Bioinformatics Approaches for Anti-cancer Drug Discovery

Author(s): Kening Li, Yuxin Du, Lu Li, Dong-Qing Wei*.

Journal Name: Current Drug Targets

Volume 21 , Issue 1 , 2020

  Journal Home
Translate in Chinese
Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Drug discovery is important in cancer therapy and precision medicines. Traditional approaches of drug discovery are mainly based on in vivo animal experiments and in vitro drug screening, but these methods are usually expensive and laborious. In the last decade, omics data explosion provides an opportunity for computational prediction of anti-cancer drugs, improving the efficiency of drug discovery. High-throughput transcriptome data were widely used in biomarkers’ identification and drug prediction by integrating with drug-response data. Moreover, biological network theory and methodology were also successfully applied to the anti-cancer drug discovery, such as studies based on protein-protein interaction network, drug-target network and disease-gene network. In this review, we summarized and discussed the bioinformatics approaches for predicting anti-cancer drugs and drug combinations based on the multi-omic data, including transcriptomics, toxicogenomics, functional genomics and biological network. We believe that the general overview of available databases and current computational methods will be helpful for the development of novel cancer therapy strategies.

Keywords: Drug discovery, bioinformatics, cancer therapy, precision medicine, multi-omic data, biomarkers.

[1]
Sullivan LB, Gui DY, Vander Heiden MG. Altered metabolite levels in cancer: implications for tumour biology and cancer therapy. Nat Rev Cancer 2016; 16(11): 680-93.
[http://dx.doi.org/10.1038/nrc.2016.85] [PMID: 27658530]
[2]
Khotskaya YB, Mills GB, Mills Shaw KR. Next-Generation Sequencing and Result Interpretation in Clinical Oncology: Challenges of Personalized Cancer Therapy. Annu Rev Med 2017; 68: 113-25.
[http://dx.doi.org/10.1146/annurev-med-102115-021556] [PMID: 27813876]
[3]
Valkenburg KC, de Groot AE, Pienta KJ. Targeting the tumour stroma to improve cancer therapy. Nat Rev Clin Oncol 2018; 15(6): 366-81.
[http://dx.doi.org/10.1038/s41571-018-0007-1] [PMID: 29651130]
[4]
Rosenblum D, Joshi N, Tao W, Karp JM, Peer D. Progress and challenges towards targeted delivery of cancer therapeutics. Nat Commun 2018; 9(1): 1410.
[http://dx.doi.org/10.1038/s41467-018-03705-y] [PMID: 29650952]
[5]
Waitkus MS, Diplas BH, Yan H. Biological Role and Therapeutic Potential of IDH Mutations in Cancer. Cancer Cell 2018; 34(2): 186-95.
[http://dx.doi.org/10.1016/j.ccell.2018.04.011] [PMID: 29805076]
[6]
Saeed K, Rahkama V, Eldfors S, et al. Comprehensive Drug Testing of Patient-derived Conditionally Reprogrammed Cells from Castration-resistant Prostate Cancer. Eur Urol 2017; 71(3): 319-27.
[http://dx.doi.org/10.1016/j.eururo.2016.04.019] [PMID: 27160946]
[7]
Senkowski W, Jarvius M, Rubin J, et al. Large-Scale Gene Expression Profiling Platform for Identification of Context-Dependent Drug Responses in Multicellular Tumor Spheroids. Cell Chem Biol 2016; 23(11): 1428-38.
[http://dx.doi.org/10.1016/j.chembiol.2016.09.013] [PMID: 27984028]
[8]
Raynal NJ, Da Costa EM, Lee JT, et al. Repositioning FDA-Approved Drugs in Combination with Epigenetic Drugs to Reprogram Colon Cancer Epigenome. Mol Cancer Ther 2017; 16(2): 397-407.
[http://dx.doi.org/10.1158/1535-7163.MCT-16-0588] [PMID: 27980103]
[9]
Park SI, Kim SJ, McCauley LK, Gallick GE. 2010.Pre-clinical mouse models of human prostate cancer and their utility in drug discovery. In: Curr Protoc Pharmacol Chapter 14:Unit 14 15 .
[http://dx.doi.org/10.1002/0471141755.ph1415s51]
[10]
Nishiguchi A, Matsusaki M, Kano MR, et al. In vitro 3D blood/lymph-vascularized human stromal tissues for preclinical assays of cancer metastasis. Biomaterials 2018; 179: 144-55.
[http://dx.doi.org/10.1016/j.biomaterials.2018.06.019] [PMID: 29986232]
[11]
Cheng F, Liang H, Butte AJ, Eng C, Nussinov R. Personal mutanomes meet modern oncology drug discovery and precision health. Pharmacol Rev 2019; 71(1): 1-19.
[http://dx.doi.org/10.1124/pr.118.016253] [PMID: 30545954]
[12]
Sliwoski G, Kothiwale S, Meiler J, Lowe EW Jr. Computational methods in drug discovery. Pharmacol Rev 2013; 66(1): 334-95.
[http://dx.doi.org/10.1124/pr.112.007336] [PMID: 24381236]
[13]
Kuruvilla FG, Shamji AF, Sternson SM, Hergenrother PJ, Schreiber SL. Dissecting glucose signalling with diversity-oriented synthesis and small-molecule microarrays. Nature 2002; 416(6881): 653-7.
[http://dx.doi.org/10.1038/416653a] [PMID: 11948353]
[14]
Argelaguet R, Velten B, Arnol D, et al. Multi-Omics Factor Analysis-a framework for unsupervised integration of multi-omics data sets. Mol Syst Biol 2018; 14(6)e8124
[http://dx.doi.org/10.15252/msb.20178124] [PMID: 29925568]
[15]
Bakker OB, Aguirre-Gamboa R, Sanna S, et al. Integration of multi-omics data and deep phenotyping enables prediction of cytokine responses. Nat Immunol 2018; 19(7): 776-86.
[http://dx.doi.org/10.1038/s41590-018-0121-3] [PMID: 29784908]
[16]
Hasin Y, Seldin M, Lusis A. Multi-omics approaches to disease. Genome Biol 2017; 18(1): 83.
[http://dx.doi.org/10.1186/s13059-017-1215-1] [PMID: 28476144]
[17]
Turanli B, Karagoz K, Gulfidan G, Sinha R, Mardinoglu A, Arga KY. A network-based cancer drug discovery: From integrated multi-omics approaches to precision medicine. Curr Pharm Des 2018; 24(32): 3778-90.
[http://dx.doi.org/10.2174/1381612824666181106095959] [PMID: 30398107]
[18]
Huang G, Li J, Wang P, Li W. A review of computational drug repositioning approaches. Comb Chem High Throughput Screen 2017.
[http://dx.doi.org/10.2174/1386207321666171221112835] [PMID: 29268682]
[19]
Li J, Zheng S, Chen B, Butte AJ, Swamidass SJ, Lu Z. A survey of current trends in computational drug repositioning. Brief Bioinform 2016; 17(1): 2-12.
[http://dx.doi.org/10.1093/bib/bbv020] [PMID: 25832646]
[20]
Fry RC, Svensson JP, Valiathan C, et al. Genomic predictors of interindividual differences in response to DNA damaging agents. Genes Dev 2008; 22(19): 2621-6.
[http://dx.doi.org/10.1101/gad.1688508] [PMID: 18805990]
[21]
Rice SD, Heinzman JM, Brower SL, et al. Analysis of chemotherapeutic response heterogeneity and drug clustering based on mechanism of action using an in vitro assay. Anticancer Res 2010; 30(7): 2805-11.
[PMID: 20683016]
[22]
Bosquet JG, Marchion DC, Chon H, Lancaster JM, Chanock S. Analysis of chemotherapeutic response in ovarian cancers using publicly available high-throughput data. Cancer Res 2014; 74(14): 3902-12.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-0186] [PMID: 24848511]
[23]
Sboner A, Elemento O. A primer on precision medicine informatics. Brief Bioinform 2016; 17(1): 145-53.
[http://dx.doi.org/10.1093/bib/bbv032] [PMID: 26048401]
[24]
Mitra AK, Mukherjee UK, Harding T, et al. Single-cell analysis of targeted transcriptome predicts drug sensitivity of single cells within human myeloma tumors. Leukemia 2016; 30(5): 1094-102.
[http://dx.doi.org/10.1038/leu.2015.361] [PMID: 26710886]
[25]
Scherf U, Ross DT, Waltham M, et al. A gene expression database for the molecular pharmacology of cancer. Nat Genet 2000; 24(3): 236-44.
[http://dx.doi.org/10.1038/73439] [PMID: 10700175]
[26]
Sun X, Vilar S, Tatonetti NP. High-throughput methods for combinatorial drug discovery. Sci Transl Med 2013; 5(205)205rv1
[http://dx.doi.org/10.1126/scitranslmed.3006667] [PMID: 24089409]
[27]
Jia J, Zhu F, Ma X, et al. Mechanisms of drug combinations: interaction and network perspectives. Nat Rev Drug Discov 2009; 8(2): 111-28.
[http://dx.doi.org/10.1038/nrd2683] [PMID: 19180105]
[28]
Yap TA, Omlin A, de Bono JS. Development of therapeutic combinations targeting major cancer signaling pathways. J Clin Oncol 2013; 31(12): 1592-605.
[http://dx.doi.org/10.1200/JCO.2011.37.6418] [PMID: 23509311]
[29]
Crystal AS, Shaw AT, Sequist LV, et al. Patient-derived models of acquired resistance can identify effective drug combinations for cancer. Science 2014; 346(6216): 1480-6.
[http://dx.doi.org/10.1126/science.1254721] [PMID: 25394791]
[30]
Kauko O, O’Connor CM, Kulesskiy E, et al. PP2A inhibition is a druggable MEK inhibitor resistance mechanism in KRAS-mutant lung cancer cells. Sci Transl Med 2018; 10(450)eaaq1093
[http://dx.doi.org/10.1126/scitranslmed.aaq1093] [PMID: 30021885]
[31]
Lipinski C, Hopkins A. Navigating chemical space for biology and medicine. Nature 2004; 432(7019): 855-61.
[http://dx.doi.org/10.1038/nature03193] [PMID: 15602551]
[32]
Du D, Chang CH, Wang Y, et al. Response envelope analysis for quantitative evaluation of drug combinations. Bioinformatics 2019.btz091
[http://dx.doi.org/10.1093/bioinformatics/btz091] [PMID: 30851108]
[33]
Huang L, Brunell D, Stephan C, et al. Driver Network as a Biomarker: Systematic integration and network modeling of multi-omics data to derive driver signaling pathways for drug combination prediction. Bioinformatics 2019.btz109
[http://dx.doi.org/10.1093/bioinformatics/btz109] [PMID: 30768150]
[34]
Regan-Fendt KE, Xu J, DiVincenzo M, et al. Synergy from gene expression and network mining (SynGeNet) method predicts synergistic drug combinations for diverse melanoma genomic subtypes. NPJ Syst Biol Appl 2019; 5: 6.
[http://dx.doi.org/10.1038/s41540-019-0085-4] [PMID: 30820351]
[35]
Sheng Z, Sun Y, Yin Z, Tang K, Cao Z. Advances in computational approaches in identifying synergistic drug combinations. Brief Bioinform 2018; 19(6): 1172-82.
[http://dx.doi.org/10.1093/bib/bbx047] [PMID: 28475767]
[36]
Patel MN, Halling-Brown MD, Tym JE, Workman P, Al-Lazikani B. Objective assessment of cancer genes for drug discovery. Nat Rev Drug Discov 2013; 12(1): 35-50.
[http://dx.doi.org/10.1038/nrd3913] [PMID: 23274470]
[37]
McKusick VA. Mendelian Inheritance in Man and its online version, OMIM. Am J Hum Genet 2007; 80(4): 588-604.
[http://dx.doi.org/10.1086/514346] [PMID: 17357067]
[38]
Amberger JS, Bocchini CA, Schiettecatte F, Scott AF, Hamosh A. OMIM.org: Online Mendelian Inheritance in Man (OMIM®), an online catalog of human genes and genetic disorders. Nucleic Acids Res 2015; 43(Database issue): D789-98.
[http://dx.doi.org/10.1093/nar/gku1205] [PMID: 25428349]
[39]
Becker KG, Barnes KC, Bright TJ, Wang SA. The genetic association database. Nat Genet 2004; 36(5): 431-2.
[http://dx.doi.org/10.1038/ng0504-431] [PMID: 15118671]
[40]
MacArthur J, Bowler E, Cerezo M, et al. The new NHGRI-EBI Catalog of published genome-wide association studies (GWAS Catalog). Nucleic Acids Res 2017; 45(D1): D896-901.
[http://dx.doi.org/10.1093/nar/gkw1133] [PMID: 27899670]
[41]
Piñero J, Bravo À, Queralt-Rosinach N, et al. DisGeNET: a comprehensive platform integrating information on human disease-associated genes and variants. Nucleic Acids Res 2017; 45(D1): D833-9.
[http://dx.doi.org/10.1093/nar/gkw943] [PMID: 27924018]
[42]
Piñero J, Queralt-Rosinach N, Bravo À, et al. DisGeNET: a discovery platform for the dynamical exploration of human diseases and their genes. Database (Oxford) 2015.2015bav028
[http://dx.doi.org/10.1093/database/bav028] [PMID: 25877637]
[43]
Brennan CW, Verhaak RG, McKenna A, et al. TCGA Research Network. The somatic genomic landscape of glioblastoma. Cell 2013; 155(2): 462-77.
[http://dx.doi.org/10.1016/j.cell.2013.09.034] [PMID: 24120142]
[44]
Edgar R, Domrachev M, Lash AE. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 2002; 30(1): 207-10.
[http://dx.doi.org/10.1093/nar/30.1.207] [PMID: 11752295]
[45]
Barrett T, Wilhite SE, Ledoux P, et al. NCBI GEO: archive for functional genomics data sets--update. Nucleic Acids Res 2013; 41(Database issue): D991-5.
[http://dx.doi.org/10.1093/nar/gks1193] [PMID: 23193258]
[46]
Wishart DS, Knox C, Guo AC, et al. DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res 2006; 34(Database issue): D668-72.
[http://dx.doi.org/10.1093/nar/gkj067] [PMID: 16381955]
[47]
Wishart DS, Knox C, Guo AC, et al. DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res 2008; 36(Database issue): D901-6.
[http://dx.doi.org/10.1093/nar/gkm958] [PMID: 18048412]
[48]
Law V, Knox C, Djoumbou Y, et al. DrugBank 4.0: shedding new light on drug metabolism. Nucleic Acids Res 2014; 42(Database issue): D1091-7.
[http://dx.doi.org/10.1093/nar/gkt1068] [PMID: 24203711]
[49]
Li YH, Yu CY, Li XX, et al. Therapeutic target database update 2018: enriched resource for facilitating bench-to-clinic research of targeted therapeutics. Nucleic Acids Res 2018; 46(D1): D1121-7.
[http://dx.doi.org/10.1093/nar/gkx1076] [PMID: 29140520]
[50]
Chen X, Ji ZL, Chen YZ. TTD: Therapeutic Target Database. Nucleic Acids Res 2002; 30(1): 412-5.
[http://dx.doi.org/10.1093/nar/30.1.412] [PMID: 11752352]
[51]
Whirl-Carrillo M, McDonagh EM, Hebert JM, et al. Pharmacogenomics knowledge for personalized medicine. Clin Pharmacol Ther 2012; 92(4): 414-7.
[http://dx.doi.org/10.1038/clpt.2012.96] [PMID: 22992668]
[52]
Mangal M, Sagar P, Singh H, Raghava GP, Agarwal SM. NPACT: Naturally Occurring Plant-based Anti-cancer Compound-Activity-Target database. Nucleic Acids Res 2013; 41(Database issue): D1124-9.
[http://dx.doi.org/10.1093/nar/gks1047] [PMID: 23203877]
[53]
Subramanian A, Narayan R, Corsello SM, et al. A next generation connectivity map: L1000 Platform and the First 1,000,000 Profiles Cell 2017; 171(6): 1437-52.
[http://dx.doi.org/10.1016/j.cell.2017.10.049]
[54]
Lamb J, Crawford ED, Peck D, et al. The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science 2006; 313(5795): 1929-35.
[http://dx.doi.org/10.1126/science.1132939] [PMID: 17008526]
[55]
Barretina J, Caponigro G, Stransky N, et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 2012; 483(7391): 603-7.
[http://dx.doi.org/10.1038/nature11003] [PMID: 22460905]
[56]
Barretina J, Caponigro G, Stransky N, et al. Addendum: The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 2019; 565(7738): E5-6.
[http://dx.doi.org/10.1038/s41586-018-0722-x] [PMID: 30559381]
[57]
Cancer Cell Line Encyclopedia C. Pharmacogenomic agreement between two cancer cell line data sets. Nature 2015; 528(7580): 84-7.
[http://dx.doi.org/10.1038/nature15736] [PMID: 26570998]
[58]
Shoemaker RH. The NCI60 human tumour cell line anticancer drug screen. Nat Rev Cancer 2006; 6(10): 813-23.
[http://dx.doi.org/10.1038/nrc1951] [PMID: 16990858]
[59]
Abaan OD, Polley EC, Davis SR, et al. The exomes of the NCI-60 panel: a genomic resource for cancer biology and systems pharmacology. Cancer Res 2013; 73(14): 4372-82.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-3342] [PMID: 23856246]
[60]
Sachlos E, Risueño RM, Laronde S, et al. Identification of drugs including a dopamine receptor antagonist that selectively target cancer stem cells. Cell 2012; 149(6): 1284-97.
[http://dx.doi.org/10.1016/j.cell.2012.03.049] [PMID: 22632761]
[61]
Lee SI, Celik S, Logsdon BA, et al. A machine learning approach to integrate big data for precision medicine in acute myeloid leukemia. Nat Commun 2018; 9(1): 42.
[http://dx.doi.org/10.1038/s41467-017-02465-5] [PMID: 29298978]
[62]
Cheng F, Kovács IA, Barabási AL. Network-based prediction of drug combinations. Nat Commun 2019; 10(1): 1197.
[http://dx.doi.org/10.1038/s41467-019-09186-x] [PMID: 30867426]
[63]
Selvaraj G, Kaliamurthi S, Kaushik AC, et al. Identification of target gene and prognostic evaluation for lung adenocarcinoma using gene expression meta-analysis, network analysis and neural network algorithms. J Biomed Inform 2018; 86: 120-34.
[http://dx.doi.org/10.1016/j.jbi.2018.09.004] [PMID: 30195659]
[64]
Amberger J, Bocchini C, Hamosh A. A new face and new challenges for Online Mendelian Inheritance in Man (OMIM®). Hum Mutat 2011; 32(5): 564-7.
[http://dx.doi.org/10.1002/humu.21466] [PMID: 21472891]
[65]
Forbes SA, Bindal N, Bamford S, et al. COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res 2011; 39(Database issue): D945-50.
[http://dx.doi.org/10.1093/nar/gkq929] [PMID: 20952405]
[66]
Forbes SA, Bhamra G, Bamford S, et al. The catalogue of somatic mutations in cancer (COSMIC) In: In: Curr Protoc Hum Genet Chapter 10:Unit 10 11. 2008.
[http://dx.doi.org/1002/0471142905.hg1011s57]
[67]
Forbes SA, Tang G, Bindal N, et al. COSMIC (the Catalogue of Somatic Mutations in Cancer): a resource to investigate acquired mutations in human cancer. Nucleic Acids Res 2010; 38(Database issue): D652-7.
[http://dx.doi.org/10.1093/nar/gkp995] [PMID: 19906727]
[68]
Forbes S, Clements J, Dawson E, et al. Cosmic 2005. Br J Cancer 2006; 94(2): 318-22.
[http://dx.doi.org/10.1038/sj.bjc.6602928] [PMID: 16421597]
[69]
Bamford S, Dawson E, Forbes S, et al. The COSMIC (Catalogue of Somatic Mutations in Cancer) database and website. Br J Cancer 2004; 91(2): 355-8.
[http://dx.doi.org/10.1038/sj.bjc.6601894] [PMID: 15188009]
[70]
Landrum MJ, Lee JM, Riley GR, et al. ClinVar: public archive of relationships among sequence variation and human phenotype. Nucleic Acids Res 2014; 42(Database issue): D980-5.
[http://dx.doi.org/10.1093/nar/gkt1113] [PMID: 24234437]
[71]
Daneshjou R, Zappala Z, Kukurba K, et al. PATH-SCAN: a reporting tool for identifying clinically actionable variants. Pac Symp Biocomput 2014; 229-40.
[PMID: 24297550]
[72]
Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 2008; 455(7216): 1061-8.
[http://dx.doi.org/10.1038/nature07385] [PMID: 18772890]
[73]
Cancer Genome Atlas N. Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature 2012; 490(7418): 61-70.
[http://dx.doi.org/10.1038/nature11412] [PMID: 23000897]
[74]
Ley TJ, Miller C, Ding L, et al. Cancer Genome Atlas Research Network. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med 2013; 368(22): 2059-74.
[http://dx.doi.org/10.1056/NEJMoa1301689] [PMID: 23634996]
[75]
Cancer Genome Atlas N. Cancer Genome Atlas Network. Genomic Classification of Cutaneous Melanoma. Cell 2015; 161(7): 1681-96.
[http://dx.doi.org/10.1016/j.cell.2015.05.044] [PMID: 26091043]
[76]
Robertson AG, Shih J, Yau C, et al. Integrative analysis identifies four molecular and clinical subsets in uveal melanoma. Cancer Cell 2017; 32(2): 204-20.
[http://dx.doi.org/10.1016/j.ccell.2017.07.003]
[77]
Verhaak RG, Hoadley KA, Purdom E, et al. Cancer genome atlas research network. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 2010; 17(1): 98-110.
[http://dx.doi.org/10.1016/j.ccr.2009.12.020] [PMID: 20129251]
[78]
Noushmehr H, Weisenberger DJ, Diefes K, et al. Cancer genome atlas research network. Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell 2010; 17(5): 510-22.
[http://dx.doi.org/10.1016/j.ccr.2010.03.017] [PMID: 20399149]
[79]
Osmanbeyoglu HU, Pelossof R, Bromberg JF, Leslie CS. Linking signaling pathways to transcriptional programs in breast cancer. Genome Res 2014; 24(11): 1869-80.
[http://dx.doi.org/10.1101/gr.173039.114] [PMID: 25183703]
[80]
Ichikawa H, Nagahashi M, Shimada Y, et al. Actionable gene-based classification toward precision medicine in gastric cancer. Genome Med 2017; 9(1): 93.
[http://dx.doi.org/10.1186/s13073-017-0484-3] [PMID: 29089060]
[81]
Rinaldetti S, Rempel E, Worst TS, et al. Subclassification, survival prediction and drug target analyses of chemotherapy-naïve muscle-invasive bladder cancer with a molecular screening. Oncotarget 2018; 9(40): 25935-45.
[http://dx.doi.org/10.18632/oncotarget.25407] [PMID: 29899832]
[82]
Luo B, Gu YY, Wang XD, Chen G, Peng ZG. Identification of potential drugs for diffuse large b-cell lymphoma based on bioinformatics and Connectivity Map database. Pathol Res Pract 2018; 214(11): 1854-67.
[http://dx.doi.org/10.1016/j.prp.2018.09.013] [PMID: 30244948]
[83]
Kim IW, Jang H, Kim JH, Kim MG, Kim S, Oh JM. Computational drug repositioning for gastric cancer using reversal gene expression profiles. Sci Rep 2019; 9(1): 2660.
[http://dx.doi.org/10.1038/s41598-019-39228-9] [PMID: 30804389]
[84]
Hu G, Agarwal P. Human disease-drug network based on genomic expression profiles. PLoS One 2009; 4(8)e6536
[http://dx.doi.org/10.1371/journal.pone.0006536] [PMID: 19657382]
[85]
Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res 2017; 45(D1): D353-61.
[http://dx.doi.org/10.1093/nar/gkw1092] [PMID: 27899662]
[86]
Huang YJ, Hang D, Lu LJ, Tong L, Gerstein MB, Montelione GT. Targeting the human cancer pathway protein interaction network by structural genomics. Mol Cell Proteomics 2008; 7(10): 2048-60.
[http://dx.doi.org/10.1074/mcp.M700550-MCP200] [PMID: 18487680]
[87]
Creixell P, Reimand J, Haider S, et al. Mutation consequences and pathway analysis working group of the international cancer genome consortium. Pathway and network analysis of cancer genomes. Nat Methods 2015; 12(7): 615-21.
[http://dx.doi.org/10.1038/nmeth.3440] [PMID: 26125594]
[88]
Keshava Prasad TS, Goel R, Kandasamy K, et al. Human Protein Reference Database--2009 update. Nucleic Acids Res 2009; 37(Database issue): D767-72.
[http://dx.doi.org/10.1093/nar/gkn892] [PMID: 18988627]
[89]
Oughtred R, Stark C, Breitkreutz BJ, et al. The BioGRID interaction database: 2019 update. Nucleic Acids Res 2019; 47(D1): D529-41.
[http://dx.doi.org/10.1093/nar/gky1079] [PMID: 30476227]
[90]
Szklarczyk D, Gable AL, Lyon D, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 2019; 47(D1): D607-13.
[http://dx.doi.org/10.1093/nar/gky1131] [PMID: 30476243]
[91]
Hermjakob H, Montecchi-Palazzi L, Lewington C, et al. IntAct: an open source molecular interaction database. Nucleic Acids Res 2004; 32(Database issue): D452-5.
[http://dx.doi.org/10.1093/nar/gkh052] [PMID: 14681455]
[92]
San Lucas FA, Fowler J, Chang K, Kopetz S, Vilar E, Scheet P. Cancer in silico drug discovery: a systems biology tool for identifying candidate drugs to target specific molecular tumor subtypes. Mol Cancer Ther 2014; 13(12): 3230-40.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0260] [PMID: 25349306]
[93]
Liu JX, Wang DQ, Zheng CH, Gao YL, Wu SS, Shang JL. Identifying drug-pathway association pairs based on L2,1-integrative penalized matrix decomposition. BMC Syst Biol 2017; 11(Suppl. 6): 119.
[http://dx.doi.org/10.1186/s12918-017-0480-7] [PMID: 29297378]
[94]
Su R, Liu X, Xiao G, Wei L. Meta-GDBP: a high-level stacked regression model to improve anticancer drug response prediction. Brief Bioinform 2019.bbz022
[http://dx.doi.org/10.1093/bib/bbz022] [PMID: 30868164]
[95]
Hajjo R, Setola V, Roth BL, Tropsha A. Chemocentric informatics approach to drug discovery: identification and experimental validation of selective estrogen receptor modulators as ligands of 5-hydroxytryptamine-6 receptors and as potential cognition enhancers. J Med Chem 2012; 55(12): 5704-19.
[http://dx.doi.org/10.1021/jm2011657] [PMID: 22537153]
[96]
Smalley JL, Breda C, Mason RP, et al. Connectivity mapping uncovers small molecules that modulate neurodegeneration in Huntington’s disease models. J Mol Med (Berl) 2016; 94(2): 235-45.
[http://dx.doi.org/10.1007/s00109-015-1344-5] [PMID: 26428929]
[97]
Yang W, Soares J, Greninger P, et al. Genomics of Drug Sensitivity in Cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells. Nucleic Acids Res 2013; 41(Database issue): D955-61.
[http://dx.doi.org/10.1093/nar/gks1111] [PMID: 23180760]
[98]
Lee AC, Shedden K, Rosania GR, Crippen GM. Data mining the NCI60 to predict generalized cytotoxicity. J Chem Inf Model 2008; 48(7): 1379-88.
[http://dx.doi.org/10.1021/ci800097k] [PMID: 18588283]
[99]
Gini G. QSAR: What Else? Methods Mol Biol 2018; 1800: 79-105.
[http://dx.doi.org/10.1007/978-1-4939-7899-1_3] [PMID: 29934888]
[100]
Cherkasov A, Muratov EN, Fourches D, et al. QSAR modeling: where have you been? Where are you going to? J Med Chem 2014; 57(12): 4977-5010.
[http://dx.doi.org/10.1021/jm4004285] [PMID: 24351051]
[101]
Zitnik M, Agrawal M, Leskovec J. Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics 2018; 34(13): i457-66.
[http://dx.doi.org/10.1093/bioinformatics/bty294] [PMID: 29949996]
[102]
Huang D, Lüthi U, Kolb P, et al. Discovery of cell-permeable non-peptide inhibitors of beta-secretase by high-throughput docking and continuum electrostatics calculations. J Med Chem 2005; 48(16): 5108-11.
[http://dx.doi.org/10.1021/jm050499d] [PMID: 16078830]
[103]
Ferrari S, Losasso V, Costi MP. Sequence-based identification of specific drug target regions in the thymidylate synthase enzyme family. ChemMedChem 2008; 3(3): 392-401.
[http://dx.doi.org/10.1002/cmdc.200700215] [PMID: 18270995]
[104]
Kaliamurthi S, Selvaraj G, Junaid M, Khan A, Gu K, Wei DQ. Cancer immunoinformatics: A promising era in the development of peptide vaccines for human papillomavirus-induced cervical cancer. Curr Pharm Des 2018; 24(32): 3791-817.
[http://dx.doi.org/10.2174/1381612824666181106094133] [PMID: 30398106]
[105]
Kaliamurthi S, Selvaraj G, Kaushik AC, Gu KR, Wei DQ. Designing of CD8+ and CD8+-overlapped CD4+ epitope vaccine by targeting late and early proteins of human papillomavirus. Biologics 2018; 12: 107-25.
[http://dx.doi.org/10.2147/btt.S177901] [PMID: 30323556]
[106]
Kaliamurthi S, Selvaraj G, Chinnasamy S, et al. Exploring the papillomaviral proteome to identify potential candidates for a chimeric vaccine against cervix papilloma using immunomics and computational structural vaccinology. Viruses 2019; 11(1)E63
[http://dx.doi.org/10.3390/v11010063] [PMID: 30650527]
[107]
Wooller SK, Benstead-Hume G, Chen X, Ali Y, Pearl FMG. Bioinformatics in translational drug discovery. Biosci Rep 2017; 37(4)BSR20160180
[http://dx.doi.org/10.1042/BSR20160180] [PMID: 28487472]
[108]
Le Guilloux V, Schmidtke P, Tuffery P. Fpocket: an open source platform for ligand pocket detection. BMC Bioinformatics 2009; 10: 168.
[http://dx.doi.org/10.1186/1471-2105-10-168] [PMID: 19486540]
[109]
Hashemzadeh S, Ramezani F, Rafii-Tabar H. Study of molecular mechanism of the interaction between MEK1/2 and trametinib with docking and molecular dynamic simulation. Interdiscip Sci 2019; 11(1): 115-24.
[http://dx.doi.org/10.1007/s12539-018-0305-4] [PMID: 30465279]
[110]
Kaushik AC, Gautam D, Nangraj AS, Wei DQ, Sahi S. Protection of primary dopaminergic midbrain neurons through impact of small molecules using virtual screening of GPR139 supported by molecular dynamic simulation and systems biology. Interdiscip Sci 2019; 11(2): 247-57.
[http://dx.doi.org/10.1007/s12539-019-00334-x] [PMID: 31177377]
[111]
Tatonetti NP, Denny JC, Murphy SN, et al. Detecting drug interactions from adverse-event reports: interaction between paroxetine and pravastatin increases blood glucose levels. Clin Pharmacol Ther 2011; 90(1): 133-42.
[http://dx.doi.org/10.1038/clpt.2011.83] [PMID: 21613990]
[112]
Marstrand TT, Borup R, Willer A, et al. A conceptual framework for the identification of candidate drugs and drug targets in acute promyelocytic leukemia. Leukemia 2010; 24(7): 1265-75.
[http://dx.doi.org/10.1038/leu.2010.95] [PMID: 20508621]
[113]
Lv S, Xu Y, Chen X, et al. Prioritizing cancer therapeutic small molecules by integrating multiple OMICS datasets. OMICS 2012; 16(10): 552-9.
[http://dx.doi.org/10.1089/omi.2012.0005] [PMID: 22917481]
[114]
Menden MP, Iorio F, Garnett M, et al. Machine learning prediction of cancer cell sensitivity to drugs based on genomic and chemical properties. PLoS One 2013; 8(4)e61318
[http://dx.doi.org/10.1371/journal.pone.0061318] [PMID: 23646105]
[115]
Snider J, Kotlyar M, Saraon P, Yao Z, Jurisica I, Stagljar I. Fundamentals of protein interaction network mapping. Mol Syst Biol 2015; 11(12): 848.
[http://dx.doi.org/10.15252/msb.20156351] [PMID: 26681426]
[116]
Kibble M, Saarinen N, Tang J, Wennerberg K, Mäkelä S, Aittokallio T. Network pharmacology applications to map the unexplored target space and therapeutic potential of natural products. Nat Prod Rep 2015; 32(8): 1249-66.
[http://dx.doi.org/10.1039/C5NP00005J] [PMID: 26030402]
[117]
Menon RM, Badri PS, Wang T, et al. Drug-drug interaction profile of the all-oral anti-hepatitis C virus regimen of paritaprevir/ritonavir, ombitasvir, and dasabuvir. J Hepatol 2015; 63(1): 20-9.
[http://dx.doi.org/10.1016/j.jhep.2015.01.026] [PMID: 25646891]
[118]
Guney E, Menche J, Vidal M, Barábasi AL. Network-based in silico drug efficacy screening. Nat Commun 2016; 7: 10331.
[http://dx.doi.org/10.1038/ncomms10331] [PMID: 26831545]
[119]
Li T, Wernersson R, Hansen RB, et al. A scored human protein-protein interaction network to catalyze genomic interpretation. Nat Methods 2017; 14(1): 61-4.
[http://dx.doi.org/10.1038/nmeth.4083] [PMID: 27892958]
[120]
Dhingra P, Martinez-Fundichely A, Berger A, et al. Identification of novel prostate cancer drivers using RegNetDriver: a framework for integration of genetic and epigenetic alterations with tissue-specific regulatory network. Genome Biol 2017; 18(1): 141.
[http://dx.doi.org/10.1186/s13059-017-1266-3] [PMID: 28750683]
[121]
Miao Y, Bhattacharya S, Edwards M, et al. Altering the threshold of an excitable signal transduction network changes cell migratory modes. Nat Cell Biol 2017; 19(4): 329-40.
[http://dx.doi.org/10.1038/ncb3495] [PMID: 28346441]
[122]
Yildirim MA, Goh KI, Cusick ME, Barabási AL, Vidal M. Drug-target network. Nat Biotechnol 2007; 25(10): 1119-26.
[http://dx.doi.org/10.1038/nbt1338] [PMID: 17921997]
[123]
Iorio F, Saez-Rodriguez J, di Bernardo D. Network based elucidation of drug response: from modulators to targets. BMC Syst Biol 2013; 7: 139.
[http://dx.doi.org/10.1186/1752-0509-7-139] [PMID: 24330611]
[124]
Gayvert KM, Dardenne E, Cheung C, et al. A Computational Drug Repositioning Approach for Targeting Oncogenic Transcription Factors. Cell Rep 2016; 15(11): 2348-56.
[http://dx.doi.org/10.1016/j.celrep.2016.05.037] [PMID: 27264179]
[125]
Wu C, Gudivada RC, Aronow BJ, Jegga AG. Computational drug repositioning through heterogeneous network clustering. BMC Syst Biol 2013; 7(Suppl. 5): S6.
[http://dx.doi.org/10.1186/1752-0509-7-S5-S6] [PMID: 24564976]
[126]
Wei DQ, Selvaraj G, Kaushik AC. Computational perspective on the current state of the methods and new challenges in cancer drug discovery. Curr Pharm Des 2018; 24(32): 3725-6.
[http://dx.doi.org/10.2174/138161282432190109105339] [PMID: 30675829]
[127]
Zeng X, Zhu S, Liu X, Zhou Y, Nussinov R, Cheng F. deepDR: A network-based deep learning approach to in silico drug repositioning. Bioinformatics 2019.btz418
[http://dx.doi.org/10.1093/bioinformatics/btz418] [PMID: 31116390]
[128]
Tomar AK, Agarwal R, Kundu B. Most Variable Genes and Transcription Factors in Acute Lymphoblastic Leukemia Patients. Interdiscip Sci 2019.
[http://dx.doi.org/10.1007/s12539-019-00325-y] [PMID: 30972690]
[129]
Liu S, Wang X, Qin W, Genchev GZ, Lu H. Transcription factors contribute to differential expression in cellular pathways in lung adenocarcinoma and lung squamous cell carcinoma. Interdiscip Sci 2018; 10(4): 836-47.
[http://dx.doi.org/10.1007/s12539-018-0300-9] [PMID: 30039492]
[130]
Emad A, Cairns J, Kalari KR, Wang L, Sinha S. Knowledge-guided gene prioritization reveals new insights into the mechanisms of chemoresistance. Genome Biol 2017; 18(1): 153.
[http://dx.doi.org/10.1186/s13059-017-1282-3] [PMID: 28800781]
[131]
Lavi O, Skinner J, Gottesman MM. Network features suggest new hepatocellular carcinoma treatment strategies. BMC Syst Biol 2014; 8: 88.
[http://dx.doi.org/10.1186/s12918-014-0088-0] [PMID: 25070212]
[132]
Daemen A, Griffith OL, Heiser LM, et al. Modeling precision treatment of breast cancer. Genome Biol 2013; 14(10): R110.
[http://dx.doi.org/10.1186/gb-2013-14-10-r110] [PMID: 24176112]
[133]
Chen P, Huhtinen K, Kaipio K, et al. Identification of prognostic groups in high-grade serous ovarian cancer treated with platinum-taxane chemotherapy. Cancer Res 2015; 75(15): 2987-98.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-3242] [PMID: 26122843]
[134]
Song P, Wu S, Zhang L, Zeng X, Wang J. Correlation between PD-L1 expression and clinicopathologic features in 404 patients with lung adenocarcinoma. Interdiscip Sci 2019; 11(2): 258-65.
[http://dx.doi.org/10.1007/s12539-019-00329-8] [PMID: 31079342]
[135]
Selvaraj G, Kaliamurthi S, Lin S, Gu K, Wei DQ. Prognostic impact of tissue inhibitor of metalloproteinase-1 in non-small cell lung cancer: Systematic review and meta-analysis. Curr Med Chem 2018.
[http://dx.doi.org/10.2174/0929867325666180904114455] [PMID: 30182835]
[136]
Meric-Bernstam F, Mills GB. Overcoming implementation challenges of personalized cancer therapy. Nat Rev Clin Oncol 2012; 9(9): 542-8.
[http://dx.doi.org/10.1038/nrclinonc.2012.127] [PMID: 22850751]
[137]
Fang HB, Chen X, Pei XY, Grant S, Tan M. Experimental design and statistical analysis for three-drug combination studies. Stat Methods Med Res 2017; 26(3): 1261-80.
[http://dx.doi.org/10.1177/0962280215574320] [PMID: 25744107]
[138]
Podolsky SH, Greene JA. Combination drugs--hype, harm, and hope. N Engl J Med 2011; 365(6): 488-91.
[http://dx.doi.org/10.1056/NEJMp1106161] [PMID: 21830965]
[139]
Bansal M, Yang J, Karan C, et al. A community computational challenge to predict the activity of pairs of compounds. Nat Biotechnol 2014; 32(12): 1213-22.
[http://dx.doi.org/10.1038/nbt.3052] [PMID: 25419740]
[140]
Huang L, Li F, Sheng J, et al. DrugComboRanker: drug combination discovery based on target network analysis. Bioinformatics 2014; 30(12): i228-36.
[http://dx.doi.org/10.1093/bioinformatics/btu278] [PMID: 24931988]
[141]
Li P, Huang C, Fu Y, et al. Large-scale exploration and analysis of drug combinations. Bioinformatics 2015; 31(12): 2007-16.
[http://dx.doi.org/10.1093/bioinformatics/btv080] [PMID: 25667546]
[142]
Lee JH, Kim DG, Bae TJ, et al. CDA: combinatorial drug discovery using transcriptional response modules. PLoS One 2012; 7(8)e42573
[http://dx.doi.org/10.1371/journal.pone.0042573] [PMID: 22905152]
[143]
Kindsvater HK, Dulvy NK, Horswill C, Juan-Jordá MJ, Mangel M, Matthiopoulos J. Overcoming the data crisis in biodiversity conservation. Trends Ecol Evol (Amst) 2018; 33(9): 676-88.
[http://dx.doi.org/10.1016/j.tree.2018.06.004] [PMID: 30007845]
[144]
Yugi K, Kubota H, Hatano A, Kuroda S. Trans-Omics: How to reconstruct biochemical networks across multiple ‘Omic’ layers. Trends Biotechnol 2016; 34(4): 276-90.
[http://dx.doi.org/10.1016/j.tibtech.2015.12.013] [PMID: 26806111]
[145]
Chen BJ, Litvin O, Ungar L, Pe’er D. Context sensitive modeling of cancer drug sensitivity. PLoS One 2015; 10(8)e0133850
[http://dx.doi.org/10.1371/journal.pone.0133850] [PMID: 26274927]
[146]
Jaeger S, Duran-Frigola M, Aloy P. Drug sensitivity in cancer cell lines is not tissue-specific. Mol Cancer 2015; 14: 40.
[http://dx.doi.org/10.1186/s12943-015-0312-6] [PMID: 25881072]
[147]
O’Neil J, Benita Y, Feldman I, et al. An unbiased oncology compound screen to identify novel combination strategies. Mol Cancer Ther 2016; 15(6): 1155-62.
[http://dx.doi.org/10.1158/1535-7163.MCT-15-0843] [PMID: 26983881]
[148]
Sun Y, Sheng Z, Ma C, et al. Combining genomic and network characteristics for extended capability in predicting synergistic drugs for cancer. Nat Commun 2015; 6: 8481.
[http://dx.doi.org/10.1038/ncomms9481] [PMID: 26412466]
[149]
Gillet JP, Varma S, Gottesman MM. The clinical relevance of cancer cell lines. J Natl Cancer Inst 2013; 105(7): 452-8.
[http://dx.doi.org/10.1093/jnci/djt007] [PMID: 23434901]
[150]
Madani Tonekaboni SA, Soltan Ghoraie L, Manem VSK, Haibe-Kains B. Predictive approaches for drug combination discovery in cancer. Brief Bioinform 2018; 19(2): 263-76.
[http://dx.doi.org/10.1093/bib/bbw104] [PMID: 27881431]
[151]
Azuaje F. Computational models for predicting drug responses in cancer research. Brief Bioinform 2017; 18(5): 820-9.
[http://dx.doi.org/10.1093/bib/bbw065] [PMID: 27444372]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 21
ISSUE: 1
Year: 2020
Page: [3 - 17]
Pages: 15
DOI: 10.2174/1389450120666190923162203
Price: $65

Article Metrics

PDF: 18
HTML: 1
EPUB: 1
PRC: 3

Special-new-year-discount