast cancer. Oncol. Lett., 2017, 14(6), 6929-6936.
[http://dx.doi.org/10.3892/ol.2017.7007] [PMID: 29151919]
[113]
Kartal-Yandim, M.; Adan-Gokbulut, A.; Baran, Y. Molecular mechanisms of drug resistance and its reversal in cancer. Crit. Rev. Biotechnol., 2016, 36(4), 716-726.
[http://dx.doi.org/10.3109/07388551.2015.1015957] [PMID: 25757878]
[114]
Scovassi, A.I.; Poirier, G.G. Poly(ADP-ribosylation) and apoptosis. Mol. Cell. Biochem., 1999, 199(1-2), 125-137.
[http://dx.doi.org/10.1023/A:1006962716377] [PMID: 10544961]
[115]
Yu, J.; Zhang, L. No PUMA, no death: implications for p53-dependent apoptosis. Cancer Cell, 2003, 4(4), 248-249.
[http://dx.doi.org/10.1016/S1535-6108(03)00249-6] [PMID: 14585351]
[116]
Riley, T.; Sontag, E.; Chen, P.; Levine, A. Transcriptional control of human p53-regulated genes. Nat. Rev. Mol. Cell Biol., 2008, 9(5), 402-412.
[http://dx.doi.org/10.1038/nrm2395] [PMID: 18431400]
[117]
Ramachandran, A.; Betts, G.; Bhana, S.; Helme, G.; Blick, C.; Moller-Levet, C.; Saunders, E.; Valentine, H.; Pepper, S.; Miller, C.J.; Buffa, F.; Harris, A.L.; West, C.M. An in vivo hypoxia metagene identifies the novel hypoxia inducible factor target gene SLCO1B3. Eur. J. Cancer, 2013, 49(7), 1741-1751.
[http://dx.doi.org/10.1016/j.ejca.2012.12.003] [PMID: 23352438]
[118]
Chae, Y.J.; Lee, K.R.; Noh, C.K.; Chong, S.; Kim, D.D.; Shim, C.K.; Chung, S.J. Functional consequences of genetic variations in the human organic anion transporting polypeptide 1B3 (OATP1B3) in the Korean population. J. Pharm. Sci., 2012, 101(3), 1302-1313.
[http://dx.doi.org/10.1002/jps.23005] [PMID: 22147445]
[119]
de Lima, L.T.; Bueno, C.T.; Vivona, D.; Hirata, R.D.C.; Hirata, M.H.; Hungria, V.T. de M.; Chiattone, C.S.; Zanichelli, M.A. Chauffaille, Mde.L.; Guerra-Shinohara, E.M. Relationship between SLCO1B3 and ABCA3 polymorphisms and imatinib response in chronic myeloid leukemia patients. Hematology, 2015, 20(3), 137-142.
[http://dx.doi.org/10.1179/1607845414Y.0000000181] [PMID: 25056761]
[120]
Choi, J.R.; Kim, J-O.; Kang, D.R.; Shin, J-Y.; Zhang, X.H.; Oh, J.E.; Park, J-Y.; Kim, K-A.; Kang, J-H. Genetic variations of drug transporters can influence on drug response in patients treated with docetaxel chemotherapy. Cancer Res. Treat., 2015, 47(3), 509-517.
[http://dx.doi.org/10.4143/crt.2014.012] [PMID: 25648089]
[121]
Park, H.S.; Lim, S.M.; Shin, H.J.; Cho, A.; Shin, J.G.; Lee, M.G.; Kim, H.R.; Kim, J.H.; Cho, B.C. Pharmacogenetic analysis of advanced non-small-cell lung cancer patients treated with first-line paclitaxel and carboplatin chemotherapy. Pharmacogenet. Genomics, 2016, 26(3), 116-125.
[http://dx.doi.org/10.1097/FPC.0000000000000196] [PMID: 26641474]
[122]
Winter, S.C.; Buffa, F.M.; Silva, P.; Miller, C.; Valentine, H.R.; Turley, H.; Shah, K.A.; Cox, G.J.; Corbridge, R.J.; Homer, J.J.; Musgrove, B.; Slevin, N.; Sloan, P.; Price, P.; West, C.M.; Harris, A.L. Relation of a hypoxia metagene derived from head and neck cancer to prognosis of multiple cancers. Cancer Res., 2007, 67(7), 3441-3449.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-3322] [PMID: 17409455]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 27
ISSUE: 1
Year: 2020
Page: [17 - 29]
Pages: 13
DOI: 10.2174/0929866526666190926154248
Price: $65

Article Metrics

PDF: 21
HTML: 6
EPUB: 1
PRC: 1

Special-new-year-discount