Lipid-based Vehicles for siRNA Delivery in Biomedical Field

Author(s): Tianzhong Li, Linfeng Huang*, Mengsu Yang*.

Journal Name: Current Pharmaceutical Biotechnology

Volume 21 , Issue 1 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Genetic drugs have aroused much attention in the past twenty years. RNA interference (RNAi) offers novel insights into discovering potential gene functions and therapies targeting genetic diseases. Small interference RNA (siRNA), typically 21-23 nucleotides in length, can specifically degrade complementary mRNA. However, targeted delivery and controlled release of siRNA remain a great challenge.

Methods: Different types of lipid-based delivery vehicles have been synthesized, such as liposomes, lipidoids, micelles, lipoplexes and lipid nanoparticles. These carriers commonly have a core-shell structure. For active targeting, ligands may be conjugated to the surface of lipid particles.

Results: Lipid-based drug delivery vehicles can be utilized in anti-viral or anti-tumor therapies. They can also be used to tackle genetic diseases or discover novel druggable genes.

Conclusion: In this review, the structures of lipid-based vehicles and possible surface modifications are described, and applications of delivery vehicles in biomedical field are discussed.

Keywords: siRNA, delivery, lipid nanoparticle, liposome, gene silencing, targeting strategy.

[1]
Djebali, S.; Davis, C.A.; Merkel, A.; Dobin, A.; Lassmann, T.; Mortazavi, A.; Tanzer, A.; Lagarde, J.; Lin, W.; Schlesinger, F.; Xue, C.; Marinov, G.K.; Khatun, J.; Williams, B.A.; Zaleski, C.; Rozowsky, J.; Röder, M.; Kokocinski, F.; Abdelhamid, R.F.; Alioto, T.; Antoshechkin, I.; Baer, M.T.; Bar, N.S.; Batut, P.; Bell, K.; Bell, I.; Chakrabortty, S.; Chen, X.; Chrast, J.; Curado, J.; Derrien, T.; Drenkow, J.; Dumais, E.; Dumais, J.; Duttagupta, R.; Falconnet, E.; Fastuca, M.; Fejes-Toth, K.; Ferreira, P.; Foissac, S.; Fullwood, M.J.; Gao, H.; Gonzalez, D.; Gordon, A.; Gunawardena, H.; Howald, C.; Jha, S.; Johnson, R.; Kapranov, P.; King, B.; Kingswood, C.; Luo, O.J.; Park, E.; Persaud, K.; Preall, J.B.; Ribeca, P.; Risk, B.; Robyr, D.; Sammeth, M.; Schaffer, L.; See, L.H.; Shahab, A.; Skancke, J.; Suzuki, A.M.; Takahashi, H.; Tilgner, H.; Trout, D.; Walters, N.; Wang, H.; Wrobel, J.; Yu, Y.; Ruan, X.; Hayashizaki, Y.; Harrow, J.; Gerstein, M.; Hubbard, T.; Reymond, A.; Antonarakis, S.E.; Hannon, G.; Giddings, M.C.; Ruan, Y.; Wold, B.; Carninci, P.; Guigó, R.; Gingeras, T.R. Landscape of transcription in human cells. Nature, 2012, 489(7414), 101-108.
[http://dx.doi.org/10.1038/nature11233] [PMID: 22955620]
[2]
Cech, T.R.; Steitz, J.A. The noncoding RNA revolution-trashing old rules to forge new ones. Cell, 2014, 157(1), 77-94.
[http://dx.doi.org/10.1016/j.cell.2014.03.008] [PMID: 24679528]
[3]
Leistner, D.M.; Boeckel, J.N.; Reis, S.M.; Thome, C.E.; De Rosa, R.; Keller, T.; Palapies, L.; Fichtlscherer, S.; Dimmeler, S.; Zeiher, A.M. Transcoronary gradients of vascular miRNAs and coronary atherosclerotic plaque characteristics. Eur. Heart J., 2016, 37(22), 1738-1749.
[http://dx.doi.org/10.1093/eurheartj/ehw047] [PMID: 26916800]
[4]
Bocchinfuso, G.; Palleschi, A.; Orioni, B.; Grande, G.; Formaggio, F.; Toniolo, C.; Park, Y.; Hahm, K-S.; Stella, L. Different mechanisms of action of antimicrobial peptides: insights from fluorescence spectroscopy experiments and molecular dynamics simulations. J. Pept. Sci., 2009, 15(9), 550-558.
[http://dx.doi.org/10.1002/psc.1144] [PMID: 19455510]
[5]
Boon, R.A.; Jaé, N.; Holdt, L.; Dimmeler, S. Long noncoding RNAs: From clinical genetics to therapeutic targets? J. Am. Coll. Cardiol., 2016, 67(10), 1214-1226.
[http://dx.doi.org/10.1016/j.jacc.2015.12.051] [PMID: 26965544]
[6]
Zhang, F.; Wu, L.; Qian, J.; Qu, B.; Xia, S.; La, T.; Wu, Y.; Ma, J.; Zeng, J.; Guo, Q.; Cui, Y.; Yang, W.; Huang, J.; Zhu, W.; Yao, Y.; Shen, N.; Tang, Y. Identification of the long noncoding RNA NEAT1 as a novel inflammatory regulator acting through MAPK pathway in human lupus. J. Autoimmun., 2016, 75, 96-104.
[http://dx.doi.org/10.1016/j.jaut.2016.07.012] [PMID: 27481557]
[7]
Zhang, F.; Liu, G.; Wei, C.; Gao, C.; Hao, J. Linc-MAF-4 regulates Th1/Th2 differentiation and is associated with the pathogenesis of multiple sclerosis by targeting MAF. FASEB J., 2017, 31(2), 519-525.
[http://dx.doi.org/10.1096/fj.201600838R] [PMID: 27756768]
[8]
Guo, S.; Kemphues, K.J. par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell, 1995, 81(4), 611-620.
[http://dx.doi.org/10.1016/0092-8674(95)90082-9] [PMID: 7758115]
[9]
Matzke, M.A.; Primig, M.; Trnovsky, J.; Matzke, A.J. Reversible methylation and inactivation of marker genes in sequentially transformed tobacco plants. EMBO J., 1989, 8(3), 643-649.
[http://dx.doi.org/10.1002/j.1460-2075.1989.tb03421.x] [PMID: 16453872]
[10]
Uchino, K.; Ochiya, T.; Takeshita, F. RNAi therapeutics and applications of microRNAs in cancer treatment. Jpn. J. Clin. Oncol., 2013, 43(6), 596-607.
[http://dx.doi.org/10.1093/jjco/hyt052] [PMID: 23592885]
[11]
Baumann, V.; Winkler, J. miRNA-based therapies: strategies and delivery platforms for oligonucleotide and non-oligonucleotide agents. Future Med. Chem., 2014, 6(17), 1967-1984.
[http://dx.doi.org/10.4155/fmc.14.116] [PMID: 25495987]
[12]
de Antonellis, P.; Liguori, L.; Falanga, A.; Carotenuto, M.; Ferrucci, V.; Andolfo, I.; Marinaro, F.; Scognamiglio, I.; Virgilio, A.; De Rosa, G.; Galeone, A.; Galdiero, S.; Zollo, M. MicroRNA 199b-5p delivery through stable nucleic acid lipid particles (SNALPs) in tumorigenic cell lines. Naunyn Schmiedebergs Arch. Pharmacol., 2013, 386(4), 287-302.
[http://dx.doi.org/10.1007/s00210-013-0837-4] [PMID: 23354452]
[13]
Crooke, S.T.; Witztum, J.L.; Bennett, C.F.; Baker, B.F. RNA-targeted therapeutics. Cell Metab., 2018, 27(4), 714-739.
[http://dx.doi.org/10.1016/j.cmet.2018.03.004] [PMID: 29617640]
[14]
Rupaimoole, R.; Slack, F.J. MicroRNA therapeutics: Towards a new era for the management of cancer and other diseases. Nat. Rev. Drug Discov., 2017, 16(3), 203-222.
[http://dx.doi.org/10.1038/nrd.2016.246] [PMID: 28209991]
[15]
Song, X-S.; Gu, K-X.; Duan, X-X.; Xiao, X-M.; Hou, Y-P.; Duan, Y-B.; Wang, J-X.; Yu, N.; Zhou, M-G. Secondary amplification of siRNA machinery limits the application of spray-induced gene silencing. Mol. Plant Pathol., 2018, 19(12), 2543-2560.
[http://dx.doi.org/10.1111/mpp.12728] [PMID: 30027625]
[16]
Elbashir, S.M.; Lendeckel, W.; Tuschl, T. RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev., 2001, 15(2), 188-200.
[http://dx.doi.org/10.1101/gad.862301] [PMID: 11157775]
[17]
Kleinman, M.E.; Yamada, K.; Takeda, A.; Chandrasekaran, V.; Nozaki, M.; Baffi, J.Z.; Albuquerque, R.J.C.; Yamasaki, S.; Itaya, M.; Pan, Y.; Appukuttan, B.; Gibbs, D.; Yang, Z.; Karikó, K.; Ambati, B.K.; Wilgus, T.A.; DiPietro, L.A.; Sakurai, E.; Zhang, K.; Smith, J.R.; Taylor, E.W.; Ambati, J. Sequence- and target-independent angiogenesis suppression by siRNA via TLR3. Nature, 2008, 452(7187), 591-597.
[http://dx.doi.org/10.1038/nature06765] [PMID: 18368052]
[18]
Morris, K.V.; Rossi, J.J. Anti-HIV-1 gene expressing lentiviral vectors as an adjunctive therapy for HIV-1 infection. Curr. HIV Res., 2004, 2(2), 185-191.
[http://dx.doi.org/10.2174/1570162043484906] [PMID: 15078182]
[19]
Kock, N.; Kasmieh, R.; Weissleder, R.; Shah, K. Tumor therapy mediated by lentiviral expression of shBcl-2 and S-TRAIL. Neoplasia, 2007, 9(5), 435-442.
[http://dx.doi.org/10.1593/neo.07223] [PMID: 17534449]
[20]
Avitabile, C.; Cimmino, A.; Romanelli, A. Oligonucleotide analogues as modulators of the expression and function of noncoding RNAs (ncRNAs): Emerging therapeutics applications. J. Med. Chem., 2014, 57(24), 10220-10240.
[http://dx.doi.org/10.1021/jm5006594] [PMID: 25280271]
[21]
Winkler, J. Oligonucleotide conjugates for therapeutic applications. Ther. Deliv., 2013, 4(7), 791-809.
[http://dx.doi.org/10.4155/tde.13.47] [PMID: 23883124]
[22]
Mantei, A.; Rutz, S.; Janke, M.; Kirchhoff, D.; Jung, U.; Patzel, V.; Vogel, U.; Rudel, T.; Andreou, I.; Weber, M.; Scheffold, A. siRNA stabilization prolongs gene knockdown in primary T lymphocytes. Eur. J. Immunol., 2008, 38(9), 2616-2625.
[http://dx.doi.org/10.1002/eji.200738075] [PMID: 18792414]
[23]
Zhou, J.; Shum, K-T.; Burnett, J.C.; Rossi, J.J. Nanoparticle-based delivery of RNAi therapeutics: Progress and challenges. Pharmaceuticals (Basel), 2013, 6(1), 85-107.
[http://dx.doi.org/10.3390/ph6010085] [PMID: 23667320]
[24]
Tezgel, Ö.; Szarpak-Jankowska, A.; Arnould, A.; Auzély-Velty, R.; Texier, I. Chitosan-Lipid Nanoparticles (CS-LNPs): Application to siRNA delivery. J. Colloid Interface Sci., 2018, 510, 45-56.
[http://dx.doi.org/10.1016/j.jcis.2017.09.045] [PMID: 28934610]
[25]
Chen, X.; Mangala, L.S.; Rodriguez-Aguayo, C.; Kong, X.; Lopez-Berestein, G.; Sood, A.K. RNA interference-based therapy and its delivery systems. Cancer Metastasis Rev., 2018, 37(1), 107-124.
[http://dx.doi.org/10.1007/s10555-017-9717-6] [PMID: 29243000]
[26]
Slivac, I.; Guay, D.; Mangion, M.; Champeil, J.; Gaillet, B. Non-viral nucleic acid delivery methods. Expert Opin. Biol. Ther., 2017, 17(1), 105-118.
[http://dx.doi.org/10.1080/14712598.2017.1248941] [PMID: 27740858]
[27]
Goodman, A.M.; Cao, Y.; Urban, C.; Neumann, O.; Ayala-Orozco, C.; Knight, M.W.; Joshi, A.; Nordlander, P.; Halas, N.J. The surprising in vivo instability of near-IR-absorbing hollow Au-Ag nanoshells. ACS Nano, 2014, 8(4), 3222-3231.
[http://dx.doi.org/10.1021/nn405663h] [PMID: 24547810]
[28]
Chang, H.; Wang, H.; Shao, N.; Wang, M.; Wang, X.; Cheng, Y. Surface-engineered dendrimers with a diaminododecane core achieve efficient gene transfection and low cytotoxicity. Bioconjug. Chem., 2014, 25(2), 342-350.
[http://dx.doi.org/10.1021/bc400496u] [PMID: 24410081]
[29]
Buchman, Y.K.; Lellouche, E.; Zigdon, S.; Bechor, M.; Michaeli, S.; Lellouche, J-P. Silica nanoparticles and Polyethyleneimine (PEI)-mediated functionalization: A new method of PEI covalent attachment for siRNA delivery applications. Bioconjug. Chem., 2013, 24(12), 2076-2087.
[http://dx.doi.org/10.1021/bc4004316] [PMID: 24180511]
[30]
Naeye, B.; Deschout, H.; Caveliers, V.; Descamps, B.; Braeckmans, K.; Vanhove, C.; Demeester, J.; Lahoutte, T.; De Smedt, S.C.; Raemdonck, K. In vivo disassembly of IV administered siRNA matrix nanoparticles at the renal filtration barrier. Biomaterials, 2013, 34(9), 2350-2358.
[http://dx.doi.org/10.1016/j.biomaterials.2012.11.058] [PMID: 23261216]
[31]
Busseron, E.; Ruff, Y.; Moulin, E.; Giuseppone, N. Supramolecular self-assemblies as functional nanomaterials. Nanoscale, 2013, 5(16), 7098-7140.
[http://dx.doi.org/10.1039/c3nr02176a] [PMID: 23832165]
[32]
Averick, S.E.; Paredes, E.; Dey, S.K.; Snyder, K.M.; Tapinos, N.; Matyjaszewski, K.; Das, S.R. Autotransfecting short interfering RNA through facile covalent polymer escorts. J. Am. Chem. Soc., 2013, 135(34), 12508-12511.
[http://dx.doi.org/10.1021/ja404520j] [PMID: 23937112]
[33]
Rui, Y.; Pang, B.; Zhang, J.; Liu, Y.; Hu, H.; Liu, Z.; Ama Baidoo, S.; Liu, C.; Zhao, Y.; Li, S. Near-infrared light-activatable siRNA delivery by microcapsules for combined tumour therapy. Artif. Cells Nanomed. Biotechnol., 2018, 46(sup2), 15-24.,
[http://dx.doi.org/10.1080/21691401.2018.1449752] [PMID: 29527926]
[34]
Hayashi, Y.; Higashi, T.; Motoyama, K.; Jono, H.; Ando, Y.; Arima, H. In vitro and in vivo siRNA delivery to hepatocyte utilizing ternary complexation of lactosylated dendrimer/cyclodextrin conjugates, siRNA and low-molecular-weight sacran. Int. J. Biol. Macromol., 2018, 107(Pt A), 1113-1121.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.09.085] [PMID: 28964842]
[35]
Ohyama, A.; Higashi, T.; Motoyama, K.; Arima, H. Ternary complexes of folate-PEG-appended dendrimer (G4)/α-cyclodextrin conjugate, siRNA and low-molecular-weight polysaccharide sacran as a novel tumor-selective siRNA delivery system. Int. J. Biol. Macromol., 2017, 99, 21-28.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.02.045] [PMID: 28223132]
[36]
Lorenzer, C.; Dirin, M.; Winkler, A-M.; Baumann, V.; Winkler, J. Going beyond the liver: Progress and challenges of targeted delivery of siRNA therapeutics. J. Control. Release, 2015, 203, 1-15.
[http://dx.doi.org/10.1016/j.jconrel.2015.02.003] [PMID: 25660205]
[37]
Monteiro, N.; Martins, A.; Reis, R.L.; Neves, N.M. Nanoparticle-based bioactive agent release systems for bone and cartilage tissue engineering. Regen. Ther., 2015, 1, 109-118.
[http://dx.doi.org/10.1016/j.reth.2015.05.004] [PMID: 31245450]
[38]
He, C.; Liu, D.; Lin, W. Self-assembled nanoscale coordination polymers carrying siRNAs and cisplatin for effective treatment of resistant ovarian cancer. Biomaterials, 2015, 36, 124-133.
[http://dx.doi.org/10.1016/j.biomaterials.2014.09.017] [PMID: 25315138]
[39]
Li, H-J.; Wang, H-X.; Sun, C-Y.; Du, J-Z.; Wang, J. Shell-detachable nanoparticles based on a light-responsive amphiphile for enhanced siRNA delivery. RSC Advances, 2014, 4(4), 1961-1964.
[http://dx.doi.org/10.1039/C3RA44866E]
[40]
Kraft, J.C.; Freeling, J.P.; Wang, Z.; Ho, R.J.Y. Emerging research and clinical development trends of liposome and lipid nanoparticle drug delivery systems. J. Pharm. Sci., 2014, 103(1), 29-52.
[http://dx.doi.org/10.1002/jps.23773] [PMID: 24338748]
[41]
Monteiro, N.; Martins, A.; Pires, R.A.; Faria, S.; Fonseca, N.A.; Moreira, J.N.; Reis, R.L.; Neves, N.M. Dual release of a hydrophilic and a hydrophobic osteogenic factor from a single liposome. RSC Advances, 2016, 6(115), 114599-114612.
[http://dx.doi.org/10.1039/C6RA21623D]
[42]
Beloqui, A.; Solinís, M.Á.; Rodríguez-Gascón, A.; Almeida, A.J.; Préat, V. Nanostructured lipid carriers: Promising drug delivery systems for future clinics. Nanomedicine (Lond.), 2016, 12(1), 143-161.
[http://dx.doi.org/10.1016/j.nano.2015.09.004] [PMID: 26410277]
[43]
Falsini, S.; Ciani, L.; Ristori, S.; Fortunato, A.; Arcangeli, A. Advances in lipid-based platforms for RNAi therapeutics. J. Med. Chem., 2014, 57(4), 1138-1146.
[http://dx.doi.org/10.1021/jm400791q] [PMID: 24047101]
[44]
Akinc, A.; Thomas, M.; Klibanov, A.M.; Langer, R. Exploring polyethylenimine-mediated DNA transfection and the proton sponge hypothesis. J. Gene Med., 2005, 7(5), 657-663.
[http://dx.doi.org/10.1002/jgm.696] [PMID: 15543529]
[45]
Sonawane, N.D.; Szoka, F.C., Jr; Verkman, A.S. Chloride accumulation and swelling in endosomes enhances DNA transfer by polyamine-DNA polyplexes. J. Biol. Chem., 2003, 278(45), 44826-44831.
[http://dx.doi.org/10.1074/jbc.M308643200] [PMID: 12944394]
[46]
Duechler, M. Vehicles for Small Interfering RNA transfection: Exosomes versus synthetic nanocarriers. RNA Nanotechnol., 2013, 1(1), 16-26.
[http://dx.doi.org/10.2478/rnan-2013-0002]
[47]
Kamerkar, S.; LeBleu, V.S.; Sugimoto, H.; Yang, S.; Ruivo, C.F.; Melo, S.A.; Lee, J.J.; Kalluri, R. Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. Nature, 2017, 546(7659), 498-503.
[http://dx.doi.org/10.1038/nature22341] [PMID: 28607485]
[48]
Zhang, S.; Zhao, B.; Jiang, H.; Wang, B.; Ma, B. Cationic lipids and polymers mediated vectors for delivery of siRNA. J. Control. Release, 2007, 123(1), 1-10.
[http://dx.doi.org/10.1016/j.jconrel.2007.07.016] [PMID: 17716771]
[49]
Malone, R.W.; Felgner, P.L.; Verma, I.M. Cationic liposome-mediated RNA transfection. Proc. Natl. Acad. Sci. USA, 1989, 86(16), 6077-6081.
[http://dx.doi.org/10.1073/pnas.86.16.6077] [PMID: 2762315]
[50]
Wu, Y.; Smith, A.E.; Reineke, T.M. Lipophilic polycation vehicles display high plasmid DNA delivery to multiple cell types. Bioconjug. Chem., 2017, 28(8), 2035-2040.
[http://dx.doi.org/10.1021/acs.bioconjchem.7b00306] [PMID: 28731685]
[51]
Martínez-Negro, M.; Kumar, K.; Barrán-Berdón, A.L.; Datta, S.; Kondaiah, P.; Junquera, E.; Bhattacharya, S.; Aicart, E. Efficient cellular knockdown mediated by siRNA nanovectors of gemini cationic lipids having delocalizable headgroups and oligo-oxyethylene spacers. ACS Appl. Mater. Interfaces, 2016, 8(34), 22113-22126.
[http://dx.doi.org/10.1021/acsami.6b08823] [PMID: 27508330]
[52]
Wu, Y.; Wang, M.; Sprouse, D.; Smith, A.E.; Reineke, T.M. Glucose-containing diblock polycations exhibit molecular weight, charge, and cell-type dependence for pDNA delivery. Biomacromolecules, 2014, 15(5), 1716-1726.
[http://dx.doi.org/10.1021/bm5001229] [PMID: 24620753]
[53]
Lechanteur, A.; Furst, T.; Evrard, B.; Delvenne, P.; Hubert, P.; Piel, G. PEGylation of lipoplexes: The right balance between cytotoxicity and siRNA effectiveness. Eur. J. Pharm. Sci., 2016, 93, 493-503.
[http://dx.doi.org/10.1016/j.ejps.2016.08.058] [PMID: 27593989]
[54]
Dakwar, G.R.; Braeckmans, K.; Ceelen, W.; De Smedt, S.C.; Remaut, K. Exploring the HYDRAtion method for loading siRNA on liposomes: The interplay between stability and biological activity in human undiluted ascites fluid. Drug Deliv. Transl. Res., 2017, 7(2), 241-251.
[http://dx.doi.org/10.1007/s13346-016-0329-4] [PMID: 27631392]
[55]
Lopes, I.; Oliveira, A.; Sárria, P.M. P Neves Silva, J.; Gonçalves, O.; Gomes, A.C.; Real Oliveira, M.E.C.D. Monoolein-based nanocarriers for enhanced folate receptor-mediated RNA delivery to cancer cells. J. Liposome Res., 2016, 26(3), 199-210.
[http://dx.doi.org/10.3109/08982104.2015.1076463] [PMID: 26340109]
[56]
Dakwar, G.R.; Zagato, E.; Delanghe, J.; Hobel, S.; Aigner, A.; Denys, H.; Braeckmans, K.; Ceelen, W.; De Smedt, S.C.; Remaut, K. Colloidal stability of nano-sized particles in the peritoneal fluid: towards optimizing drug delivery systems for intraperitoneal therapy. Acta Biomater., 2014, 10(7), 2965-2975.
[http://dx.doi.org/10.1016/j.actbio.2014.03.012] [PMID: 24657672]
[57]
Winkler, J. Therapeutic oligonucleotides with polyethylene glycol modifications. Future Med. Chem., 2015, 7(13), 1721-1731.
[http://dx.doi.org/10.4155/fmc.15.94] [PMID: 26465713]
[58]
Ezequiel Perez, S.; Gandola, Y.; Monica Carlucci, A.; Gonzalez, L. Development, characterization, and in vitro evaluation of phosphatidylcholine-sodium cholate-based nanoparticles for siRNA delivery to MCF-7 human breast cancer cells. J. Nanopart. Res., 2015, 17(3)
[59]
Weisman, S.; Hirsch-Lerner, D.; Barenholz, Y.; Talmon, Y. Nanostructure of cationic lipid-oligonucleotide complexes. Biophys. J., 2004, 87(1), 609-614.
[http://dx.doi.org/10.1529/biophysj.103.033480] [PMID: 15240493]
[60]
Kadengodlu, P.A.; Aigaki, T.; Abe, H.; Ito, Y. Cationic cholesterol-modified gelatin as an in vitro siRNA delivery vehicle. Mol. Biosyst., 2013, 9(5), 965-968.
[http://dx.doi.org/10.1039/c2mb25424g] [PMID: 23303468]
[61]
Desigaux, L.; Sainlos, M.; Lambert, O.; Chevre, R.; Letrou-Bonneval, E.; Vigneron, J-P.; Lehn, P.; Lehn, J-M.; Pitard, B. Self-assembled lamellar complexes of siRNA with lipidic aminoglycoside derivatives promote efficient siRNA delivery and interference. Proc. Natl. Acad. Sci. USA, 2007, 104(42), 16534-16539.
[http://dx.doi.org/10.1073/pnas.0707431104] [PMID: 17923669]
[62]
Danhier, F. To exploit the tumor microenvironment: Since the EPR effect fails in the clinic, what is the future of nanomedicine? J. Control. Release, 2016, 244(Pt A), 108-121.
[http://dx.doi.org/10.1016/j.jconrel.2016.11.015] [PMID: 27871992]
[63]
Robbins, P.D.; Ghivizzani, S.C. Viral vectors for gene therapy. Pharmacol. Ther., 1998, 80(1), 35-47.
[http://dx.doi.org/10.1016/S0163-7258(98)00020-5] [PMID: 9804053]
[64]
Shen, L.; Evel-Kabler, K.; Strube, R.; Chen, S-Y. Silencing of SOCS1 enhances antigen presentation by dendritic cells and antigen-specific anti-tumor immunity. Nat. Biotechnol., 2004, 22(12), 1546-1553.
[http://dx.doi.org/10.1038/nbt1035] [PMID: 15558048]
[65]
Gary, D.J.; Puri, N.; Won, Y-Y. Polymer-based siRNA delivery: perspectives on the fundamental and phenomenological distinctions from polymer-based DNA delivery. J. Control. Release, 2007, 121(1-2), 64-73.
[http://dx.doi.org/10.1016/j.jconrel.2007.05.021] [PMID: 17588702]
[66]
Bartlett, D.W.; Davis, M.E. Insights into the kinetics of siRNA-mediated gene silencing from live-cell and live-animal bioluminescent imaging. Nucleic Acids Res., 2006, 34(1), 322-333.
[http://dx.doi.org/10.1093/nar/gkj439] [PMID: 16410612]
[67]
Wolff, J.A.; Rozema, D.B. Breaking the bonds: Non-viral vectors become chemically dynamic. Mol. Ther., 2008, 16(1), 8-15.
[http://dx.doi.org/10.1038/sj.mt.6300326] [PMID: 17955026]
[68]
Schweingruber, N.; Haine, A.; Tiede, K.; Karabinskaya, A.; van den Brandt, J.; Wüst, S.; Metselaar, J.M.; Gold, R.; Tuckermann, J.P.; Reichardt, H.M.; Lühder, F. Liposomal encapsulation of glucocorticoids alters their mode of action in the treatment of experimental autoimmune encephalomyelitis. J. Immunol., 2011, 187(8), 4310-4318.
[http://dx.doi.org/10.4049/jimmunol.1101604] [PMID: 21918186]
[69]
Zhang, S.; Shao, Y.; Liao, H-g.; Liu, J.; Aksay, I.A.; Yin, G.; Lin, Y. Graphene decorated with Pt-Au alloy nanoparticles: Facile synthesis and promising application for formic acid oxidation. Chem. Mater., 2011, 23(5), 1079-1081.
[http://dx.doi.org/10.1021/cm101568z]
[70]
Felgner, P.L.; Gadek, T.R.; Holm, M.; Roman, R.; Chan, H.W.; Wenz, M.; Northrop, J.P.; Ringold, G.M.; Danielsen, M. Lipofection: A highly efficient, lipid-mediated DNA-transfection procedure. Proc. Natl. Acad. Sci. USA, 1987, 84(21), 7413-7417.
[http://dx.doi.org/10.1073/pnas.84.21.7413] [PMID: 2823261]
[71]
Juang, V.; Lee, H-P.; Lin, A.M-Y.; Lo, Y-L. Cationic PEGylated liposomes incorporating an antimicrobial peptide tilapia hepcidin 2-3: An adjuvant of epirubicin to overcome multidrug resistance in cervical cancer cells. Int. J. Nanomedicine, 2016, 11, 6047-6064.
[http://dx.doi.org/10.2147/IJN.S117618] [PMID: 27895479]
[72]
Wasungu, L.; Hoekstra, D. Cationic lipids, lipoplexes and intracellular delivery of genes. J. Control. Release, 2006, 116(2), 255-264.
[http://dx.doi.org/10.1016/j.jconrel.2006.06.024] [PMID: 16914222]
[73]
Bally, M.B.; Harvie, P.; Wong, F.M.P.; Kong, S.; Wasan, E.K.; Reimer, D.L. Biological barriers to cellular delivery of lipid-based DNA carriers. Adv. Drug Deliv. Rev., 1999, 38(3), 291-315.
[http://dx.doi.org/10.1016/S0169-409X(99)00034-4] [PMID: 10837762]
[74]
Torchilinl, V.; Papisov, M. Why do polyethylene glycol-coated liposomes circulate so long?: Molecular mechanism of liposome steric protection with polyethylene glycol: Role of polymer chain flexibility. J. Liposome Res., 1994, 4(1), 725-739.
[http://dx.doi.org/10.3109/08982109409037068]
[75]
Lu, J.J.; Langer, R.; Chen, J. A novel mechanism is involved in cationic lipid-mediated functional siRNA delivery. Mol. Pharm., 2009, 6(3), 763-771.
[http://dx.doi.org/10.1021/mp900023v] [PMID: 19292453]
[76]
Patil, M.L.; Zhang, M.; Minko, T. Multifunctional triblock Nanocarrier (PAMAM-PEG-PLL) for the efficient intracellular siRNA delivery and gene silencing. ACS Nano, 2011, 5(3), 1877-1887.
[http://dx.doi.org/10.1021/nn102711d] [PMID: 21322531]
[77]
Gujrati, M.; Malamas, A.; Shin, T.; Jin, E.; Sun, Y.; Lu, Z-R. Multifunctional cationic lipid-based nanoparticles facilitate endosomal escape and reduction-triggered cytosolic siRNA release. Mol. Pharm., 2014, 11(8), 2734-2744.
[http://dx.doi.org/10.1021/mp400787s] [PMID: 25020033]
[78]
Raemdonck, K.; Naeye, B.; Buyens, K.; Vandenbroucke, R.E.; Høgset, A.; Demeester, J.; De Smedt, S.C. Biodegradable dextran nanogels for RNA interference: Focusing on endosomal escape and intracellular siRNA delivery. Adv. Funct. Mater., 2009, 19(9), 1406-1415.
[http://dx.doi.org/10.1002/adfm.200801795]
[79]
Ripoll, M.; Neuberg, P.; Kichler, A.; Tounsi, N.; Wagner, A.; Remy, J-S. pH-responsive nanometric polydiacetylenic micelles allow for efficient intracellular siRNA delivery. ACS Appl. Mater. Interfaces, 2016, 8(45), 30665-30670.
[http://dx.doi.org/10.1021/acsami.6b09365] [PMID: 27804286]
[80]
Zasloff, M. Antimicrobial peptides of multicellular organisms. Nature, 2002, 415(6870), 389-395.
[http://dx.doi.org/10.1038/415389a] [PMID: 11807545]
[81]
van den Bogaart, G.; Guzmán, J.V.; Mika, J.T.; Poolman, B. On the mechanism of pore formation by melittin. J. Biol. Chem., 2008, 283(49), 33854-33857.
[http://dx.doi.org/10.1074/jbc.M805171200] [PMID: 18819911]
[82]
Ogris, M.; Carlisle, R.C.; Bettinger, T.; Seymour, L.W. Melittin enables efficient vesicular escape and enhanced nuclear access of nonviral gene delivery vectors. J. Biol. Chem., 2001, 276(50), 47550-47555.
[http://dx.doi.org/10.1074/jbc.M108331200] [PMID: 11600500]
[83]
Bavdek, A.; Kostanjšek, R.; Antonini, V.; Lakey, J.H.; Dalla Serra, M.; Gilbert, R.J.C.; Anderluh, G. pH dependence of listeriolysin O aggregation and pore-forming ability. FEBS J., 2012, 279(1), 126-141.
[http://dx.doi.org/10.1111/j.1742-4658.2011.08405.x] [PMID: 22023160]
[84]
Mathew, E.; Hardee, G.E.; Bennett, C.F.; Lee, K.D. Cytosolic delivery of antisense oligonucleotides by listeriolysin O-containing liposomes. Gene Ther., 2003, 10(13), 1105-1115.
[http://dx.doi.org/10.1038/sj.gt.3301966] [PMID: 12808441]
[85]
Shayakhmetov, D.M.; Eberly, A.L.; Li, Z.Y.; Lieber, A. Deletion of penton RGD motifs affects the efficiency of both the internalization and the endosorne escape of viral particles containing adenovirus serotype 5 or 35 fiber knobs (vol 79, pg 1053, 2005). J. Virol., 2005, 79(7), 4553-4553.
[http://dx.doi.org/10.1128/JVI.79.7.4553.2005]
[86]
Li, Y.; Han, X.; Lai, A.L.; Bushweller, J.H.; Cafiso, D.S.; Tamm, L.K. Membrane structures of the hemifusion-inducing fusion peptide mutant G1S and the fusion-blocking mutant G1V of influenza virus hemagglutinin suggest a mechanism for pore opening in membrane fusion. J. Virol., 2005, 79(18), 12065-12076.
[http://dx.doi.org/10.1128/JVI.79.18.12065-12076.2005] [PMID: 16140782]
[87]
Wyman, T.B.; Nicol, F.; Zelphati, O.; Scaria, P.V.; Plank, C.; Szoka, F.C., Jr Design, synthesis, and characterization of a cationic peptide that binds to nucleic acids and permeabilizes bilayers. Biochemistry, 1997, 36(10), 3008-3017.
[http://dx.doi.org/10.1021/bi9618474] [PMID: 9062132]
[88]
Torchilin, V. Tumor delivery of macromolecular drugs based on the EPR effect. Adv. Drug Deliv. Rev., 2011, 63(3), 131-135.
[http://dx.doi.org/10.1016/j.addr.2010.03.011] [PMID: 20304019]
[89]
Russ, V.; Wagner, E. Cell and tissue targeting of nucleic acids for cancer gene therapy. Pharm. Res., 2007, 24(6), 1047-1057.
[http://dx.doi.org/10.1007/s11095-006-9233-9] [PMID: 17387604]
[90]
Šentjurc, M.; Vrhovnik, K.; Kristl, J. Liposomes as a topical delivery system: The role of size on transport studied by the EPR imaging method. J. Control. Release, 1999, 59(1), 87-97.
[http://dx.doi.org/10.1016/S0168-3659(98)00181-3] [PMID: 10210725]
[91]
Hatakeyama, H.; Akita, H.; Harashima, H. A Multifunctional Envelope Type Nano Device (MEND) for gene delivery to tumours based on the EPR effect: A strategy for overcoming the PEG dilemma. Adv. Drug Deliv. Rev., 2011, 63(3), 152-160.
[http://dx.doi.org/10.1016/j.addr.2010.09.001] [PMID: 20840859]
[92]
Nagamitsu, A.; Greish, K.; Maeda, H. Elevating blood pressure as a strategy to increase tumor-targeted delivery of macromolecular drug SMANCS: Cases of advanced solid tumors. Jpn. J. Clin. Oncol., 2009, 39(11), 756-766.
[http://dx.doi.org/10.1093/jjco/hyp074] [PMID: 19596662]
[93]
Fan, Y.; Du, W.; He, B.; Fu, F.; Yuan, L.; Wu, H.; Dai, W.; Zhang, H.; Wang, X.; Wang, J.; Zhang, X.; Zhang, Q. The reduction of tumor interstitial fluid pressure by liposomal imatinib and its effect on combination therapy with liposomal doxorubicin. Biomaterials, 2013, 34(9), 2277-2288.
[http://dx.doi.org/10.1016/j.biomaterials.2012.12.012] [PMID: 23290525]
[94]
Li, Y.; Zheng, S.; Liang, X.; Jin, Y.; Wu, Y.; Bai, H.; Liu, R.; Dai, Z.; Liang, Z.; Shi, T. Doping hydroxylated cationic lipid into PEGylated cerasome boosts in vivo siRNA transfection efficacy. Bioconjug. Chem., 2014, 25(11), 2055-2066.
[http://dx.doi.org/10.1021/bc500414e] [PMID: 25260060]
[95]
Li, Y.; Cheng, Q.; Jiang, Q.; Huang, Y.; Liu, H.; Zhao, Y.; Cao, W.; Ma, G.; Dai, F.; Liang, X.; Liang, Z.; Zhang, X. Enhanced endosomal/lysosomal escape by distearoyl phosphoethanolamine-polycarboxybetaine lipid for systemic delivery of siRNA. J. Control. Release, 2014, 176, 104-114.
[http://dx.doi.org/10.1016/j.jconrel.2013.12.007] [PMID: 24365128]
[96]
Silva, B.F.B.; Majzoub, R.N.; Chan, C-L.; Li, Y.; Olsson, U.; Safinya, C.R. PEGylated cationic liposome-DNA complexation in brine is pathway-dependent. Biochim. Biophys. Acta, 2014, 1838(1 Pt B)(1, Part B), 398-412.,
[http://dx.doi.org/10.1016/j.bbamem.2013.09.008] [PMID: 24060564]
[97]
Ling, D.; Park, W.; Park, S.J.; Lu, Y.; Kim, K.S.; Hackett, M.J.; Kim, B.H.; Yim, H.; Jeon, Y.S.; Na, K.; Hyeon, T. Multifunctional tumor pH-sensitive self-assembled nanoparticles for bimodal imaging and treatment of resistant heterogeneous tumors. J. Am. Chem. Soc., 2014, 136(15), 5647-5655.
[http://dx.doi.org/10.1021/ja4108287] [PMID: 24689550]
[98]
Hatakeyama, H.; Akita, H.; Ishida, E.; Hashimoto, K.; Kobayashi, H.; Aoki, T.; Yasuda, J.; Obata, K.; Kikuchi, H.; Ishida, T.; Kiwada, H.; Harashima, H. Tumor targeting of doxorubicin by anti-MT1-MMP antibody-modified PEG liposomes. Int. J. Pharm., 2007, 342(1-2), 194-200.
[http://dx.doi.org/10.1016/j.ijpharm.2007.04.037] [PMID: 17583453]
[99]
Wang, M.; Alberti, K.; Varone, A.; Pouli, D.; Georgakoudi, I.; Xu, Q. Enhanced intracellular siRNA delivery using bioreducible lipid-like nanoparticles. Adv. Healthc. Mater., 2014, 3(9), 1398-1403.
[http://dx.doi.org/10.1002/adhm.201400039] [PMID: 24574196]
[100]
O’Neill, H.S.; Herron, C.C.; Hastings, C.L.; Deckers, R.; Lopez Noriega, A.; Kelly, H.M.; Hennink, W.E.; McDonnell, C.O.; O’Brien, F.J.; Ruiz-Hernández, E.; Duffy, G.P. A stimuli responsive liposome loaded hydrogel provides flexible on-demand release of therapeutic agents. Acta Biomater., 2017, 48, 110-119.
[http://dx.doi.org/10.1016/j.actbio.2016.10.001] [PMID: 27773752]
[101]
Gu, J.; Cheng, W-P.; Liu, J.; Lo, S-Y.; Smith, D.; Qu, X.; Yang, Z. pH-triggered reversible “stealth” polycationic micelles. Biomacromolecules, 2008, 9(1), 255-262.
[http://dx.doi.org/10.1021/bm701084w] [PMID: 18095651]
[102]
Okamoto, A.; Asai, T.; Kato, H.; Ando, H.; Minamino, T.; Mekada, E.; Oku, N. Antibody-modified lipid nanoparticles for selective delivery of siRNA to tumors expressing membrane-anchored form of HB-EGF. Biochem. Biophys. Res. Commun., 2014, 449(4), 460-465.
[http://dx.doi.org/10.1016/j.bbrc.2014.05.043] [PMID: 24853808]
[103]
van Asbeck, A.H.; Beyerle, A.; McNeill, H.; Bovee-Geurts, P.H.; Lindberg, S.; Verdurmen, W.P.; Hällbrink, M.; Langel, U.; Heidenreich, O.; Brock, R. Molecular parameters of siRNA-cell penetrating peptide nanocomplexes for efficient cellular delivery. ACS Nano, 2013, 7(5), 3797-3807.
[http://dx.doi.org/10.1021/nn305754c] [PMID: 23600610]
[104]
Zhu, Q.L.; Zhou, Y.; Guan, M.; Zhou, X.F.; Yang, S.D.; Liu, Y.; Chen, W.L.; Zhang, C.G.; Yuan, Z.Q.; Liu, C.; Zhu, A.J.; Zhang, X.N. Low-density lipoprotein-coupled N-succinyl chitosan nanoparticles co-delivering siRNA and doxorubicin for hepatocyte-targeted therapy. Biomaterials, 2014, 35(22), 5965-5976.
[http://dx.doi.org/10.1016/j.biomaterials.2014.03.088] [PMID: 24768047]
[105]
Dufès, C.; Al Robaian, M.; Somani, S. Transferrin and the transferrin receptor for the targeted delivery of therapeutic agents to the brain and cancer cells. Ther. Deliv., 2013, 4(5), 629-640.
[http://dx.doi.org/10.4155/tde.13.21] [PMID: 23647279]
[106]
Li, J.; Yang, Y.; Huang, L. Calcium phosphate nanoparticles with an asymmetric lipid bilayer coating for siRNA delivery to the tumor. J. Control. Release, 2012, 158(1), 108-114.
[http://dx.doi.org/10.1016/j.jconrel.2011.10.020] [PMID: 22056915]
[107]
Song, C.; Zhang, S.; Zhou, Q.; Shi, L.; Du, L.; Zhi, D.; Zhao, Y.; Zhen, Y.; Zhao, D. Bifunctional cationic solid lipid nanoparticles of beta-NaYF4: Yb, Er upconversion nanoparticles coated with a lipid for bioimaging and gene delivery. RSC Advances, 2017, 7(43), 26633-26639.
[http://dx.doi.org/10.1039/C7RA02683H]
[108]
Chen, B.; Dai, W.; Mei, D.; Liu, T.; Li, S.; He, B.; He, B.; Yuan, L.; Zhang, H.; Wang, X.; Zhang, Q. Comprehensively priming the tumor microenvironment by cancer-associated fibroblast-targeted liposomes for combined therapy with cancer cell-targeted chemotherapeutic drug delivery system. J. Control. Release, 2016, 241, 68-80.
[http://dx.doi.org/10.1016/j.jconrel.2016.09.014] [PMID: 27641831]
[109]
Li, Z.; Li, D.; Li, Q.; Luo, C.; Li, J.; Kou, L.; Zhang, D.; Zhang, H.; Zhao, S.; Kan, Q.; Liu, J.; Zhang, P.; Liu, X.; Sun, Y.; Wang, Y.; He, Z.; Sun, J. In situ low-immunogenic albumin-conjugating-corona guiding nanoparticles for tumor-targeting chemotherapy. Biomater. Sci., 2018, 6(10), 2681-2693.
[http://dx.doi.org/10.1039/C8BM00692J] [PMID: 30151516]
[110]
Feng, Q.; Yu, M-Z.; Wang, J-C.; Hou, W-J.; Gao, L-Y.; Ma, X-F.; Pei, X-W.; Niu, Y-J.; Liu, X-Y.; Qiu, C.; Pang, W.H.; Du, L.L.; Zhang, Q. Synergistic inhibition of breast cancer by co-delivery of VEGF siRNA and paclitaxel via vapreotide-modified core-shell nanoparticles. Biomaterials, 2014, 35(18), 5028-5038.
[http://dx.doi.org/10.1016/j.biomaterials.2014.03.012] [PMID: 24680191]
[111]
Gomes-da-Silva, L.C.; Ramalho, J.S.; Pedroso de Lima, M.C.; Simões, S.; Moreira, J.N. Impact of anti-PLK1 siRNA-containing F3-targeted liposomes on the viability of both cancer and endothelial cells. Eur. J. Pharm. Biopharm., 2013, 85(3 Pt A)(3, Part A), 356-364.,
[http://dx.doi.org/10.1016/j.ejpb.2013.04.007] [PMID: 23659854]
[112]
Xiang, B.; Dong, D-W.; Shi, N-Q.; Gao, W.; Yang, Z-Z.; Cui, Y.; Cao, D-Y.; Qi, X-R. PSA-responsive and PSMA-mediated multifunctional liposomes for targeted therapy of prostate cancer. Biomaterials, 2013, 34(28), 6976-6991.
[http://dx.doi.org/10.1016/j.biomaterials.2013.05.055] [PMID: 23777916]
[113]
Zhou, G.; Xu, Y.; Chen, M.; Cheng, D.; Shuai, X. Tumor-penetrating peptide modified and pH-sensitive polyplexes for tumor targeted siRNA delivery. Polym. Chem., 2016, 7(23), 3857-3863.
[http://dx.doi.org/10.1039/C6PY00427J]
[114]
Gilleron, J.; Querbes, W.; Zeigerer, A.; Borodovsky, A.; Marsico, G.; Schubert, U.; Manygoats, K.; Seifert, S.; Andree, C.; Stöter, M.; Epstein-Barash, H.; Zhang, L.; Koteliansky, V.; Fitzgerald, K.; Fava, E.; Bickle, M.; Kalaidzidis, Y.; Akinc, A.; Maier, M.; Zerial, M. Image-based analysis of lipid nanoparticle-mediated siRNA delivery, intracellular trafficking and endosomal escape. Nat. Biotechnol., 2013, 31(7), 638-646.
[http://dx.doi.org/10.1038/nbt.2612] [PMID: 23792630]
[115]
Imani, R.; Shao, W.; Taherkhani, S.; Emami, S.H.; Prakash, S.; Faghihi, S. Dual-functionalized graphene oxide for enhanced siRNA delivery to breast cancer cells. Colloids Surf. B Biointerfaces, 2016, 147, 315-325.
[http://dx.doi.org/10.1016/j.colsurfb.2016.08.015] [PMID: 27543693]
[116]
Xiang, B.; Jia, X-L.; Qi, J-L.; Yang, L-P.; Sun, W-H.; Yan, X.; Yang, S-K.; Cao, D-Y.; Du, Q.; Qi, X-R. Enhancing siRNA-based cancer therapy using a new pH-responsive activatable cell-penetrating peptide-modified liposomal system. Int. J. Nanomedicine, 2017, 12, 2385-2405.
[http://dx.doi.org/10.2147/IJN.S129574] [PMID: 28405163]
[117]
Li, Y.; Liu, R.; Yang, J.; Ma, G.; Zhang, Z.; Zhang, X. Dual sensitive and temporally controlled camptothecin prodrug liposomes codelivery of siRNA for high efficiency tumor therapy. Biomaterials, 2014, 35(36), 9731-9745.
[http://dx.doi.org/10.1016/j.biomaterials.2014.08.022] [PMID: 25189519]
[118]
Yao, Y.; Su, Z.; Liang, Y.; Zhang, N. pH-Sensitive carboxymethyl chitosan-modified cationic liposomes for sorafenib and siRNA co-delivery. Int. J. Nanomedicine, 2015, 10, 6185-6197.
[PMID: 26491291]
[119]
Zhang, Q.; Ran, R.; Zhang, L.; Liu, Y.; Mei, L.; Zhang, Z.; Gao, H.; He, Q. Simultaneous delivery of therapeutic antagomirs with paclitaxel for the management of metastatic tumors by a pH-responsive anti-microbial peptide-mediated liposomal delivery system. J. Control. Release, 2015, 197, 208-218.
[http://dx.doi.org/10.1016/j.jconrel.2014.11.010] [PMID: 25445692]
[120]
Wan, Y.; Moyle, P.M.; Gn, P.Z.; Toth, I. Design and evaluation of a stearylated multicomponent peptide-siRNA nanocomplex for efficient cellular siRNA delivery. Nanomedicine (Lond.), 2017, 12(4), 281-293.
[http://dx.doi.org/10.2217/nnm-2016-0354] [PMID: 28093948]
[121]
Guo, F.; Yu, M.; Wang, J.; Tan, F.; Li, N. Smart IR780 theranostic nanocarrier for tumor-specific therapy: Hyperthermia-mediated bubble-generating and folate-targeted liposomes. ACS Appl. Mater. Interfaces, 2015, 7(37), 20556-20567.
[http://dx.doi.org/10.1021/acsami.5b06552] [PMID: 26322900]
[122]
Zhang, L.; Yin, Q-H.; Li, J-M.; Huang, H-Y.; Wu, Q.; Mao, Z-W. Functionalization of dendritic polyethylene with cationic poly(p-phenylene ethynylene) enables efficient siRNA delivery for gene silencing. J. Mater. Chem. B Mater. Biol. Med., 2013, 1(17), 2245-2251.
[http://dx.doi.org/10.1039/c3tb00480e]
[123]
Torrecilla, J.; Rodriguez-Gascon, A.; Angeles Solinis, M.; del Pozo-Rodriguez, A. Lipid Nanoparticles as Carriers for RNAi against Viral Infections: Current status and future perspectives. BioMed Res. Int., 2014, 2014161794
[http://dx.doi.org/10.1155/2014/161794] [PMID: 25184135]
[124]
Novina, C.D.; Murray, M.F.; Dykxhoorn, D.M.; Beresford, P.J.; Riess, J.; Lee, S.K.; Collman, R.G.; Lieberman, J.; Shankar, P.; Sharp, P.A. siRNA-directed inhibition of HIV-1 infection. Nat. Med., 2003, 9(11), 1433-1433.
[http://dx.doi.org/10.1038/nm1103-1433a]
[125]
Deeks, S.G.; Autran, B.; Berkhout, B.; Benkirane, M.; Cairns, S.; Chomont, N.; Chun, T.W.; Churchill, M.; Di Mascio, M.; Katlama, C.; Lafeuillade, A.; Landay, A.; Lederman, M.; Lewin, S.R.; Maldarelli, F.; Margolis, D.; Markowitz, M.; Martinez-Picado, J.; Mullins, J.I.; Mellors, J.; Moreno, S.; O’Doherty, U.; Palmer, S.; Penicaud, M.C.; Peterlin, M.; Poli, G.; Routy, J.P.; Rouzioux, C.; Silvestri, G.; Stevenson, M.; Telenti, A.; Van Lint, C.; Verdin, E.; Woolfrey, A.; Zaia, J.; Barré-Sinoussi, F. International AIDS Society Scientific Working Group on HIV Cure. Towards an HIV cure: a global scientific strategy. Nat. Rev. Immunol., 2012, 12(8), 607-614.
[http://dx.doi.org/10.1038/nri3262] [PMID: 22814509]
[126]
Kumar, P.; Ban, H-S.; Kim, S-S.; Wu, H.; Pearson, T.; Greiner, D.L.; Laouar, A.; Yao, J.; Haridas, V.; Habiro, K.; Yang, Y-G.; Jeong, J-H.; Lee, K-Y.; Kim, Y-H.; Kim, S.W.; Peipp, M.; Fey, G.H.; Manjunath, N.; Shultz, L.D.; Lee, S-K.; Shankar, P. T cell-specific siRNA delivery suppresses HIV-1 infection in humanized mice. Cell, 2008, 134(4), 577-586.
[http://dx.doi.org/10.1016/j.cell.2008.06.034] [PMID: 18691745]
[127]
Kim, S-S.; Peer, D.; Kumar, P.; Subramanya, S.; Wu, H.; Asthana, D.; Habiro, K.; Yang, Y-G.; Manjunath, N.; Shimaoka, M.; Shankar, P. RNAi-mediated CCR5 silencing by LFA-1-targeted nanoparticles prevents HIV infection in BLT mice. Mol. Ther., 2010, 18(2), 370-376.
[http://dx.doi.org/10.1038/mt.2009.271] [PMID: 19997090]
[128]
Lee, N.S.; Dohjima, T.; Bauer, G.; Li, H.; Li, M.J.; Ehsani, A.; Salvaterra, P.; Rossi, J. Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells. Nat. Biotechnol., 2002, 20(5), 500-505.
[http://dx.doi.org/10.1038/nbt0502-500] [PMID: 11981565]
[129]
Jacque, J.M.; Triques, K.; Stevenson, M. Modulation of HIV-1 replication by RNA interference. Nature, 2002, 418(6896), 435-438.
[http://dx.doi.org/10.1038/nature00896] [PMID: 12087358]
[130]
Lau, T.S.; Li, Y.; Kameoka, M.; Ng, T.B.; Wan, D.C.C. Suppression of HIV replication using RNA interference against HIV-1 integrase. FEBS Lett., 2007, 581(17), 3253-3259.
[http://dx.doi.org/10.1016/j.febslet.2007.06.011] [PMID: 17592732]
[131]
Huelsmann, P.M.; Rauch, P.; Allers, K.; John, M.J.; Metzner, K.J. Inhibition of drug-resistant HIV-1 by RNA interference. Antiviral Res., 2006, 69(1), 1-8.
[http://dx.doi.org/10.1016/j.antiviral.2005.10.001] [PMID: 16290277]
[132]
McCaffrey, A.P.; Nakai, H.; Pandey, K.; Huang, Z.; Salazar, F.H.; Xu, H.; Wieland, S.F.; Marion, P.L.; Kay, M.A. Inhibition of hepatitis B virus in mice by RNA interference. Nat. Biotechnol., 2003, 21(6), 639-644.
[http://dx.doi.org/10.1038/nbt824] [PMID: 12740585]
[133]
Scherr, M.; Battmer, K.; Winkler, T.; Heidenreich, O.; Ganser, A.; Eder, M. Specific inhibition of bcr-abl gene expression by small interfering RNA. Blood, 2003, 101(4), 1566-1569.
[http://dx.doi.org/10.1182/blood-2002-06-1685] [PMID: 12393533]
[134]
Pekarsky, Y.; Santanam, U.; Cimmino, A.; Palamarchuk, A.; Efanov, A.; Maximov, V.; Volinia, S.; Alder, H.; Liu, C-G.; Rassenti, L.; Calin, G.A.; Hagan, J.P.; Kipps, T.; Croce, C.M. Tcl1 expression in chronic lymphocytic leukemia is regulated by miR-29 and miR-181. Cancer Res., 2006, 66(24), 11590-11593.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-3613] [PMID: 17178851]
[135]
Zhang, L.; Yang, N.; Mohamed-Hadley, A.; Rubin, S.C.; Coukos, G. Vector-based RNAi, a novel tool for isoform-specific knock-down of VEGF and anti-angiogenesis gene therapy of cancer. Biochem. Biophys. Res. Commun., 2003, 303(4), 1169-1178.
[http://dx.doi.org/10.1016/S0006-291X(03)00495-9] [PMID: 12684059]
[136]
Bian, Y.; Gao, D.; Liu, Y.; Li, N.; Zhang, X.; Zheng, R.Y.; Wang, Q.; Luo, L.; Dai, K. Preparation and study on anti-tumor effect of chitosan-coated oleanolic acid liposomes. RSC Advances, 2015, 5(24), 18725-18732.
[http://dx.doi.org/10.1039/C4RA13860K]
[137]
Yang, T.; Bantegui, T.; Pike, K.; Bloom, R.; Phipps, R.; Bai, S. In vitro evaluation of optimized liposomes for delivery of small interfering RNA. J. Liposome Res., 2014, 24(4), 270-279.
[http://dx.doi.org/10.3109/08982104.2014.907306] [PMID: 24708056]
[138]
Khan, I.U.; Serra, C.A.; Anton, N.; Vandamme, T. Microfluidics: a focus on improved cancer targeted drug delivery systems. J. Control. Release, 2013, 172(3), 1065-1074.
[http://dx.doi.org/10.1016/j.jconrel.2013.07.028] [PMID: 23933524]
[139]
Villares, G.J.; Zigler, M.; Wang, H.; Melnikova, V.O.; Wu, H.; Friedman, R.; Leslie, M.C.; Vivas-Mejia, P.E.; Lopez-Berestein, G.; Sood, A.K.; Bar-Eli, M. Targeting melanoma growth and metastasis with systemic delivery of liposome-incorporated protease-activated receptor-1 small interfering RNA. Cancer Res., 2008, 68(21), 9078-9086.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-2397] [PMID: 18974154]
[140]
Tran, M.A.; Gowda, R.; Sharma, A.; Park, E-J.; Adair, J.; Kester, M.; Smith, N.B.; Robertson, G.P. Targeting V600EB-Raf and Akt3 using nanoliposomal-small interfering RNA inhibits cutaneous melanocytic lesion development. Cancer Res., 2008, 68(18), 7638-7649.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-6614] [PMID: 18794153]
[141]
Pirollo, K.F.; Rait, A.; Zhou, Q.; Hwang, S.H.; Dagata, J.A.; Zon, G.; Hogrefe, R.I.; Palchik, G.; Chang, E.H. Materializing the potential of small interfering RNA via a tumor-targeting nanodelivery system. Cancer Res., 2007, 67(7), 2938-2943.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-4535] [PMID: 17409398]
[142]
Saad, M.; Garbuzenko, O.B.; Minko, T. Co-delivery of siRNA and an anticancer drug for treatment of multidrug-resistant cancer. Nanomedicine (Lond.), 2008, 3(6), 761-776.
[http://dx.doi.org/10.2217/17435889.3.6.761] [PMID: 19025451]
[143]
Wang, Y.; Saad, M.; Pakunlu, R.I.; Khandare, J.J.; Garbuzenko, O.B.; Vetcher, A.A.; Soldatenkov, V.A.; Pozharov, V.P.; Minko, T.; Minko, T. Nonviral nanoscale-based delivery of antisense oligonucleotides targeted to hypoxia-inducible factor 1 alpha enhances the efficacy of chemotherapy in drug-resistant tumor. Clin. Cancer Res., 2008, 14(11), 3607-3616.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-2020] [PMID: 18519795]
[144]
Toudjarska, I.; Buck, T.; Brodsky, J.; Akinc, A.; Racie, T.; MacLachlan, I.; Sah, D.W.; Gollob, J.; Bumcrot, D. Development of ALN-VSP: An RNAi therapeutic for solid tumors. Cancer Res., 2010, 70.
[145]
Barros, S.A.; Gollob, J.A. Safety profile of RNAi nanomedicines. Adv. Drug Deliv. Rev., 2012, 64(15), 1730-1737.
[http://dx.doi.org/10.1016/j.addr.2012.06.007] [PMID: 22732527]
[146]
El Dika, I.; Lim, H.Y.; Yong, W.P.; Lin, C-C.; Yoon, J-H.; Modiano, M.; Freilich, B.; Choi, H.J.; Chao, T-Y.; Kelley, R.K.; Brown, J.; Knox, J.; Ryoo, B-Y.; Yau, T.; Abou-Alfa, G.K. An open-label, multicenter, phase I, dose escalation study with phase II expansion cohort to determine the safety, pharmacokinetics, and preliminary antitumor activity of intravenous TKM-080301 in subjects with advanced hepatocellular carcinoma. Oncologist, 2019, 24(6), 747-e218.
[http://dx.doi.org/10.1634/theoncologist.2018-0838] [PMID: 30598500]
[147]
Suzuki, A.; Ito, T.; Kawano, H.; Hayashida, M.; Hayasaki, Y.; Tsutomi, Y.; Akahane, K.; Nakano, T.; Miura, M.; Shiraki, K. Survivin initiates procaspase 3/p21 complex formation as a result of interaction with Cdk4 to resist Fas-mediated cell death. Oncogene, 2000, 19(10), 1346-1353.
[http://dx.doi.org/10.1038/sj.onc.1203429] [PMID: 10713676]
[148]
Sumi, T.; Hirai, S.; Yamaguchi, M.; Tanaka, Y.; Tada, M.; Yamada, G.; Hasegawa, T.; Miyagi, Y.; Niki, T.; Watanabe, A.; Takahashi, H.; Sakuma, Y. Survivin knockdown induces senescence in TTF-1-expressing, KRAS-mutant lung adenocarcinomas. Int. J. Oncol., 2018, 53(1), 33-46.
[http://dx.doi.org/10.3892/ijo.2018.4365] [PMID: 29658609]
[149]
Zhao, Y.; Ma, X.; Wang, Y.; Jia, Y.; Zhang, X.; Zheng, Y.; Xiao, D. siRNA interference of CHRNA5 gene expression inhibits nicotine-induced proliferation of human lung cancer cells. Zhongguo Zhongliu Shengwu Zhiliao Zazhi, 2010, 17(6), 604-608.
[150]
Pan, L.; Lu, M-P.; Wang, J-H.; Xu, M.; Yang, S-R. Immunological pathogenesis and treatment of systemic lupus erythematosus. World J. Pediatr., 2019.
[http://dx.doi.org/10.1007/s12519-019-00229-3] [PMID: 30796732]
[151]
Wang, Z.H.; Zhang, W.; Zhang, Y.Q.; Pang, C.Y.; Wang, Y.F. Effect of CD40 siRNA on inflammatory response of MRL/Lpr mice. J. Peking Uni. Health Sci., 2016, 48(5), 771-776.
[152]
Li, M.; Yu, D.; Ni, B.; Hao, F. Interleukin-1 receptor associated kinase 1 is a potential therapeutic target of anti-inflammatory therapy for systemic lupus erythematosus. Mol. Immunol., 2017, 87, 94-101.
[http://dx.doi.org/10.1016/j.molimm.2017.03.018] [PMID: 28431280]
[153]
Lennard Richard, M.L.; Sato, S.; Suzuki, E.; Williams, S.; Nowling, T.K.; Zhang, X.K. The Fli-1 transcription factor regulates the expression of CCL5/RANTES. J. Immunol., 2014, 193(6), 2661-2668.
[http://dx.doi.org/10.4049/jimmunol.1302779] [PMID: 25098295]
[154]
Ripoll, È.; Merino, A.; Herrero-Fresneda, I.; Aran, J.M.; Goma, M.; Bolaños, N.; de Ramon, L.; Bestard, O.; Cruzado, J.M.; Grinyó, J.M.; Torras, J. CD40 gene silencing reduces the progression of experimental lupus nephritis modulating local milieu and systemic mechanisms. PLoS One, 2013, 8(6) e65068
[http://dx.doi.org/10.1371/journal.pone.0065068] [PMID: 23799000]
[155]
Wen, C.P.; Chang, C.H.; Tsai, M.K.; Lee, J.H.; Lu, P.J.; Tsai, S.P.; Wen, C.; Chen, C.H.; Kao, C.W.; Tsao, C.K.; Wu, X. Diabetes with early kidney involvement may shorten life expectancy by 16 years. Kidney Int., 2017, 92(2), 388-396.
[http://dx.doi.org/10.1016/j.kint.2017.01.030] [PMID: 28577854]
[156]
Wang, S.; Chen, X.; Wang, M.; Yao, D.; Yan, Q.; Lu, W. SiRNA-Cyp4a14 and diabetic nephropathy: silencing of Cyp4a14 by siRNA inhibits proliferation and fibrosis of mesangial cells. Int. J. Clin. Exp. Pathol., 2017, 10(12), 11909-11917.
[157]
Liu, M.; Zhang, Y.; Chi, Y.; Zhai, S.; Wang, B.; Shi, Y.; Li, Y. Delivery of megsin siRNA plasmid reveals therapeutic potential against diabetic nephropathy by down-regulating p27(kip1) level. J. Nephrol., 2012, 25(3), 418-425.
[http://dx.doi.org/10.5301/jn.5000019] [PMID: 21928229]
[158]
Zhang, Q.; Shi, Y.; Wada, J.; Malakauskas, S.M.; Liu, M.; Ren, Y.; Du, C.; Duan, H.; Li, Y.; Li, Y.; Zhang, Y. In vivo delivery of Gremlin siRNA plasmid reveals therapeutic potential against diabetic nephropathy by recovering bone morphogenetic protein-7. PLoS One, 2010, 5(7) e11709
[http://dx.doi.org/10.1371/journal.pone.0011709] [PMID: 20661431]
[159]
Ishizuka, A.; Siomi, M.C.; Siomi, H. A Drosophila fragile X protein interacts with components of RNAi and ribosomal proteins. Genes Dev., 2002, 16(19), 2497-2508.
[http://dx.doi.org/10.1101/gad.1022002] [PMID: 12368261]
[160]
Makimura, H.; Mizuno, T.M.; Mastaitis, J.W.; Agami, R.; Mobbs, C.V. Reducing hypothalamic AGRP by RNA interference increases metabolic rate and decreases body weight without influencing food intake. BMC Neurosci., 2002, 3(1), 18.
[http://dx.doi.org/10.1186/1471-2202-3-18] [PMID: 12423556]
[161]
Fire, A.; Xu, S.; Montgomery, M.K.; Kostas, S.A.; Driver, S.E.; Mello, C.C. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 1998, 391(6669), 806-811.
[162]
Garba, A.O.; Mousa, S.A. Bevasiranib for the treatment of wet, age-related macular degeneration. Ophthalmol. Eye Dis., 2010, 2, 75-83.
[http://dx.doi.org/10.4137/OED.S4878] [PMID: 23861616]
[163]
Whitehead, K.A.; Langer, R.; Anderson, D.G. Knocking down barriers: advances in siRNA delivery. Nat. Rev. Drug Discov., 2010, 9(5), 412-412.
[http://dx.doi.org/10.1038/nrd3182] [PMID: 19180106]
[164]
Adams, D.; Gonzalez-Duarte, A.; O’Riordan, W.D.; Yang, C.C.; Ueda, M.; Kristen, A.V.; Tournev, I.; Schmidt, H.H.; Coelho, T.; Berk, J.L.; Lin, K.P.; Vita, G.; Attarian, S.; Planté-Bordeneuve, V.; Mezei, M.M.; Campistol, J.M.; Buades, J.; Brannagan, T.H., III; Kim, B.J.; Oh, J.; Parman, Y.; Sekijima, Y.; Hawkins, P.N.; Solomon, S.D.; Polydefkis, M.; Dyck, P.J.; Gandhi, P.J.; Goyal, S.; Chen, J.; Strahs, A.L.; Nochur, S.V.; Sweetser, M.T.; Garg, P.P.; Vaishnaw, A.K.; Gollob, J.A.; Suhr, O.B. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N. Engl. J. Med., 2018, 379(1), 11-21.
[http://dx.doi.org/10.1056/NEJMoa1716153] [PMID: 29972753]
[165]
De Jong, W.H.; Borm, P.J.A. Drug delivery and nanoparticles: Applications and hazards. Int. J. Nanomedicine, 2008, 3(2), 133-149.
[http://dx.doi.org/10.2147/IJN.S596] [PMID: 18686775]


Rights & PermissionsPrintExport Cite as


Article Details

VOLUME: 21
ISSUE: 1
Year: 2020
Page: [3 - 22]
Pages: 20
DOI: 10.2174/1389201020666190924164152
Price: $65

Article Metrics

PDF: 15
HTML: 2
EPUB: 1
PRC: 2