Protein Aggregation in a Nutshell: The Splendid Molecular Architecture of the Dreaded Amyloid Fibrils

Author(s): Dániel Horváth, Dóra K. Menyhárd, András Perczel*.

Journal Name: Current Protein & Peptide Science

Volume 20 , Issue 11 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

The recent high-resolution structures of amyloid fibrils show that the organization of peptide segments into amyloid aggregate architecture is a general process, though the morphology is more complex and intricate than suspected previously. The amyloid fibrils are often cytotoxic, accumulating as intracellular inclusions or extracellular plaques and have the ability to interfere with cellular physiology causing various cellular malfunctions. At the same time, the highly ordered amyloid structures also present an opportunity for nature to store and protect peptide chains under extreme conditions – something that might be used for designing storage, formulation, and delivery of protein medications or for contriving bio-similar materials of great resistance or structure-ordering capacity. Here we summarize amyloid characteristics; discussing the basic morphologies, sequential requirements and 3D-structure that are required for the understanding of this newly (re)discovered protein structure – a prerequisite for developing either inhibitors or promoters of amyloid-forming processes

Keywords: Aggregation, amylogenic peptides, amyloid, amyloid structure, β-sheet, cryo-EM, sequential pattern, ssNMR.

[1]
Fernandez-Leiro, R.; Scheres, S.H.W. Unravelling biological macromolecules with cryo-electron microscopy. Nature, 2016, 537(7620), 339-346.
[2]
Ashbrook, S.E.; Griffin, J.M.; Johnston, K.E. Recent advances in solid-state nuclear magnetic resonance spectroscopy. Annu. Rev. Anal. Chem., 2018, 11, 485-508.
[3]
Sipe, J.D.; Cohen, A.S. Review: History of the amyloid fibril. J. Struct. Biol., 2000, 130(2-3), 88-98.
[4]
Available from. Protein data bank., www.rcsb.org
[5]
Baldwin, A.J.; Knowles, T.P.J.; Tartaglia, G.G.; Fitzpatrick, A.W.; Devlin, G.L.; Shammas, S.L.; Waudby, C.A.; Mossuto, M.F.; Meehan, S.; Gras, S.L.; Christodoulou, J.; Anthony-Cahill, S.J.; Barker, P.D.; Vendruscolo, M.; Dobson, C.M. Metastability of native proteins and the phenomenon of amyloid formation. J. Am. Chem. Soc., 2011, 133(36), 14160-14163.
[6]
Dobson, C.M. Protein misfolding, evolution and disease. Trends Biochem. Sci., 1999, 24(9), 329-332.
[7]
Knowles, T.P.J.; Vendruscolo, M.; Dobson, C.M. The amyloid state and its association with protein misfolding diseases. Nat. Rev. Mol. Cell Biol., 2014, 15(6), 384-396.
[8]
Goldschmidt, L.; Teng, P.K.; Riek, R.; Eisenberg, D. Identifying the amylome, proteins capable of forming amyloid-like fibrils. Proc. Natl. Acad. Sci. USA, 2010, 107(8), 3487-3492.
[9]
Sipe, J.D.; Benson, M.D.; Buxbaum, J.N.; Ikeda, S.; Merlini, G.; Saraiva, M.J.M.; Westermark, P. Nomenclature 2014: Amyloid fibril proteins and clinical classification of the amyloidosis. Amyloid, 2014, 21(4), 221-224.
[10]
Bauerlein, F.J.B.; Saha, I.; Mishra, A.; Kalemanov, M.; Martinez-Sanchez, A.; Klein, R.; Dudanova, I.; Hipp, M.S.; Hartl, F.U.; Baumeister, W.; Fernandez-Busnadiego, R. In situ architecture and cellular interactions of PolyQ inclusions. Cell, 2017, 171(1), 179-187.
[11]
Drummond, E.; Nayak, S.; Faustin, A.; Pires, G.; Hickman, R.A.; Askenazi, M.; Cohen, M.; Haldiman, T.; Kim, C.; Han, X.X.; Shao, Y.Z.; Safar, J.G.; Ueberheide, B.; Wisniewski, T. Proteomic differences in amyloid plaques in rapidly progressive and sporadic Alzheimer’s disease. Acta Neuropathological., 2017, 133(6), 933-954.
[12]
Stewart, K.L.; Hughes, E.; Yates, E.A.; Akien, G.R.; Huang, T.Y.; Lima, M.A.; Rudd, T.R.; Guerrini, M.; Hung, S.C.; Radford, S.E.; Middleton, D.A. Atomic details of the interactions of glycosaminoglycans with amyloid-beta fibrils. J. Am. Chem. Soc., 2016, 138(27), 8328-8331.
[13]
Kollmer, M.; Meinhardt, K.; Haupt, C.; Liberta, F.; Wulff, M.; Linder, J.; Handl, L.; Heinrich, L.; Loos, C.; Schmidt, M.; Syrovets, T.; Simmet, T.; Westermark, P.; Westermark, G.T.; Horn, U.; Schmidt, V.; Walther, P.; Fandrich, M. Electron tomography reveals the fibril structure and lipid interactions in amyloid deposits. Proc. Natl. Acad. Sci. USA, 2016, 113(20), 5604-5609.
[14]
Olzscha, H.; Schermann, S.M.; Woerner, A.C.; Pinkert, S.; Hecht, M.H.; Tartaglia, G.G.; Vendruscolo, M.; Hayer-Hartl, M.; Hartl, F.U.; Vabulas, R.M. Amyloid-like aggregates sequester numerous metastable proteins with essential cellular functions. Cell, 2011, 144(1), 67-78.
[15]
Guo, Q.; Lehmer, C.; Martinez-Sanchez, A.; Rudack, T.; Beck, F.; Hartmann, H.; Perez-Berlanga, M.; Frottin, F.; Hipp, M.S.; Hartl, F.U.; Edbauer, D.; Baumeister, W.; Fernandez-Busnadiego, R. In situ structure of neuronal C9orf72 poly-GA aggregates reveals proteasome recruitment. Cell, 2018, 172(4), 696-705.
[16]
Jackson, M.P.; Hewitt, E.W. Cellular proteostasis: degradation of misfolded proteins by lysosomes. In Proteostasis, VanOostenHawle, P.; Ed. 2016, 60, pp. 173-180.
[17]
McLaurin, J.; Chakrabartty, A. Membrane disruption by Alzheimer beta-amyloid peptides mediated through specific finding to either phospholipids or gangliosides - Implications for neurotoxicity. J. Biol. Chem., 1996, 271(43), 26482-26489.
[18]
Goodchild, S.C.; Sheynis, T.; Thompson, R.; Tipping, K.W.; Xue, W.F.; Ranson, N.A.; Beales, P.A.; Hewitt, E.W.; Radford, S.E. Beta(2)-microglobulin amyloid fibril-induced membrane disruption is enhanced by endosomal lipids and acidic pH. PLoS One, 2014, 9(8)e104492
[19]
Salminen, A.; Kaarniranta, K.; Kauppinen, A.; Ojala, J.; Haapasalo, A.; Soininen, H.; Hiltunen, M. Impaired autophagy and APP processing in Alzheimer’s disease: The potential role of Beclin 1 interactome. Prog. Neurobiol., 2013, 106, 33-54.
[20]
Uttara, B.; Singh, A.V.; Zamboni, P.; Mahajan, R.T. Oxidative stress and neurodegenerative diseases: A review of upstream and downstream antioxidant therapeutic options. Curr. Neuropharmacol., 2009, 7(1), 65-74.
[21]
Winklhofer, K.F.; Haass, C. Mitochondrial dysfunction in Parkinson’s disease. Biochim. Biophys. Acta, 2010, 1802(1), 29-44.
[22]
Geula, C.; Wu, C.K.; Saroff, D.; Lorenzo, A.; Yuan, M.L.; Yankner, B.A. Aging renders the brain vulnerable to amyloid beta-protein neurotoxicity. Nat. Med., 1998, 4(7), 827-831.
[23]
Li, J.; Uversky, V.N.; Fink, A.L. Effect of familial Parkinson’s disease point mutations A30P and A53T on the structural properties, aggregation, and fibrillation of human alpha-synuclein. Biochemistry, 2001, 40(38), 11604-11613.
[24]
Krone, M.G.; Baumketner, A.; Bernstein, S.L.; Wyttenbach, T.; Lazo, N.D.; Teplow, D.B.; Bowers, M.T.; Shea, J.E. Effects of familial Alzheimer’s disease mutations on the folding nucleation of the amyloid beta-protein. J. Mol. Biol., 2008, 381(1), 221-228.
[25]
Mangione, P.P.; Esposito, G.; Relini, A.; Raimondi, S.; Porcari, R.; Giorgetti, S.; Corazza, A.; Fogolari, F.; Penco, A.; Goto, Y.; Lee, Y.H.; Yagi, H.; Cecconi, C.; Naqvi, M.M.; Gillmore, J.D.; Hawkins, P.N.; Chiti, F.; Rolandi, R.; Taylor, G.W.; Pepys, M.B.; Stoppini, M.; Bellotti, V. Structure, folding dynamics, and amyloidogenesis of D76N beta(2)-microglobulin roles of shear flow, hydrophobic surfaces, and alpha-crystallin. J. Biol. Chem., 2013, 288(43), 30917-30930.
[26]
Pilla, E.; Schneider, K.; Bertolotti, A. Coping with protein quality control failure. In Annu. Rev. Cell Dev. Biol., Schekman, R.; Ed. 2017, 33, pp. 439-465.
[27]
Fan, H.C.; Ho, L.I.; Chi, C.S.; Chen, S.J.; Peng, G.S.; Chan, T.M.; Lin, S.Z.; Harn, H.J. Polyglutamine (PolyQ) diseases: Genetics to treatments. Cell Transplant., 2014, 23(4-5), 441-458.
[28]
Scheuermann, T.; Schulz, B.; Blume, A.; Wahle, E.; Rudolph, R.; Schwarz, E. Trinucleotide expansions leading to an extended poly-L-alanine segment in the poly (A) binding protein PABPN1 cause fibril formation. Protein Sci., 2003, 12(12), 2685-2692.
[29]
Brais, B. Short GCG expansions in the PABP2 gene cause oculopharyngeal muscular dystrophy. Nat. Genet., 1998, 19(4), 404-404.
[30]
Lott, I.T.; Head, E. Alzheimer disease and Down syndrome: Factors in pathogenesis. Neurobiol. Aging, 2005, 26(3), 383-389.
[31]
Scarpioni, R.; Ricardi, M.; Albertazzi, V.; De Amicis, S.; Rastelli, F.; Zerbini, L. Dialysis-related amyloidosis: Challenges and solutions. Int. J. Nephrol. Renovasc. Dis., 2016, 9, 319-328.
[32]
Nelson, P.T.; Alafuzoff, I.; Bigio, E.H.; Bouras, C.; Braak, H.; Cairns, N.J.; Castellani, R.J.; Crain, B.J.; Davies, P.; Del Tredici, K.; Duyckaerts, C.; Frosch, M.P.; Haroutunian, V.; Hof, P.R.; Hulette, C.M.; Hyman, B.T.; Iwatsubo, T.; Jellinger, K.A.; Jicha, G.A.; Kovari, E.; Kukull, W.A.; Leverenz, J.B.; Love, S.; Mackenzie, I.R.; Mann, D.M.; Masliah, E.; McKee, A.C.; Montine, T.J.; Morris, J.C.; Schneider, J.A.; Sonnen, J.A.; Thal, D.R.; Trojanowski, J.Q.; Troncoso, J.C.; Wisniewski, T.; Woltjer, R.L.; Beach, T.G. Correlation of Alzheimer disease neuropathologic changes with cognitive status: A review of the literature. J. Neuropathol. Exp. Neurol., 2012, 71(5), 362-381.
[33]
Serra-Batiste, M.; Ninot-Pedrosa, M.; Bayoumi, M.; Gairi, M.; Maglia, G.; Carulla, N. A beta 42 assembles into specific beta-barrel pore-forming oligomers in membrane-mimicking environments. Proc. Natl. Acad. Sci. USA, 2016, 113(39), 10866-10871.
[34]
Pfefferkorn, C.M.; Jiang, Z.P.; Lee, J.C. Biophysics of alpha-synuclein membrane interactions. Biochim. Biophys. Acta, 2012, 1818(2), 162-171.
[35]
Breydo, L.; Uversky, V.N. Structural, morphological, and functional diversity of amyloid oligomers. FEBS Lett., 2015, 589(19), 2640-2648.
[36]
Walsh, D.M.; Lomakin, A.; Benedek, G.B.; Condron, M.M.; Teplow, D.B. Amyloid beta-protein fibrillogenesis - Detection of a protofibrillar intermediate. J. Biol. Chem., 1997, 272(35), 22364-22372.
[37]
Glabe, C.G.; Kayed, R. Common structure and toxic function of amyloid oligomers implies a common mechanism of pathogenesis. Neurology, 2006, 66, S74-S78.
[38]
Simoneau, S.; Rezaei, H.; Sales, N.; Kaiser-Schulz, G.; Lefebvre-Roque, M.; Vidal, C.; Fournier, J.G.; Comte, J.; Wopfner, F.; Grosclaude, J.; Schatzl, H.; Lasmezas, C.I. In vitro and in vivo neurotoxicity of prion protein oligomers. PLoS Pathogens., 2007, 3(8), 1175-1186.
[39]
Winner, B.; Jappelli, R.; Maji, S.K.; Desplats, P.A.; Boyer, L.; Aigner, S.; Hetzer, C.; Loher, T.; Vilar, M.; Campioni, S.; Tzitzilonis, C.; Soragni, A.; Jessberger, S.; Mira, H.; Consiglio, A.; Pham, E.; Masliah, E.; Gage, F.H.; Riek, R. In vivo demonstration that alpha-synuclein oligomers are toxic. Proc. Natl. Acad. Sci. USA, 2011, 108(10), 4194-4199.
[40]
Young, L.M.; Cao, P.; Raleigh, D.P.; Ashcroft, A.E.; Radford, S.E. Ion mobility spectrometry-mass spectrometry defines the oligomeric intermediates in amylin amyloid formation and the mode of action of inhibitors. J. Am. Chem. Soc., 2014, 136(2), 660-670.
[41]
Colon, W.; Kelly, J.W. Partial denaturation of transthyretin is sufficient for amyloid fibril formation in vitro. Biochemistry, 1992, 31(36), 8654-8660.
[42]
Booth, D.R.; Sunde, M.; Bellotti, V.; Robinson, C.V.; Hutchinson, W.L.; Fraser, P.E.; Hawkins, P.N.; Dobson, C.M.; Radford, S.E.; Blake, C.C.F.; Pepys, M.B. Instability, unfolding and aggregation of human lysozyme variants underlying amyloid fibrillogenesis. Nature, 1997, 385(6619), 787-793.
[43]
Fandrich, M.; Fletcher, M.A.; Dobson, C.M. Amyloid fibrils from muscle myoglobin - Even an ordinary globular protein can assume a rogue guise if conditions are right. Nature, 2001, 410(6825), 165-166.
[44]
Guijarro, J.I.; Sunde, M.; Jones, J.A.; Campbell, I.D.; Dobson, C.M. Amyloid fibril formation by an SH3 domain. Proc. Natl. Acad. Sci. USA, 1998, 95(8), 4224-4228.
[45]
Ikenoue, T.; Lee, Y.H.; Kardos, J.; Saiki, M.; Yagi, H.; Kawata, Y.; Goto, Y. Cold denaturation of alpha-synuclein amyloid fibrils. Angewandte. Chemie. Int. Ed., 2014, 53(30), 7799-7804.
[46]
Buell, A.K.; Dobson, C.M.; Knowles, T.P.J. The physical chemistry of the amyloid phenomenon: thermodynamics and kinetics of filamentous protein aggregation. . In Amyloids in Health and Disease, Perrett, S.; Ed. 2014, 56, pp. 11-39.
[47]
Pham, C.L.L.; Kwan, A.H.; Sunde, M. Functional amyloid: Widespread in Nature, diverse in purpose. In Amyloids in Health and Disease, Perrett, S.; Ed. 2014, 56, pp. 207-219.
[48]
Maji, S.K.; Perrin, M.H.; Sawaya, M.R.; Jessberger, S.; Vadodaria, K.; Rissman, R.A.; Singru, P.S.; Nilsson, K.P.R.; Simon, R.; Schubert, D.; Eisenberg, D.; Rivier, J.; Sawchenko, P.; Vale, W.; Riek, R. Functional amyloids as natural storage of peptide hormones in pituitary secretory granules. Science, 2009, 325(5938), 328-332.
[49]
Fowler, D.M.; Koulov, A.V.; Alory-Jost, C.; Marks, M.S.; Balch, W.E.; Kelly, J.W. Functional amyloid formation within mammalian tissue. PLoS Biol., 2006, 4(1), 100-107.
[50]
Si, K.; Lindquist, S.; Kandel, E.R. A neuronal isoform of the Aplysia CPEB has prion-like properties. Cell, 2003, 115(7), 879-891.
[51]
Astbury, W.T.; Dickinson, S.; Bailey, K. The X-ray interpretation of denaturation and the structure of the seed globulins. Biochem. J., 1935, 29(10), 2351-2360.
[52]
Pauling, L.; Corey, R.B. Configurations of polypeptide chains with favored orientations around single bonds: Two new pleated sheets. PNAS, 1951, 37(11), 729-740.
[53]
Knowles, T.P.J.; Vendruscolo, M.; Dobson, C.M. The amyloid state and its association with protein misfolding diseases. Nat. Rev. Mol. Cell Biol., 2014, 15(6), 384-396.
[54]
Eisenberg, D.S.; Sawaya, M.R. Structural studies of amyloid proteins at the molecular level. . In Annu. Rev. Biochem., Kornberg, R.D.; Ed. 2017, 86, pp. 69-95.
[55]
Wasmer, C.; Lange, A.; Van Melckebeke, H.; Siemer, A.B.; Riek, R.; Meier, B.H. Amyloid fibrils of the HET-s(218-289) prion form a beta solenoid with a triangular hydrophobic core. Science, 2008, 319(5869), 1523-1526.
[56]
Dearborn, A.D.; Wall, J.S.; Cheng, N.Q.; Heymann, J.B.; Kajava, A.V.; Varkey, J.; Langen, R.; Steven, A.C. Alpha-synuclein amyloid fibrils with two entwined, asymmetrically associated protofibrils. J. Biol. Chem., 2016, 291(5), 2310-2318.
[57]
Jimenez, J.L.; Nettleton, E.J.; Bouchard, M.; Robinson, C.V.; Dobson, C.M.; Saibil, H.R. The protofilament structure of insulin amyloid fibrils. Proc. Natl. Acad. Sci. USA, 2002, 99(14), 9196-9201.
[58]
Fitzpatrick, A.W.P.; Falcon, B.; He, S.; Murzin, A.G.; Murshudov, G.; Garringer, H.J.; Crowther, R.A.; Ghetti, B.; Goedert, M.; Scheres, S.H.W. Cryo-EM structures of tau filaments from Alzheimer’s disease. Nature, 2017, 547(7662), 185-190.
[59]
Gremer, L.; Scholzel, D.; Schenk, C.; Reinartz, E.; Labahn, J.; Ravelli, R.B.G.; Tusche, M.; Lopez-Iglesias, C.; Hoyer, W.; Heise, H.; Willbold, D.; Schroder, G.F. Fibril structure of amyloid-beta(1-42) by cryo-electron microscopy. Science, 2017, 358(6359), 116-119.
[60]
Chou, K.C.; Pottle, M.; Nemethy, G.; Ueda, Y.; Scheraga, H.A. Structure of beta-sheets - origin of the right-handed twist and of the increased stability of antiparallel over parallel sheets. J. Mol. Biol., 1982, 162(1), 89-112.
[61]
Perczel, A.; Hudaky, P.; Palfi, V.K. Dead-end street of protein folding: Thermodynamic rationale of amyloid fibril formation. J. Am. Chem. Soc., 2007, 129(48), 14959-14965.
[62]
Nelson, R.; Sawaya, M.R.; Balbirnie, M.; Madsen, A.O.; Riekel, C.; Grothe, R.; Eisenberg, D. Structure of the cross-beta spine of amyloid-like fibrils. Nature, 2005, 435(7043), 773-778.
[63]
Marshall, K.E.; Hicks, M.R.; Williams, T.L.; Hoffmann, S.V.; Rodger, A.; Dafforn, T.R.; Serpell, L.C. Characterizing the assembly of the Sup35 yeast prion fragment, GNNQQNY: Structural changes accompany a fiber-to-crystal switch. Biophys. J., 2010, 98(2), 330-338.
[64]
Rodriguez, J.A.; Ivanova, M.I.; Sawaya, M.R.; Cascio, D.; Reyes, F.E.; Shi, D.; Sangwan, S.; Guenther, E.L.; Johnson, L.M.; Zhang, M.; Jiang, L.; Arbing, M.A.; Nannenga, B.L.; Hattne, J.; Whitelegge, J.; Brewster, A.S.; Messerschmidt, M.; Boutet, B.; Sauter, N.K.; Gonen, T.; Eisenberg, D.S. Structure of the toxic core of alpha-synuclein from invisible crystals. Nature, 2015, 525(7570), 486-490.
[65]
Wiltzius, J.J.W.; Sievers, S.A.; Sawaya, M.R.; Cascio, D.; Popov, D.; Riekel, C.; Eisenberg, D. Atomic structure of the cross-beta spine of islet amyloid polypeptide (amylin). Protein Sci., 2008, 17(9), 1467-1474.
[66]
Soriaga, A.B.; Sangwan, S.; Macdonald, R.; Sawaya, M.R.; Eisenberg, D. Crystal structures of IAPP amyloidogenic segments reveal a novel packing motif of out-of-register beta sheets. J. Phys. Chem. B, 2016, 120(26), 5810-5816.
[67]
Saelices, L.; Sievers, S.A.; Sawaya, M.R.; Eisenberg, D.S. Crystal structures of amyloidogenic segments of human transthyretin. Protein Sci., 2018, 27(7), 1295-1303.
[68]
Meier, B.H.; Riek, R.; Bockmann, A. Emerging structural understanding of amyloid fibrils by solid-state NMR. Trends Biochem. Sci., 2017, 42(10), 777-787.
[69]
Kuhlbrandt, W. The resolution revolution. Science, 2014, 343(6178), 1443-1444.
[70]
Antzutkin, O.N.; Leapman, R.D.; Balbach, J.J.; Tycko, R. Supramolecular structural constraints on Alzheimer’s beta-amyloid fibrils from electron microscopy and solid-state nuclear magnetic resonance. Biochemistry, 2002, 41(51), 15436-15450.
[71]
Chan, J.C.C.; Oyler, N.A.; Yau, W.M.; Tycko, R. Parallel beta-sheets and polar zippers in amyloid fibrils formed by residues 10-39 of the yeast prion protein Ure2p. Biochemistry, 2005, 44(31), 10669-10680.
[72]
Colvin, M.T.; Silvers, R.; Frohm, B.; Su, Y.C.; Linse, S.; Griffin, R.G. High resolution structural characterization of a beta(42) amyloid fibrils by magic angle spinning NMR. J. Am. Chem. Soc., 2015, 137(23), 7509-7518.
[73]
Qiang, W.; Yau, W.M.; Lu, J.X.; Collinge, J.; Tycko, R. Structural variation in amyloid-beta fibrils from Alzheimer’s disease clinical subtypes. Nature, 2017, 541(7636), 217-221.
[74]
Walti, M.A.; Ravotti, F.; Arai, H.; Glabe, C.G.; Wall, J.S.; Bockmann, A.; Guntert, P.; Meier, B.H.; Riek, R. Atomic-resolution structure of a disease-relevant A beta(1-42) amyloid fibril. Proc. Natl. Acad. Sci. USA, 2016, 113(34), E4976-E4984.
[75]
Luo, F.; Gui, X.R.; Zhou, H.; Gu, J.G.; Li, Y.C.; Liu, X.Y.; Zhao, M.L.; Li, D.; Li, X.M.; Liu, C. Atomic structures of FUS LC domain segments reveal bases for reversible amyloid fibril formation. Nat. Struct. Mol. Biol., 2018, 25, 341-346.
[76]
Jimenez, J.L.; Guijarro, J.L.; Orlova, E.; Zurdo, J.; Dobson, C.M.; Sunde, M.; Saibil, H.R. Cryo-electron microscopy structure of an SH3 amyloid fibril and model of the molecular packing. EMBO J., 1999, 18(4), 815-821.
[77]
Fandrich, M.; Meinhardt, J.; Grigorieff, N. Structural polymorphism of Alzheimer A beta and other amyloid fibrils. Prion, 2009, 3(2), 89-93.
[78]
Sachse, C.; Fandrich, M.; Grigorieff, N. Paired beta-sheet structure of an A beta(1-40) amyloid fibril revealed by electron microscopy. Proc. Natl. Acad. Sci. USA, 2008, 105(21), 7462-7466.
[79]
Soriaga, A.B.; Sangwan, S.; Macdonald, R.; Sawaya, M.R.; Eisenberg, D. Crystal structures of IAPP amyloidogenic segments reveal a novel packing motif of out-of-register beta sheets. J. Phys. Chem. B, 2016, 120(26), 5810-5816.
[80]
Micsonai, A.; Wien, F.; Kernya, L.; Lee, Y.H.; Goto, Y.; Réfrégiers, M.; Kardos, J. Accurate secondary structure prediction for CD. Proc. Natl. Acad. Sci. USA, 2015, 112(24), E3095-E3103.
[81]
Zandomeneghi, G.; Krebs, M.R.H.; McCammon, M.G.; Fandrich, M. FTIR reveals structural differences between native beta-sheet proteins and amyloid fibrils. Protein Sci., 2004, 13(12), 3314-3321.
[82]
Varkey, J.; Langen, R. Membrane remodeling by amyloidogenic and non-amyloidogenic proteins studied by EPR. J. Magn. Reson., 2017, 280, 127-139.
[83]
Balbirnie, M.; Grothe, R.; Eisenberg, D.S. An amyloid-forming peptide from the yeast prion Sup35 reveals a dehydrated beta-sheet structure for amyloid. Proc. Natl. Acad. Sci. USA, 2001, 98(5), 2375-2380.
[84]
Fandrich, M.; Dobson, C.M. The behaviour of polyamino acids reveals an inverse side chain effect in amyloid structure formation. EMBO J., 2002, 21(21), 5682-5690.
[85]
Lawrence, M.C.; Colman, P.M. Shape complementarity at protein-protein interfaces. J. Mol. Biol., 1993, 234(4), 946-950.
[86]
Krotee, P.; Griner, S.L.; Sawaya, M.R.; Cascio, D.; Rodriguez, J.A.; Shi, D.; Philipp, S.; Murray, K.; Saelices, L.; Lee, J.; Seidler, P.; Glabe, C.G.; Jiang, L.; Gonen, T.; Eisenberg, D.S. Common fibrillar spines of amyloid-beta and human islet amyloid polypeptide revealed by microelectron diffraction and structure-based inhibitors. J. Biol. Chem., 2018, 293(8), 2888-2902.
[87]
Klement, K.; Wieligmann, K.; Meinhardt, J.; Hortschansky, P.; Richter, W.; Fandrich, M. Effect of different salt ions on the propensity of aggregation and on the structure of Alzheimer’s A beta(1-40) amyloid fibrils. J. Mol. Biol., 2007, 373(5), 1321-1333.
[88]
Guenther, E.L.; Ge, P.; Trinh, H.; Sawaya, M.R.; Cascio, D.; Boyer, D.R.; Gonen, T.; Zhou, Z.H.; Eisenberg, D.S. Atomic-level evidence for packing and positional amyloid polymorphism by segment from TDP-43 RRM2. Nat. Struct. Mol. Biol., 2018, 25(4), 311-319.
[89]
Salinas, N.; Colletier, J.P.; Moshe, A.; Landau, M. Extreme amyloid polymorphism in Staphylococcus aureus virulent PSM alpha peptides. Nat. Commun., 2018, 9, 3512.
[90]
Annamalai, K.; Guehrs, K.H.; Koehler, R.; Schmidt, M.; Michel, H.; Loos, C.; Gaffney, P.M.; Sigurdson, C.J.; Hegenbart, U.; Schoenland, S.; Fandrich, M. Polymorphism of amyloid fibrils in vivo. Angewandte. Chemie. Int. Ed., 2016, 55(15), 4822-4825.
[91]
Fitzpatrick, A.W.P.; Debelouchina, G.T.; Bayro, M.J.; Clare, D.K.; Caporini, M.A.; Bajaj, V.S.; Jaroniec, C.P.; Wang, L.C.; Ladizhansky, V.; Muller, S.A.; MacPhee, C.E.; Waudby, C.A.; Mott, H.R.; De Simone, A.; Knowles, T.P.J.; Saibil, H.R.; Vendruscolo, M.; Orlova, E.V.; Griffin, R.G.; Dobson, C.M. Atomic structure and hierarchical assembly of a cross-beta amyloid fibril. Proc. Natl. Acad. Sci. USA, 2013, 110(14), 5468-5473.
[92]
Close, W.; Neumann, M.; Schmidt, A.; Hora, M.; Annamalai, K.; Schmidt, M.; Reif, B.; Schmidt, V.; Grigorieff, N.; Fandrich, M. Physical basis of amyloid fibril polymorphism. Nat. Commun., 2018, 9(1), 699.
[93]
Qiang, W.; Kelley, K.; Tycko, R. Polymorph-specific kinetics and thermodynamics of beta-amyloid fibril growth. J. Am. Chem. Soc., 2013, 135(18), 6860-6871.
[94]
Lee, Y.J.; Savtchenko, R.; Ostapchenko, V.G.; Makarava, N.; Baskakov, I.V. Molecular structure of amyloid fibrils controls the relationship between fibrillar size and toxicity. PLoS One, 2011, 6(5)e20244
[95]
Gharibyan, A.L.; Zamotin, V.; Yanamandra, K.; Moskaleva, O.S.; Margulis, B.A.; Kostanyan, I.A.; Morozova-Roche, L.A. Lysozyme amyloid oligomers and fibrils induce cellular death via different apoptotic/necrotic pathways. J. Mol. Biol., 2007, 365(5), 1337-1349.
[96]
Wiltzius, J.J.W.; Landau, M.; Nelson, R.; Sawaya, M.R.; Apostol, M.I.; Goldschmidt, L.; Soriaga, A.B.; Cascio, D.; Rajashankar, K.; Eisenberg, D. Molecular mechanisms for protein-encoded inheritance. Nat. Struct. Mol. Biol., 2009, 16(9), 973-998.
[97]
Sawaya, M.R.; Sambashivan, S.; Nelson, R.; Ivanova, M.I.; Sievers, S.A.; Apostol, M.I.; Thompson, M.J.; Balbirnie, M.; Wiltzius, J.J.W.; McFarlane, H.T.; Madsen, A.O.; Riekel, C.; Eisenberg, D. Atomic structures of amyloid cross-beta spines reveal varied steric zippers. Nature, 2007, 447(7143), 453-457.
[98]
Colletier, J.P.; Laganowsky, A.; Landau, M.; Zhao, M.L.; Soriaga, A.B.; Goldschmidt, L.; Flot, D.; Cascio, D.; Sawaya, M.R.; Eisenberg, D. Molecular basis for amyloid-beta polymorphism. Proc. Natl. Acad. Sci. USA, 2011, 108(41), 16938-16943.
[99]
Liang, C.; Ni, R.; Smith, J.E.; Childers, W.S.; Mehta, A.K.; Lynn, D.G. Kinetic intermediates in amyloid assembly. J. Am. Chem. Soc., 2014, 136(43), 15146-15149.
[100]
Petkova, A.T.; Leapman, R.D.; Guo, Z.H.; Yau, W.M.; Mattson, M.P.; Tycko, R. Self-propagating, molecular-level polymorphism in Alzheimer’s beta-amyloid fibrils. Science, 2005, 307(5707), 262-265.
[101]
Vadukul, D.M.; Gbajumo, O.; Marshall, K.E.; Serpell, L.C. Amyloidogenicity and toxicity of the reverse and scrambled variants of amyloid-beta 1-42. FEBS Lett., 2017, 591(5), 822-830.
[102]
de la Paz, M.L.; Goldie, K.; Zurdo, J.; Lacroix, E.; Dobson, C.M.; Hoenger, A.; Serrano, L. De novo designed peptide-based amyloid fibrils. Proc. Natl. Acad. Sci. USA, 2002, 99(25), 16052-16057.
[103]
Emily, M.; Talvas, A.; Delamarche, C. MetAmyl: A METa-predictor for amyloid proteins. PLoS One, 2013, 8(11)e79722
[104]
Pawar, A.P.; DuBay, K.F.; Zurdo, J.; Chiti, F.; Vendruscolo, M.; Dobson, C.M. Prediction of “aggregation-prone” and “aggregation-susceptible” regions in proteins associated with neurodegenerative diseases. J. Mol. Biol., 2005, 350(2), 379-392.
[105]
Fernandez-Escamilla, A.M.; Rousseau, F.; Schymkowitz, J.; Serrano, L. Prediction of sequence-dependent and mutational effects on the aggregation of peptides and proteins. Nat. Biotechnol., 2004, 22(10), 1302-1306.
[106]
Maurer-Stroh, S.; Debulpaep, M.; Kuemmerer, N.; de la Paz, M.L.; Martins, I.C.; Reumers, J.; Morris, K.L.; Copland, A.; Serpell, L.; Serrano, L.; Schymkowitz, J.W.H.; Rousseau, F. Exploring the sequence determinants of amyloid structure using position-specific scoring matrices. Nat. Methods, 2010, 7(3), 237-U109.
[107]
Trovato, A.; Chiti, F.; Maritan, A.; Seno, F. Insight into the structure of amyloid fibrils from the analysis of globular proteins. PLoS Comput. Biol., 2006, 2(12), 1608-1618.
[108]
Thompson, M.J.; Sievers, S.A.; Karanicolas, J.; Ivanova, M.I.; Baker, D.; Eisenberg, D. The 3D profile method for identifying fibril-forming segments of proteins. Proc. Natl. Acad. Sci. USA, 2006, 103(11), 4074-4078.
[109]
Roland, B.P.; Kodali, R.; Mishra, R.; Wetzel, R. A serendipitous survey of prediction algorithms for amyloidogenicity. Biopolymers, 2013, 100(6), 780-789.
[110]
Groveman, B.R.; Kraus, A.; Raymond, L.D.; Dolan, M.A.; Anson, K.J.; Dorward, D.W.; Caughey, B. Charge neutralization of the central lysine cluster in prion protein (PrP) promotes PrPSc-like folding of recombinant PrP amyloids. J. Biol. Chem., 2015, 290(2), 1119-1128.
[111]
Qiu, F.; Tang, C.K.; Chen, Y.Z. Amyloid-like aggregation of designer bolaamphiphilic peptides: Effect of hydrophobic section and hydrophilic heads. J. Pept. Sci., 2018, 24(2)
[http://dx.doi.org/10.1002/psc.3062]
[112]
Ivanova, M.I.; Sievers, S.A.; Sawaya, M.R.; Wall, J.S.; Eisenberg, D. Molecular basis for insulin fibril assembly. Proc. Natl. Acad. Sci. USA, 2009, 106(45), 18990-18995.
[113]
Chiti, F.; Dobson, C.M. Amyloid formation by globular proteins under native conditions. Nat. Chem. Biol., 2009, 5(1), 15-22.
[114]
Reches, M.; Porat, Y.; Gazit, E. Amyloid fibril formation by pentapeptide and tetrapeptide fragments of human calcitonin. J. Biol. Chem., 2002, 277(38), 35475-35480.
[115]
Papp, D.; Rovo, P.; Jakli, I.; Csaszar, A.G.; Perczel, A. Four faces of the interaction between ions and aromatic rings. J. Comput. Chem., 2017, 38(20), 1762-1773.
[116]
Goux, W.J.; Kopplin, L.; Nguyen, A.D.; Leak, K.; Rutkofsky, M.; Shanmuganandam, V.D.; Sharma, D.; Inouye, H.; Kirschner, D.A. The formation of straight and twisted filaments from short tau peptides. J. Biol. Chem., 2004, 279(26), 26868-26875.
[117]
Aguilera, P.; Marcoleta, A.; Lobus-Ruiz, P.; Arranz, R.; Valpuesta, J.M.; Monasterio, O.; Lagos, R. Identification of key amino acid residues modulating intracellular and in vitro microcin E492 amyloid formation. Front. Microbiol., 2016, 7, 35.
[118]
Kannan, R.; Raju, M.; Sharma, K.K. The critical role of the central hydrophobic core (residues 71-77) of amyloid-forming alpha A66-80 peptide in alpha-crystallin aggregation: A systematic proline replacement study. Amyloid, 2014, 21(2), 103-109.
[119]
Gath, J.; Bousset, L.; Habenstein, B.; Melki, R.; Bockmann, A.; Meier, B.H. Unlike twins: An NMR comparison of two alpha-synuclein polymorphs featuring different toxicity. PLoS One, 2014, 9(3)e90659
[120]
Qiang, W.; Kelley, K.; Tycko, R. Polymorph-specific kinetics and thermodynamics of beta-amyloid fibril growth. J. Am. Chem. Soc., 2013, 135(18), 6860-6871.
[121]
Wruck, F.; Katranidis, A.; Nierhaus, K.H.; Buldt, G.; Hegner, M. Translation and folding of single proteins in real time. Proc. Natl. Acad. Sci. USA, 2017, 114(22), E4399-E4407.
[122]
Richardson, J.S.; Richardson, D.C. Natural beta-sheet proteins use negative design to avoid edge-to-edge aggregation. Proc. Natl. Acad. Sci. USA, 2002, 99(5), 2754-2759.
[123]
Maresova, P.; Klimova, B.; Novotny, M.; Kuca, K. Alzheimer’s and Parkinson’s diseases: Expected economic impact on europe-a call for a uniform European strategy. J. Alzheimers Dis., 2016, 54(3), 1123-1133.
[124]
Bulawa, C.E.; Connelly, S.; Devit, M.; Wang, L.; Weigel, C.; Fleming, J.A.; Packman, J.; Powers, E.T.; Wiseman, R.L.; Foss, T.R.; Wilson, I.A.; Kelly, J.W.; Labaudiniere, R. Tafamidis, a potent and selective transthyretin kinetic stabilizer that inhibits the amyloid cascade. Proc. Natl. Acad. Sci. USA, 2012, 109(24), 9629-9634.
[125]
Seidler, P.M.; Boyer, D.R.; Rodriguez, J.A.; Sawaya, M.R.; Cascio, D.; Murray, K.; Gonen, T.; Eisenberg, D.S. Structure-based inhibitors of tau aggregation. Nat. Chem., 2018, 10(2), 170-176.
[126]
Sievers, S.A.; Karanicolas, J.; Chang, H.W.; Zhao, A.; Jiang, L.; Zirafi, O.; Stevens, J.T.; Munch, J.; Baker, D.; Eisenberg, D. Structure-based design of non-natural amino-acid inhibitors of amyloid fibril formation. Nature, 2011, 475(7354), 96-U117.
[127]
Frenkel-Pinter, M.; Richman, M.; Belostozky, A.; Abu-Mokh, A.; Gazit, E.; Rahimipour, S.; Segal, D. Selective inhibition of aggregation and toxicity of a tau-derived peptide using its glycosylated analogues. Chemistry, 2016, 22(17), 5945-5952.
[128]
KrishnaKumar. V.G.; Paul, A.; Gazit, E.; Segal, D. Mechanistic insights into remodeled tau-derived PHF6 peptide fibrils by naphthoquinone-tryptophan hybrids. Sci. Rep., 2018, 8, 71.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 11
Year: 2019
Page: [1077 - 1088]
Pages: 12
DOI: 10.2174/1389203720666190925102832
Price: $65

Article Metrics

PDF: 17
HTML: 5
EPUB: 1
PRC: 1