Influence of Nanocellulose Additive on the Film Properties of Native Rice Starch-based Edible Films for Food Packaging

Author(s): Jeya Jeevahan*, Manoharan Chandrasekaran.

Journal Name: Recent Patents on Nanotechnology

Volume 13 , Issue 3 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background & Objective: Starch-based edible films, which are transparent, odourless, biodegradable, tasteless, and semi-permeable to gases and food additives, have attracted the attention of the research community as the alternative food packaging materials to synthetic plastics. However, they pose poor water resistance and mechanical strength that should be improved for food packaging application. Few relevant patents to the topic have been reviewed and cited.

Methods: Inclusion of nanoadditives in starch films can not only improve their mechanical and barrier properties but also can act as antimicrobial agent, oxygen scavenger, and biosensor. The present investigation is focussed on the effects of nanocellulose extracted from banana pseudostems on the film properties of rice starch-based edible films. Nanocellulose was extracted from dried banana pseudostems through isolation of cellulose and acid hydrolysis. Rice starch-based edible films were prepared through solution casting by adding nanocellulose of varying concentrations (0%, 2%, 4%, 6%, 8% & 10%).

Results: The film properties, such as Water Vapour Permeability (WVP), mechanical strength (tensile strength, Young's modulus and percentage of elongation), film solubility in water and film colour, were determined. The test results were discussed and the effects of nanocellulose additives were studied.

Conclusion: From the results, it was clear that the addition of nanocellulose had improved the film properties, making the rice starch-based edible films a promising choice for food packaging applications.

Keywords: Food packaging, rice starch, edible film, nanocomposite, nanocellulose, water vapour permeability, tensile strength, film solubility, film colour.

[1]
Shit SC, Shah PM. Edible polymers: Challenges and opportunities. J Polym 2014; 2014: 1-13.
[2]
Guilbert S, Gontard N, Cuq B. Technology and applications of edible protective films. Packag Technol Sci 1995; 8: 339-46.
[http://dx.doi.org/10.1002/pts.2770080607]
[3]
Jeevahan J, Chandrasekaran M, Durairaj RB, Mageshwaran G, Joseph GB. A brief review on edible packing materials. J Global Eng Prob Sol 2017; 1: 9-19.
[4]
Shah U, Naqash F, Gani A, Masoodi FA. Art and science behind modified starch edible films and coatings: A review. Compr Rev Food Sci Food Saf 2016; 15: 568-80.
[http://dx.doi.org/10.1111/1541-4337.12197]
[5]
Copeland L, Blazek J, Salman H, Tang MC. Form and functionality of starch. Food Hydrocoll 2009; 23: 1527-34.
[http://dx.doi.org/10.1016/j.foodhyd.2008.09.016]
[6]
Swinkels JJ. Composition and properties of commercial native starches. Starch‐Stärke 1985; 37(1): 1-5.
[http://dx.doi.org/10.1002/star.19850370102]
[7]
Bumbudsanpharoke N, Ko S. Nano-food packaging: An overview of market, migration research, and safety regulations. J Food Sci 2015; 80(5): R910-23.
[http://dx.doi.org/10.1111/1750-3841.12861] [PMID: 25881665]
[8]
Brody AL, Bugusu B, Han JH, Sand CK, McHugh TH. Scientific status summary. Innovative food packaging solutions. J Food Sci 2008; 73(8): R107-16.
[http://dx.doi.org/10.1111/j.1750-3841.2008.00933.x] [PMID: 19019124]
[9]
Duncan TV. Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. J Colloid Interface Sci 2011; 363(1): 1-24.
[http://dx.doi.org/10.1016/j.jcis.2011.07.017] [PMID: 21824625]
[10]
Pérez-Esteve E, Bernardos A, Martínez-Mañez R, Barat JM. Recent patents in food nanotechnology. Recent Pat Food Nutr Agric 2011; 3(3): 172-8.
[http://dx.doi.org/10.2174/2212798411103030172] [PMID: 21846319]
[11]
Sekhon BS. Food nanotechnology. An overview. Nanotechnol Sci Appl 2010; 3: 1-15.
[PMID: 24198465]
[12]
Farhoodi M. Nanocomposite materials for food packaging applications: Characterization and safety evaluation. Food Eng Rev 2015; 8(1): 35-51.
[13]
Saba N, Tahir PM, Jawaid M. A review on potentiality of nano filler/natural fiber filled polymer hybrid composites. Polymers (Basel) 2014; 6: 2247-73.
[http://dx.doi.org/10.3390/polym6082247]
[14]
Weiss J, Takhistov P, Mcclements DJ. Functional materials in food nanotechnology. J Food Sci 2006; 71: R107-16.
[http://dx.doi.org/10.1111/j.1750-3841.2006.00195.x]
[15]
Sozer N, Kokini JL. Nanotechnology and its applications in the food sector. Trends Biotechnol 2009; 27(2): 82-9.
[http://dx.doi.org/10.1016/j.tibtech.2008.10.010] [PMID: 19135747]
[16]
Sharma C, Dhiman R, Rokana N, Panwar H. Nanotechnology. Front Microbiol 2017; 8: 1735-22.
[http://dx.doi.org/10.3389/fmicb.2017.01735] [PMID: 28955314]
[17]
Pradhan N, Singh S, Ojha N, et al. Facets of nanotechnology as seen in food processing, packaging, and preservation industry. BioMed Res Int 2015; 2015365672
[http://dx.doi.org/10.1155/2015/365672] [PMID: 26613082]
[18]
Tang XZ, Kumar P, Alavi S, Sandeep KP. Recent advances in biopolymers and biopolymer-based nanocomposites for food packaging materials. Crit Rev Food Sci Nutr 2012; 52(5): 426-42.
[http://dx.doi.org/10.1080/10408398.2010.500508] [PMID: 22369261]
[19]
Othman SH. Bio-nanocomposite materials for food packaging applications: Types of biopolymer and nano-sized filler. Agr Agr Sci Proc 2014; 2: 296-303.
[http://dx.doi.org/10.1016/j.aaspro.2014.11.042]
[20]
Xie F, Pollet E, Halley PJ, Averous L. Starch-based nano-biocomposites. Prog Polym Sci 2013; 38(10-11): 1590-628.
[http://dx.doi.org/10.1016/j.progpolymsci.2013.05.002]
[21]
Rhim JW, Ng PKW. Natural biopolymer-based nanocomposite films for packaging applications. Crit Rev Food Sci Nutr 2007; 47(4): 411-33.
[http://dx.doi.org/10.1080/10408390600846366] [PMID: 17457725]
[22]
Rhim JW, Park HM, Ha CS. Bio-nanocomposites for food packaging applications. Prog Polym Sci 2013; 38(10-11): 1629-52.
[http://dx.doi.org/10.1016/j.progpolymsci.2013.05.008]
[23]
Silvestre C, Duraccio D, Cimmino S. Food packaging based on polymer nanomaterials. Prog Polym Sci 2011; 36: 1766-82.
[http://dx.doi.org/10.1016/j.progpolymsci.2011.02.003]
[24]
Singh T, Shukla S, Kumar P, Wahla V, Bajpai VK, Rather IA. Application of nanotechnology in food Science: Perception and overview. Front Microbiol 2017; 8: 1501.
[http://dx.doi.org/10.3389/fmicb.2017.01501] [PMID: 28824605]
[25]
Dufresne A. Cellulose nanomaterials as green nanoreinforcements for polymer nanocomposites. Phil Trans R Soc A 2017; 376(2112)20170040
[26]
Dufresne A. Nanocellulose: A new ageless bionanomaterial. Mater Today 2013; 16: 220-7.
[http://dx.doi.org/10.1016/j.mattod.2013.06.004]
[27]
Lagarón JM, Cabedo L, Cava D, Feijoo JL, Gavara R, Gimenez E. Improving packaged food quality and safety. Part 2: Nanocomposites. Food Addit Contam 2005; 22(10): 994-8.
[http://dx.doi.org/10.1080/02652030500239656] [PMID: 16227184]
[28]
Vilarinho F, Sanches Silva A, Vaz MF, Farinha JP. Nanocellulose in green food packaging. Crit Rev Food Sci Nutr 2018; 58(9): 1526-37.
[29]
Trache D, Hussin MH, Haafiz MM, Thakur VK. Recent progress in cellulose nanocrystals: Sources and production. Nanoscale 2017; 9(5): 1763-86.
[http://dx.doi.org/10.1039/C6NR09494E]
[30]
Mishra RK, Sabu A, Tiwari SK. Materials chemistry and the futurist eco-friendly applications of nanocellulose: Status and prospect. J Saudi Chem Soc 2018; 22(8): 949-78.
[http://dx.doi.org/10.1016/j.jscs.2018.02.005]
[31]
Phanthong P, Reubroycharoen P, Hao X, Xu G, Abudula A, Guan G. Nanocellulose: Extraction and application. Carbon Res Convers 2018; 1: 32-43.
[http://dx.doi.org/10.1016/j.crcon.2018.05.004]
[32]
Klemm D, Kramer F, Moritz S, et al. Nanocelluloses: A new family of nature-based materials. Angew Chem Int Ed Engl 2011; 50(24): 5438-66.
[http://dx.doi.org/10.1002/anie.201001273] [PMID: 21598362]
[33]
Afrin S, Karim Z. Isolation and surface modification of nanocellulose: Necessity of enzymes over chemicals. Chem Bio Eng Rev 2017; 4: 1-16.
[http://dx.doi.org/10.1002/cben.201600001]
[34]
George J, Sabapathi SN. Cellulose nanocrystals: Synthesis, functional properties, and applications. Nanotechnol Sci Appl 2015; 8: 45-54.
[http://dx.doi.org/10.2147/NSA.S64386] [PMID: 26604715]
[35]
Lee HV, Hamid SBA, Zain SK. Conversion of lignocellulosic biomass to nanocellulose: Structure and chemical process. Sci World J 2014; 2014631013
[http://dx.doi.org/10.1155/2014/631013] [PMID: 25247208]
[36]
Mishra RK, Sabu A, Tiwari SK. Materials chemistry and the futurist eco-friendly applications of nanocellulose: Status and prospect. J Saudi Chem Soc 2018; 22(8): 949-78.
[http://dx.doi.org/10.1016/j.jscs.2018.02.005]
[37]
Charreau H, Foresti ML, Vázquez A. Nanocellulose patents trends: A comprehensive review on patents on cellulose nanocrystals, micro-fibrillated and bacterial cellulose. Recent Pat Nanotechnol 2013; 7(1): 56-80.
[http://dx.doi.org/10.2174/187221013804484854] [PMID: 22747719]
[38]
Durán N, Lemes AP, Seabra AB. Review of cellulose nanocrystals patents: Preparation, composites and general applications. Recent Pat Nanotechnol 2012; 6(1): 16-28.
[http://dx.doi.org/10.2174/187221012798109255] [PMID: 21875405]
[39]
Jiang F, Hsieh YL. Chemically and mechanically isolated nanocellulose and their self-assembled structures. Carbohydr Polym 2013; 95(1): 32-40.
[http://dx.doi.org/10.1016/j.carbpol.2013.02.022] [PMID: 23618236]
[40]
Rosa SML, Rehman N. Miranda MIGd, Nachtigall SMB, Bica CID. Chlorine-free extraction of cellulose from rice husk and whisker isolation. Carbohydr Polym 2012; 87: 1131-8.
[http://dx.doi.org/10.1016/j.carbpol.2011.08.084]
[41]
Abraham E, Deepa B, Pothan LA, et al. Extraction of nanocellulose fibrils from lignocellulosic fibres: A novel approach. Carbohydr Polym 2011; 86: 1468-75.
[http://dx.doi.org/10.1016/j.carbpol.2011.06.034]
[42]
Mueller S, Weder C, Foster EJ. Isolation of cellulose nanocrystals from pseudostems of banana plant. RSC Advances 2014; 4: 907-15.
[http://dx.doi.org/10.1039/C3RA46390G]
[43]
Cherian BM, Leão AL. Souza SFd, Thomas S, Pothan LA and Kottaisamy M. Isolation of nanocellulose from pineapple leaf fibres by steam explosion. Carbohydr Polym 2010; 81: 720-5.
[http://dx.doi.org/10.1016/j.carbpol.2010.03.046]
[44]
Alemdar and Sain M. Biocomposites from wheat straw nanofibers: Morphology, thermal and mechanical properties. Compos Sci Technol 2008; 68: 557-65.
[http://dx.doi.org/10.1016/j.compscitech.2007.05.044]
[45]
Babaee M, Jonoobi M, Hamzeh Y, Ashori A. Biodegradability and mechanical properties of reinforced starch nanocomposites using cellulose nanofibers. Carbohydr Polym 2015; 132: 1-8.
[http://dx.doi.org/10.1016/j.carbpol.2015.06.043] [PMID: 26256317]
[46]
Dufresne A, Vignon MR. Improvement of starch film performances using cellulose microfibril. Macromolecules 1998; 31: 2693-6.
[http://dx.doi.org/10.1021/ma971532b]
[47]
Liu C, Li B, Du H, et al. Properties of nanocellulose isolated from corncob residue using sulfuric acid, formic acid, oxidative and mechanical methods. Carbohydr Polym 2016; 151: 716-24.
[http://dx.doi.org/10.1016/j.carbpol.2016.06.025] [PMID: 27474618]
[48]
Li R, Fei J, Cai Y, Li L, Feng J, Yao J. Cellulose whiskers extracted from mulberry: A novel biomass production. Carbohydr Polym 2009; 76: 94-9.
[http://dx.doi.org/10.1016/j.carbpol.2008.09.034]
[49]
Beck-Candanedo S, Roman M, Gray DG. Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 2005; 6(2): 1048-54.
[http://dx.doi.org/10.1021/bm049300p] [PMID: 15762677]
[50]
Heiskanen I, Harlin A, Backfolk K, Laitinen R. Process for the production of microfibrillated cellulose in an extruder and microfibrillated cellulose produced according to the process. US Patent 8747612, 2014.
[51]
Araki J, Wada M, Kuga S. Steric stabilization of a cellulose microcrystal suspension by poly (ethylene glycol) grafting. Langmuir 2001; 17: 21-7.
[http://dx.doi.org/10.1021/la001070m]
[52]
Morais JPS, Rosa Mde F, de Souza Filho Mde S, Nascimento LD, do Nascimento DM, Cassales AR. Extraction and characterization of nanocellulose structures from raw cotton linter. Carbohydr Polym 2013; 91(1): 229-35.
[http://dx.doi.org/10.1016/j.carbpol.2012.08.010] [PMID: 23044127]
[53]
Siqueira G, Curvelo AA, Dufresne A. Extrusion and characterization of functionalized cellulose whiskers reinforced polyethylene nanocomposites. Polymer (Guildf) 2009; 50: 4552-63.
[http://dx.doi.org/10.1016/j.polymer.2009.07.038]
[54]
Thielemans W, Dufresne A. Sisal cellulose whiskers reinforced polyvinyl acetate nanocomposites. Cellulose 2006; 13: 261-70.
[http://dx.doi.org/10.1007/s10570-005-9039-7]
[55]
Moran JI, Alvarez VA, Cyras VP, Vazquez A. Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose 2008; 15: 149-59.
[http://dx.doi.org/10.1007/s10570-007-9145-9]
[56]
Martelli-Tosi M, Torricillas MD, Martins MA, Assis OB, Tapia-Blácido DR. Using commercial enzymes to produce cellulose nanofibers from soybean straw. J Nanomater 2016; 2016.
[57]
Wulandari WT, Rochliadi A, Arcana IM. Nanocellulose prepared by acid hydrolysis of isolated cellulose from sugarcane bagasse. In- IOP conference series: Materials science and engineering 2016 (Vol. 107, No. 1, p. 012045). IOP Publishing.
[58]
Kimura F, Kimura T, Tamura M, Hirai A, Ikuno M, Horii F. Magnetic alignment of the chiral nematic phase of a cellulose microfibril suspension. Langmuir 2005; 21(5): 2034-7.
[http://dx.doi.org/10.1021/la0475728] [PMID: 15723507]
[59]
George J, Bawa AS. Adv Mat Res 2010; 123: 383-6.
[60]
George J. High performance edible nanocomposite films containing bacterial cellulose nanocrystals. Carbohydr Polym 2012; 87(3): 2031-7.
[http://dx.doi.org/10.1016/j.carbpol.2011.10.019]
[61]
Heiskanen I, Backfolk K, Vehviläinen M, Kamppuri T, Nousiainen P. Process for producing microfibrillated cellulose. US Patent 8647468B2, 2014.
[62]
Hepworth D, Whale E, Cassland BLPA, et al. Cellulose microfibrils.US Patent 0167079 2017.
[63]
Athinarayanan J, Alshatwi AA, Periasamy VS. Method of fabricating biocompatible cellulose nanofibrils. US Patent 10066028B1, 2017.
[64]
Shoseyov O, Heyman A, Lapidot S, Meirovitch S, Nevo Y, Rivkin A. Method for production of cellulose nano crystals from cellulosecontaining waste material. US Patent 9464142B2, 2016.
[65]
Rowan S, Hunsena M, Way A. Method for production of cellulose nanocrystals from Miscathus giganteus and composites therefrom. US Patent 10000578B2, 2014.
[66]
Alshatwi AA, Athinarayanan J, Subbarayan PV, Alatiah KA. Method of producing cellulose nanostructures. US Patent 9896661B1, 2016.
[67]
Laukkanen A, Nuopponen M. Method for producing nanofibrillar cellulose. US Patent 20150299955A1, 2017.
[68]
Crossley B, Gerrer M. Method of producing cellulose nanofibrils. WO Patent 2016196983A1, 2016.
[69]
Holtan S, Read MR, Øvrebø HH, Vold IM. Microfibrillated cellulose. US Patent 15/311730, 2017.
[70]
Backa SO. Method and device for producing dry microfibrillated cellulose. WO Patent 2011095335A1, 2011.
[71]
Reddy MM, Vivekanandhan S, Misra M, Bhatia SK, Mohanty A. Biobased plastics and bionanocomposites: Current status and future opportunities. Prog Polym Sci 2013; 38(10-11): 1653-89.
[http://dx.doi.org/10.1016/j.progpolymsci.2013.05.006]
[72]
da Silva JB, Pereira FV, Druzian JI. Cassava starch-based films plasticized with sucrose and inverted sugar and reinforced with cellulose nanocrystals. J Food Sci 2012; 77(6): N14-9.
[http://dx.doi.org/10.1111/j.1750-3841.2012.02710.x] [PMID: 22582979]
[73]
Ghanbari A, Tabarsa T, Ashori A, Shakeri A, Mashkour M. Preparation and characterization of thermoplastic starch and cellulose nanofibers as green nanocomposites: Extrusion processing. Int J Biol Macromol 2018; 112: 442-7.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.02.007] [PMID: 29410268]
[74]
Savadekar NR, Mhaske ST. Synthesis of nano cellulose fibers and effect on thermoplastics starch based films. Carbohydr Polym 2012; 89(1): 146-51.
[http://dx.doi.org/10.1016/j.carbpol.2012.02.063] [PMID: 24750616]
[75]
Tang X, Alavi S, Herald TJ. Barrier and mechanical properties of starch-clay nanocomposite films. Cereal Chem 2008; 85: 433-9.
[http://dx.doi.org/10.1094/CCHEM-85-3-0433]
[76]
Soykeabkaew N, Laosat N, Ngaokla A, Yodsuwan N, Tunkasiri T. Reinforcing potential of micro- and nano-sized fibers in the starch-based biocomposites. Compos Sci Technol 2012; 72: 845-52.
[http://dx.doi.org/10.1016/j.compscitech.2012.02.015]
[77]
Zhao Y, Simonsen J, Cavender G, Jung J, Fuchigami LH. Nanocellulose edible coatings and uses thereof. US Patent 20160002483A1, 2010.
[78]
Wani AA, Singh P, Shah MA, Schweiggert-Weisz U, Gul K, Wani IA. Rice starch diversity: Effects on structural, morphological, thermal, and physicochemical properties-A review. Compr Rev Food Sci Food Saf 2012; 11: 417-36.
[http://dx.doi.org/10.1111/j.1541-4337.2012.00193.x]
[79]
Bhat FM, Riar CS. Effect of amylose, particle size & morphology on the functionality of starches of traditional rice cultivars. Int J Biol Macromol 2016; 92: 637-44.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.07.078] [PMID: 27461746]
[80]
Gani A, Ashwar BA, Akhter G, Shah A, Wani IA, Masoodi FA. Physico-chemical, structural, pasting and thermal properties of starches of fourteen Himalayan rice cultivars. Int J Biol Macromol 2016; 95: 1101-7.
[PMID: 27984138]
[81]
Mohapatra D, Mishra S, Sutar N. Banana and its by-product utilisation: An overview. J Sci Ind Res (India) 2010; 69: 323-9.
[82]
Tock JY, Lai CL, Lee KT, Tan KT, Bhatia S. Banana biomass as potential renewable energy resource: A Malaysian case study. Renew Sustain Energy Rev 2010; 14: 798-805.
[http://dx.doi.org/10.1016/j.rser.2009.10.010]
[83]
Ingale S, Joshi SJ, Gupte A. Production of bioethanol using agricultural waste: Banana pseudo stem. Braz J Microbiol 2014; 45(3): 885-92.
[http://dx.doi.org/10.1590/S1517-83822014000300018] [PMID: 25477922]
[84]
Vigneswaran C, Pavithra V, Gayathri V, Mythili K. Banana fiber: Scope and value added product development. J Textile and Apparel. Technol Manag 2015; 9: 1-7.
[85]
Mohiuddin AKM, Saha MK, Hossian MS, Ferdoushi A. Usefulness of banana (Musa paradisiaca) wastes in manufacturing of bio-products: A review. Agriculturists 2014; 12: 148-58.
[http://dx.doi.org/10.3329/agric.v12i1.19870]
[86]
Li K, Fu S, Zhan H, Zhan Y, Lucia L. Analysis of the chemical composition and morphological structure of banana pseudo-stem. BioResources 2010; 5: 576-85.
[87]
Phirke NV, Patil RP, Chincholkar SB, Kothari RM. Recycling of banana pseudostem waste for economical production of quality banana. Resour Conserv Recycling 2001; 31: 347-53.
[http://dx.doi.org/10.1016/S0921-3449(00)00092-6]
[88]
Mueller S, Weder C, Foster EJ. Isolation of cellulose nanocrystals from pseudostems of banana plants. RSC Advances 2014; 4: 907-15.
[http://dx.doi.org/10.1039/C3RA46390G]
[89]
Elanthikkal S, Gopalakrishnapanicker U, Varghese S, Guthrie JT. Cellulose microfibres produced from banana plant wastes: Isolation and characterization. Carbohydr Polym 2010; 80: 852-9.
[http://dx.doi.org/10.1016/j.carbpol.2009.12.043]
[90]
de Mesquita JP, Donnici CL, Pereira FV. Biobased nanocomposites from layer-by-layer assembly of cellulose nanowhiskers with chitosan. Biomacromolecules 2010; 11(2): 473-80.
[http://dx.doi.org/10.1021/bm9011985] [PMID: 20055503]
[91]
Lu P, Hsieh YL. Preparation and characterization of cellulose nanocrystals from rice straw. Carbohydr Polym 2012; 87: 564-73.
[http://dx.doi.org/10.1016/j.carbpol.2011.08.022]
[92]
Shankar S, Rhim JW. Preparation of nanocellulose from micro-crystalline cellulose: The effect on the performance and properties of agar-based composite films. Carbohydr Polym 2016; 135: 18-26.
[http://dx.doi.org/10.1016/j.carbpol.2015.08.082] [PMID: 26453846]
[93]
El Miri N, Abdelouahdi K, Barakat A, et al. Bio-nanocomposite films reinforced with cellulose nanocrystals: Rheology of film-forming solutions, transparency, water vapor barrier and tensile properties of films. Carbohydr Polym 2015; 129: 156-67.
[http://dx.doi.org/10.1016/j.carbpol.2015.04.051] [PMID: 26050901]
[94]
Abdollahi M, Alboofetileh M, Behrooz R, Rezaei M, Miraki R. Reducing water sensitivity of alginate bio-nanocomposite film using cellulose nanoparticles. Int J Biol Macromol 2013; 54: 166-73.
[http://dx.doi.org/10.1016/j.ijbiomac.2012.12.016] [PMID: 23262388]
[95]
Andrade-Pizarro RD, Skurtys O, Osorio-Lira F. Effect of cellulose nanofibers concentration on mechanical, optical, and barrier properties of gelatin-based edible films. Dyna (Bilbao) 2015; 82: 219-26.
[http://dx.doi.org/10.15446/dyna.v82n191.45296]
[96]
Azeredo HM, Mattoso LHC, Avena-Bustillos RJ, et al. Nanocellulose reinforced chitosan composite films as affected by nanofiller loading and plasticizer content. J Food Sci 2010; 75(1): N1-7.
[http://dx.doi.org/10.1111/j.1750-3841.2009.01386.x] [PMID: 20492188]
[97]
Atef M, Rezaei M, Behrooz R. Preparation and characterization agar-based nanocomposite film reinforced by nanocrystalline cellulose. Int J Biol Macromol 2014; 70: 537-44.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.07.013] [PMID: 25036597]
[98]
Noorbakhsh-Soltani SM, Zerafat MM, Sabbaghi S. A comparative study of gelatin and starch-based nano-composite films modified by nano-cellulose and chitosan for food packaging applications. Carbohydr Polym 2018; 189: 48-55.
[http://dx.doi.org/10.1016/j.carbpol.2018.02.012] [PMID: 29580425]
[99]
Gontard N, Duchez C, Cuq JL, Guilbert S. Edible composite films of wheat gluten and lipids: Water vapour permeability and other physical properties. Int J Food Sci Technol 2007; 29: 39-50.
[http://dx.doi.org/10.1111/j.1365-2621.1994.tb02045.x]
[100]
Afshari-Jouybaria H, Farahnaky A. Evaluation of photoshop software potential for food colorimetry. J Food Eng 2013; 106: 170-5.
[http://dx.doi.org/10.1016/j.jfoodeng.2011.02.034]
[101]
Farahnaky A, Saberi B, Majzoobi M. Effect of glycerol on physical and mechanical properties of wheat starch edible films. J Texture Stud 2013; 44: 176-86.
[http://dx.doi.org/10.1111/jtxs.12007]
[102]
Basiak E, Lenart A, Debeaufort F. Effect of starch type on the physico-chemical properties of edible films. Int J Biol Macromol 2017; 98: 348-56.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.01.122] [PMID: 28137462]
[103]
Laohakunjit N, Noomhorm A. Effect of plasticizers on mechanical and barrier properties of rice starch film. Starke 2004; 56: 348-56.
[http://dx.doi.org/10.1002/star.200300249]
[104]
Abdollahi M, Alboofetileh M, Behrooz R, Rezaei M, Miraki R. Reducing water sensitivity of alginate bio-nanocomposite film using cellulose nanoparticles. Int J Biol Macromol 2013; 54: 166-73.
[http://dx.doi.org/10.1016/j.ijbiomac.2012.12.016] [PMID: 23262388]
[105]
Slavutsky AM, Bertuzzi MA. Water barrier properties of starch films reinforced with cellulose nanocrystals obtained from sugarcane bagasse. Carbohydr Polym 2014; 110: 53-61.
[http://dx.doi.org/10.1016/j.carbpol.2014.03.049] [PMID: 24906728]
[106]
Nascimento T, Costa LAS, Pereira FV, et al. Effect of source and interaction with nanocellulose cassava starch, glycerol and the properties of films bionanocomposites. Mater Today Proc 2015; 2: 200-7.
[107]
Qazanfarzadeh Z, Kadivar M. Properties of whey protein isolate nanocomposite films reinforced with nanocellulose isolated from oat husk. Int J Biol Macromol 2016; 91: 1134-40.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.06.077] [PMID: 27349890]
[108]
Azeredo HMC, Mattoso LHC, Avena-Bustillos RJ, et al. Nanocellulose reinforced chitosan composite films as affected by nanofiller loading and plasticizer content. J Food Sci 2010; 75(1): N1-7.
[http://dx.doi.org/10.1111/j.1750-3841.2009.01386.x] [PMID: 20492188]
[109]
Dias AB, Muller CMO, Larotonda FDS, Laurindo JB. Biodegradable films based on rice starch and rice flour. J Cereal Sci 2010; 51: 213-9.
[http://dx.doi.org/10.1016/j.jcs.2009.11.014]
[110]
Slavutsky AM, Bertuzzi MA. Water barrier properties of starch films reinforced with cellulose nanocrystals obtained from sugarcane bagasse. Carbohydr Polym 2014; 110: 53-61.
[http://dx.doi.org/10.1016/j.carbpol.2014.03.049] [PMID: 24906728]
[111]
Ashwar BA, Shah A, Gani A, et al. Rice starch active packaging films loaded with antioxidants-development and characterization. Starke 2014; 67: 294-302.
[http://dx.doi.org/10.1002/star.201400193]
[112]
Pasquini D, Curvelo AAS, Corradini E, Belgacem MN, Dufresne A. Cassava bagasse cellulose nanofibrils reinforced thermoplastic cassava starch. Carbohydr Polym 2009; 78: 422-31.
[http://dx.doi.org/10.1016/j.carbpol.2009.04.034]
[113]
Pereda M, Amica G, Rácz I, Marcovich NE. Structure and properties of nanocomposite films based on sodium caseinate and nanocellulose fibers. J Food Eng 2011; 103: 76-83.
[http://dx.doi.org/10.1016/j.jfoodeng.2010.10.001]
[114]
Hietala M, Mathew AP, Oksman K. Bionanocomposites of thermoplastic starch and cellulose nanofibers manufactured using twin-screw extrusion. Eur Polym J 2013; 49: 950-6.
[http://dx.doi.org/10.1016/j.eurpolymj.2012.10.016]
[115]
Khan A, Khan RA, Salmieri S, et al. Mechanical and barrier properties of nanocrystalline cellulose reinforced chitosan based nanocomposite films. Carbohydr Polym 2012; 90(4): 1601-8.
[http://dx.doi.org/10.1016/j.carbpol.2012.07.037] [PMID: 22944422]
[116]
Majzoobi M, Pesaran Y, Mesbahi G, Golmakani MT, Farahnaky A. Physical properties of biodegradable films from heat-moisture-treated rice flour and rice starch. Starke 2015; 67: 1053-60.
[http://dx.doi.org/10.1002/star.201500102]
[117]
Vigneshwaran N, Ammayappan L, Huang Q. Effect of Gum arabic on distribution behavior of nanocellulose fillers in starch film. Appl Nanosci 2011; 1: 137-42.
[http://dx.doi.org/10.1007/s13204-011-0020-5]
[118]
Ilyas RA, Sapuan SM, Ishak MR, Zainudin ES. Development and characterization of sugar palm nanocrystalline cellulose reinforced sugar palm starch bionanocomposites. Carbohydr Polym 2018; 202: 186-202.
[http://dx.doi.org/10.1016/j.carbpol.2018.09.002] [PMID: 30286991]
[119]
Ma X, Cheng Y, Qin X, Guo T, Deng J, Liu X. Hydrophilic modification of cellulose nanocrystals improves the physicochemical properties of cassava starch-based nanocomposite films. LWT 2017; 86: 318-26.
[http://dx.doi.org/10.1016/j.lwt.2017.08.012]
[120]
Thakur R, Saberi B, Pristijono P, et al. Characterization of rice starch-ι-carrageenan biodegradable edible film. Effect of stearic acid on the film properties Int J Biol Macromol 2016; 93(Pt A): 952-60.
[121]
Wittaya T. Microcomposites of rice starch film reinforced with microcrystalline cellulose from palm pressed fiber. Int Food Res J 2009; 16: 493-500.
[122]
Nawapat D, Thawien W. Effect of UV-treatment on the properties of biodegradable rice starch films. Int Food Res J 2013; 20: 1313-22.
[123]
Yu Z, Alsammarraie FK, Nayigiziki FX, et al. Effect and mechanism of cellulose nanofibrils on the active functions of biopolymer-based nanocomposite films. Food Res Int 2017; 99(Pt 1): 166-72.
[http://dx.doi.org/10.1016/j.foodres.2017.05.009] [PMID: 28784473]
[124]
Reddy JP, Rhim JW. Characterization of bionanocomposite films prepared with agar and paper-mulberry pulp nanocellulose. Carbohydr Polym 2014; 110: 480-8.
[http://dx.doi.org/10.1016/j.carbpol.2014.04.056] [PMID: 24906782]
[125]
Shankar S, Rhim JW. Preparation of nanocellulose from micro-crystalline cellulose: The effect on the performance and properties of agar-based composite films. Carbohydr Polym 2016; 135: 18-26.
[http://dx.doi.org/10.1016/j.carbpol.2015.08.082] [PMID: 26453846]
[126]
Li X, Qiu C, Ji N, Sun C, Xiong L, Sun Q. Mechanical, barrier and morphological properties of starch nanocrystals-reinforced pea starch films. Carbohydr Polym 2015; 121: 155-62.
[http://dx.doi.org/10.1016/j.carbpol.2014.12.040] [PMID: 25659684]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 13
ISSUE: 3
Year: 2019
Page: [222 - 233]
Pages: 12
DOI: 10.2174/1872210513666190925161302
Price: $65

Article Metrics

PDF: 16
HTML: 4