Integrating Pathophysiology in Migraine: Role of the Gut Microbiome and Melatonin

Author(s): George Anderson*.

Journal Name: Current Pharmaceutical Design

Volume 25 , Issue 33 , 2019


Abstract:

Background: The pathoetiology and pathophysiology of migraine are widely accepted as unknown.

Methods: The current article reviews the wide array of data associated with the biological underpinnings of migraine and provides a framework that integrates previously disparate bodies of data.

Results: The importance of alterations in stress- and pro-inflammatory cytokine- induced gut dysbiosis, especially butyrate production, are highlighted. This is linked to a decrease in the availability of melatonin, and a relative increase in the N-acetylserotonin/melatonin ratio, which has consequences for the heightened glutamatergic excitatory transmission in migraine. It is proposed that suboptimal mitochondria functioning and metabolic regulation drive alterations in astrocytes and satellite glial cells that underpin the vasoregulatory and nociceptive changes in migraine.

Conclusion: This provides a framework not only for classical migraine associated factors, such as calcitonin-gene related peptide and serotonin, but also for wider factors in the developmental pathoetiology of migraine. A number of future research and treatment implications arise, including the clinical utilization of sodium butyrate and melatonin in the management of migraine.

Keywords: Migraine, microbiome, gut, butyrate, melatonin, treatment, astrocyte, satellite glial cell, stress, vasoregulation.

[1]
Vetvik KG, MacGregor EA, Lundqvist C, Russell MB. Symptoms of premenstrual syndrome in female migraineurs with and without menstrual migraine. J Headache Pain 2018; 19(1): 97.
[http://dx.doi.org/10.1186/s10194-018-0931-6] [PMID: 30332985]
[2]
Bartleson JD, Cutrer FM. Migraine update. Diagnosis and treatment. Minn Med 2010; 93(5): 36-41.
[PMID: 20572569]
[3]
Sutherland HG, Griffiths LR. Genetics of migraine: Insights into the molecular basis of migraine disorders. Headache 2017; 57(4): 537-69.
[http://dx.doi.org/10.1111/head.13053] [PMID: 28271496]
[4]
Lay CL, Broner SW. Migraine in women. Neurol Clin 2009; 27(2): 503-11.
[http://dx.doi.org/10.1016/j.ncl.2009.01.002] [PMID: 19289228]
[5]
MacGregor EA. Migraine, menopause and hormone replacement therapy. Post Reprod Health 2018; 24(1): 11-8.
[http://dx.doi.org/10.1177/2053369117731172] [PMID: 28994639]
[6]
Sandweiss AJ, Cottier KE, McIntosh MI, et al. 17-β-Estradiol induces spreading depression and pain behavior in alert female rats. Oncotarget 2017; 8(69): 114109-22.
[http://dx.doi.org/10.18632/oncotarget.23141] [PMID: 29371973]
[7]
Hung CI, Liu CY, Yang CH, Wang SJ. Migraine with active headache was associated with other painful physical symptoms at two-year follow-up among patients with major depressive disorder. PLoS One 2019; 14(4)e0216108
[http://dx.doi.org/10.1371/journal.pone.0216108] [PMID: 31039196]
[8]
Moisset X, Bommelaer G, Boube M, et al. Migraine prevalence in inflammatory bowel disease patients: A tertiary-care centre cross-sectional study. Eur J Pain 2017; 21(9): 1550-60.
[http://dx.doi.org/10.1002/ejp.1056] [PMID: 28508514]
[9]
Doulberis M, Saleh C, Beyenburg S. Is there an association between migraine and gastrointestinal disorders? J Clin Neurol 2017; 13(3): 215-26.
[http://dx.doi.org/10.3988/jcn.2017.13.3.215] [PMID: 28748672]
[10]
Sucksdorff D, Brown AS, Chudal R, Heinimaa M, Suominen A, Sourander A. Parental and comorbid migraine in individuals with bipolar disorder: A nationwide register study. J Affect Disord 2016; 206: 109-14.
[http://dx.doi.org/10.1016/j.jad.2016.07.034] [PMID: 27472412]
[11]
Chen JH, Wu SC, Muo CH, Kao CH, Tseng CH, Tsai CH. Association of higher migraine risk among female and younger chronic osteomyelitis patients: Evidence from a taiwan cohort of one million. Pain Physician 2018; 21(2): E149-56.
[PMID: 29565957]
[12]
Min C, Lim H, Lim JS, Sim S, Choi HG. Increased risk of migraine in patients with psoriasis: a longitudinal follow up study using a national sample cohort. Medicine (Baltimore) 2019; 98(17)e15370
[http://dx.doi.org/10.1097/MD.0000000000015370] [PMID: 31027126]
[13]
Ismail OM, Poole ZB, Bierly SL, et al. Association between dry eye disease and migraine headaches in a large population-based study. JAMA Ophthalmol 2019; 137(5): 532-6.
[http://dx.doi.org/10.1001/jamaophthalmol.2019.0170] [PMID: 30844042]
[14]
Underwood JFG, Kendall KM, Berrett J, et al. Autism spectrum disorder diagnosis in adults: phenotype and genotype findings from a clinically derived cohort. Br J Psychiatry 2019; 1-7.
[http://dx.doi.org/10.1192/bjp.2019.30] [PMID: 30806336]
[15]
Yang X, Liu B, Yang B, et al. Prevalence of restless legs syndrome in individuals with migraine: a systematic review and meta-analysis of observational studies. Neurol Sci 2018; 39(11): 1927-34.
[http://dx.doi.org/10.1007/s10072-018-3527-7] [PMID: 30116981]
[16]
Smitherman TA, Kolivas ED, Bailey JR. Panic disorder and migraine: comorbidity, mechanisms, and clinical implications. Headache 2013; 53(1): 23-45.
[http://dx.doi.org/10.1111/head.12004] [PMID: 23278473]
[17]
Beckmann Y, Türe S. Headache characteristics in multiple sclerosis. Mult Scler Relat Disord 2019; 27: 112-6.
[http://dx.doi.org/10.1016/j.msard.2018.09.022] [PMID: 30368222]
[18]
Miller JA, Missmer SA, Vitonis AF, Sarda V, Laufer MR, DiVasta AD. Prevalence of migraines in adolescents with endometriosis. Fertil Steril 2018; 109(4): 685-90.
[http://dx.doi.org/10.1016/j.fertnstert.2017.12.016] [PMID: 29605402]
[19]
Rainero I, Govone F, Gai A, Vacca A, Rubino E. Is migraine primarily a metaboloendocrine disorder? Curr Pain Headache Rep 2018; 22(5): 36.
[http://dx.doi.org/10.1007/s11916-018-0691-7] [PMID: 29619630]
[20]
Anderson G, Maes M. How immune-inflammatory processes link CNS and psychiatric disorders: classification and treatment implications. CNS Neurol Disord Drug Targets 2017; 16(3): 266-78.
[http://dx.doi.org/10.2174/1871527315666161122144659] [PMID: 27875954]
[21]
Weng R, Shen S, Tian Y, et al. Metabolomics approach reveals integrated metabolic network associated with serotonin deficiency. Sci Rep 2015; 5: 11864.
[http://dx.doi.org/10.1038/srep11864] [PMID: 26154191]
[22]
Schulte LH, Allers A, May A. Hypothalamus as a mediator of chronic migraine: Evidence from high-resolution fMRI. Neurology 2017; 88(21): 2011-6.
[http://dx.doi.org/10.1212/WNL.0000000000003963] [PMID: 28446645]
[23]
Tripathi GM, Kalita J, Misra UK. Role of glutamate and its receptors in migraine with reference to amitriptyline and transcranial magnetic stimulation therapy. Brain Res 2018; 1696: 31-7.
[http://dx.doi.org/10.1016/j.brainres.2018.05.046] [PMID: 29859974]
[24]
Akerman S, Holland PR, Hoffmann J. Pearls and pitfalls in experimental in vivo models of migraine: Dural trigeminovascular nociception. Cephalalgia 2013; 33(8): 577-92.
[http://dx.doi.org/10.1177/0333102412472071] [PMID: 23671254]
[25]
Burstein R, Noseda R, Borsook D. Migraine: multiple processes, complex pathophysiology. J Neurosci 2015; 35(17): 6619-29.
[http://dx.doi.org/10.1523/JNEUROSCI.0373-15.2015] [PMID: 25926442]
[26]
Schain AJ, Melo-Carrillo A, Borsook D, Grutzendler J, Strassman AM, Burstein R. Activation of pial and dural macrophages and dendritic cells by cortical spreading depression. Ann Neurol 2018; 83(3): 508-21.
[http://dx.doi.org/10.1002/ana.25169] [PMID: 29394508]
[27]
Negro A, Martelletti P. Gepants for the treatment of migraine. Expert Opin Investig Drugs 2019; 28(6): 555-67.
[http://dx.doi.org/10.1080/13543784.2019.1618830] [PMID: 31081399]
[28]
Ye R, Kong X, Han J, Zhao G. N-methyl-D-aspartate receptor antagonists for migraine: a potential therapeutic approach. Med Hypotheses 2009; 72(5): 603-5.
[http://dx.doi.org/10.1016/j.mehy.2008.11.037] [PMID: 19168292]
[29]
Hudon Thibeault AA, Sanderson JT, Vaillancourt C. Serotonin-estrogen interactions: what can we learn from pregnancy? Biochimie 2019; 161: 88-108.
[http://dx.doi.org/10.1016/j.biochi.2019.03.023] [PMID: 30946949]
[30]
Allais G, Chiarle G, Sinigaglia S, Airola G, Schiapparelli P, Benedetto C. Estrogen, migraine, and vascular risk. Neurol Sci 2018; 39(Suppl. 1): 11-20.
[http://dx.doi.org/10.1007/s10072-018-3333-2] [PMID: 29904828]
[31]
Mayans L. Headache: migraine. FP Essent 2018; 473: 11-6.
[PMID: 30346679]
[32]
Slatculescu AM, Chen Y. Synergism between female gender and high levels of daily stress associated with migraine headaches in Ontario, Canada. Neuroepidemiology 2018; 51(3-4): 183-9.
[http://dx.doi.org/10.1159/000492503] [PMID: 30153678]
[33]
Yapıcı-Eser H, Dönmez-Demir B, Kılıç K, Eren-Koçak E, Dalkara T. Stress modulates cortical excitability via α-2 adrenergic and glucocorticoid receptors: As assessed by spreading depression. Exp Neurol 2018; 307: 45-51.
[http://dx.doi.org/10.1016/j.expneurol.2018.05.024] [PMID: 29856967]
[34]
Lippi G, Mattiuzzi C. Cortisol and migraine: a systematic literature review. Agri 2017; 29(3): 95-9.
[http://dx.doi.org/10.5505/agri.2017.25348] [PMID: 29039159]
[35]
Cheng H, Treglown L, Green A, Chapman BP, Κornilaki EN, Furnham A. Childhood onset of migraine, gender, parental social class, and trait neuroticism as predictors of the prevalence of migraine in adulthood. J Psychosom Res 2016; 88: 54-8.
[http://dx.doi.org/10.1016/j.jpsychores.2016.07.012] [PMID: 27521654]
[36]
Karmakar M, Elhai JD, Amialchuk AA, Tietjen GE. Do personality traits mediate the relationship between childhood abuse and migraine? An exploration of the relationships in young adults using the add health dataset. Headache 2018; 58(2): 243-59.
[http://dx.doi.org/10.1111/head.13206] [PMID: 29027200]
[37]
Grosse L, Ambrée O, Jörgens S, et al. Cytokine levels in major depression are related to childhood trauma but not to recent stressors. Psychoneuroendocrinology 2016; 73: 24-31.
[http://dx.doi.org/10.1016/j.psyneuen.2016.07.205] [PMID: 27448525]
[38]
Anderson G, Maes M, Berk M. Inflammation-related disorders in the tryptophan catabolite pathway in depression and somatization. Adv Protein Chem Struct Biol 2012; 88: 27-48.
[http://dx.doi.org/10.1016/B978-0-12-398314-5.00002-7] [PMID: 22814705]
[39]
Barbanti P, Fofi L, Aurilia C, Egeo G. Does the migraine attack start in the cortex and is the cortex critical in the migraine process? Neurol Sci 2019; 40(Suppl. 1): 31-7.
[http://dx.doi.org/10.1007/s10072-019-03838-y] [PMID: 30923987]
[40]
Xie JY, De Felice M, Kopruszinski CM, et al. Kappa opioid receptor antagonists: A possible new class of therapeutics for migraine prevention. Cephalalgia 2017; 37(8): 780-94.
[http://dx.doi.org/10.1177/0333102417702120] [PMID: 28376659]
[41]
Wilcox SL, Veggeberg R, Lemme J, et al. Increased functional activation of limbic brain regions during negative emotional processing in migraine. Front Hum Neurosci 2016; 10: 366.
[http://dx.doi.org/10.3389/fnhum.2016.00366] [PMID: 27507939]
[42]
Muscatell KA, Dedovic K, Slavich GM, et al. Greater amygdala activity and dorsomedial prefrontal-amygdala coupling are associated with enhanced inflammatory responses to stress. Brain Behav Immun 2015; 43: 46-53.
[http://dx.doi.org/10.1016/j.bbi.2014.06.201] [PMID: 25016200]
[43]
Anderson G, Berk M, Maes M. Biological phenotypes underpin the physio-somatic symptoms of somatization, depression, and chronic fatigue syndrome. Acta Psychiatr Scand 2014; 129(2): 83-97.
[http://dx.doi.org/10.1111/acps.12182] [PMID: 23952563]
[44]
Shepard JD, Barron KW, Myers DA. Stereotaxic localization of corticosterone to the amygdala enhances hypothalamo-pituitary-adrenal responses to behavioral stress. Brain Res 2003; 963: 203-13.
[http://dx.doi.org/10.1016/S0006-8993(02)03978-1]
[45]
Koob GF. Corticotropin-releasing factor, norepinephrine, and stress. Biol Psychiatry 1999; 46: 1167-80.
[http://dx.doi.org/10.1016/S0006-3223(99)00164-X]
[46]
Vanuytsel T, van Wanrooy S, Vanheel H, et al. Psychological stress and corticotropin-releasing hormone increase intestinal permeability in humans by a mast cell-dependent mechanism. Gut 2014; 63(8): 1293-9.
[http://dx.doi.org/10.1136/gutjnl-2013-305690] [PMID: 24153250]
[47]
Bruchas MR, Land BB, Chavkin C. The dynorphin/kappa opioid system as a modulator of stress-induced and pro-addictive behaviors. Brain Res 2010; 1314: 44-55.
[http://dx.doi.org/10.1016/j.brainres.2009.08.062] [PMID: 19716811]
[48]
de Roos NM, Giezenaar CG, Rovers JM, Witteman BJ, Smits MG, van Hemert S. The effects of the multispecies probiotic mixture Ecologic®Barrier on migraine: results of an open-label pilot study. Benef Microbes 2015; 6(5): 641-6.
[http://dx.doi.org/10.3920/BM2015.0003] [PMID: 25869282]
[49]
Straube A, Müller H, Stiegelbauer V, Frauwallner A. Migraine prophylaxis with a probiotic. Results of an uncontrolled observational study with 1,020 patients. MMW Fortschr Med 2018; 160(Suppl. 5): 16-21.
[http://dx.doi.org/10.1007/s15006-018-1052-5] [PMID: 30367437]
[50]
Martami F, Togha M, Seifishahpar M, et al. The effects of a multispecies probiotic supplement on inflammatory markers and episodic and chronic migraine characteristics: A randomized double-blind controlled trial. Cephalalgia 2019; 39(7): 841-53.
[http://dx.doi.org/10.1177/0333102418820102] [PMID: 30621517]
[51]
Jin CJ, Engstler AJ, Sellmann C, et al. Sodium butyrate protects mice from the development of the early signs of non-alcoholic fatty liver disease: role of melatonin and lipid peroxidation. Br J Nutr 2016; 1-12.
[http://dx.doi.org/10.1017/S0007114516004025] [PMID: 27876107]
[52]
Anderson G. Gut dysbiosis dysregulates central and systemic homeostasis via decreased melatonin and suboptimal mitochondria functioning: Pathoetiological and pathophysiological implications. Melatonin Res 2019; 2(2): 70-85.
[http://dx.doi.org/10.32794/mr11250022]
[53]
Gross EC, Lisicki M, Fischer D, Sandor PS, Schoenen J. The metabilic face of migraine. Nat Neurosci 2019; 7: 50708-18.
[54]
Di Lorenzo C, Coppola G, Sirianni G, et al. Migraine improvement during short lasting ketogenesis: a proof-of-concept study. Eur J Neurol 2015; 22(1): 170-7.
[http://dx.doi.org/10.1111/ene.12550] [PMID: 25156013]
[55]
Mohammad SS, Coman D, Calvert S. Glucose transporter 1 deficiency syndrome and hemiplegic migraines as a dominant presenting clinical feature. J Paediatr Child Health 2014; 50(12): 1025-6.
[http://dx.doi.org/10.1111/jpc.12613] [PMID: 25440161]
[56]
Klement RJ, Pazienza V. Impact of different types of diet on gut microbiota profiles and cancer prevention and treatment. Medicina (Kaunas) 2019; 55(4): 84.
[http://dx.doi.org/10.3390/medicina55040084] [PMID: 30934960]
[57]
Gross E, Putananickal N, Orsini AL, et al. Efficacy and safety of exogenous ketone bodies for preventive treatment of migraine: A study protocol for a single-centred, randomised, placebo-controlled, double-blind crossover trial. Trials 2019; 20(1): 61.
[http://dx.doi.org/10.1186/s13063-018-3120-7] [PMID: 30654835]
[58]
Wolf A, Thakral S, Mulier KE, Suryanarayanan R, Beilman GJ. Evaluation of novel formulations of d-β-hydroxybutyrate and melatonin in a rat model of hemorrhagic shock. Int J Pharm 2018; 548(1): 104-12.
[http://dx.doi.org/10.1016/j.ijpharm.2018.06.046] [PMID: 29936200]
[59]
Hevia D, González-Menéndez P, Quiros-González I, et al. Melatonin uptake through glucose transporters: a new target for melatonin inhibition of cancer. J Pineal Res 2015; 58(2): 234-50.
[http://dx.doi.org/10.1111/jpi.12210] [PMID: 25612238]
[60]
Wu H, Song C, Zhang J, et al. Melatonin-mediated upregulation of GLUT1 blocks exit from pluripotency by increasing the uptake of oxidized vitamin C in mouse embryonic stem cells. FASEB J 2017; 31(4): 1731-43.
[http://dx.doi.org/10.1096/fj.201601085R] [PMID: 28069827]
[61]
Rigon F, Rossato D, Auler VB, Dal Bosco L, Faccioni-Heuser MC, Partata WA. Effects of sciatic nerve transection on ultrastructure, NADPH-diaphorase reaction and serotonin-, tyrosine hydroxylase-, c-Fos-, glucose transporter 1- and 3-like immunoreactivities in frog dorsal root ganglion. Braz J Med Biol Res 2013; 46(6): 513-20.
[http://dx.doi.org/10.1590/1414-431X20132853] [PMID: 23739744]
[62]
Afroz S, Arakaki R, Iwasa T, et al. CGRP Induces Differential regulation of cytokines from satellite glial cells in trigeminal ganglia and orofacial nociception. Int J Mol Sci 2019; 20(3)E711
[http://dx.doi.org/10.3390/ijms20030711] [PMID: 30736422]
[63]
Anderson G. Neuronal-immune interactions in mediating stress effects in the etiology and course of schizophrenia: role of the amygdala in developmental co-ordination. Med Hypotheses 2011; 76(1): 54-60.
[http://dx.doi.org/10.1016/j.mehy.2010.08.029] [PMID: 20843610]
[64]
Ghaemi A, Alizadeh L, Babaei S, et al. Astrocyte-mediated inflammation in cortical spreading depression. Cephalalgia 2018; 38(4): 626-38.
[http://dx.doi.org/10.1177/0333102417702132] [PMID: 28372497]
[65]
Huo X, Wang C, Yu Z, et al. Human transporters, PEPT1/2, facilitate melatonin transportation into mitochondria of cancer cells: An implication of the therapeutic potential. J Pineal Res 2017; 62(4)
[http://dx.doi.org/10.1111/jpi.12390] [PMID: 28099762]
[66]
He C, Wang J, Zhang Z, et al. Mitochondria synthesize melatonin to ameliorate its function and improve mice oocyte’s quality under in vitro conditions. Int J Mol Sci 2016; 17(6)E939
[http://dx.doi.org/10.3390/ijms17060939] [PMID: 27314334]
[67]
Polyakova VO, Kvetnoy IM, Anderson G, Rosati J, Mazzoccoli G, Linkova NS. Reciprocal interactions of mitochondria and the neuroimmunoendocrine system in neurodegenerative disorders: an important role for melatonin regulation. Front Physiol 2018; 9: 199.
[http://dx.doi.org/10.3389/fphys.2018.00199] [PMID: 29593561]
[68]
Slyepchenko A, Maes M, Köhler CA, et al. T helper 17 cells may drive neuroprogression in major depressive disorder: proposal of an integrative model. Neurosci Biobehav Rev 2016; 64: 83-100.
[http://dx.doi.org/10.1016/j.neubiorev.2016.02.002] [PMID: 26898639]
[69]
Kojima M, Costantini TW, Eliceiri BP, Chan TW, Baird A, Coimbra R. Gut epithelial cell-derived exosomes trigger posttrauma immune dysfunction. J Trauma Acute Care Surg 2018; 84(2): 257-64.
[http://dx.doi.org/10.1097/TA.0000000000001748] [PMID: 29194317]
[70]
Chen Y, Sun H, Bai Y, Zhi F. Gut dysbiosis-derived exosomes trigger hepatic steatosis by transiting HMGB1 from intestinal to liver in mice. Biochem Biophys Res Commun 2019; 509(3): 767-72.
[http://dx.doi.org/10.1016/j.bbrc.2018.12.180] [PMID: 30616887]
[71]
Takizawa T, Shibata M, Kayama Y, et al. High-mobility group box 1 is an important mediator of microglial activation induced by cortical spreading depression. J Cereb Blood Flow Metab 2017; 37(3): 890-901.
[http://dx.doi.org/10.1177/0271678X16647398] [PMID: 27142867]
[72]
Yan XJ, Feng CC, Liu Q, et al. Vagal afferents mediate antinociception of estrogen in a rat model of visceral pain: The involvement of intestinal mucosal mast cells and 5-hydroxytryptamine 3 signaling. J Pain 2014; 15(2): 204-17.
[http://dx.doi.org/10.1016/j.jpain.2013.10.012] [PMID: 24231720]
[73]
Seo M, Anderson G. Gut-amygdala interactions in autism spectrum disorder: developmental roles via regulating mitochondria, exosomes, immunity and micrornas. Curr Pharm Des
[74]
Gao W, Salzwedel AP, Carlson AL, et al. Gut microbiome and brain functional connectivity in infants-a preliminary study focusing on the amygdala. Psychopharmacology (Berl) 2019; 236(5): 1641-51.
[http://dx.doi.org/10.1007/s00213-018-5161-8] [PMID: 30604186]
[75]
Kanchanatawan B, Sirivichayakul S, Thika S, et al. Physio-somatic symptoms in schizophrenia: Association with depression, anxiety, neurocognitive deficits and the tryptophan catabolite pathway. Metab Brain Dis 2017; 32(4): 1003-16.
[http://dx.doi.org/10.1007/s11011-017-9982-7] [PMID: 28258445]
[76]
Ley D, Desseyn JL, Mischke M, Knol J, Turck D, Gottrand F. Early-life origin of intestinal inflammatory disorders. Nutr Rev 2017; 75(3): 175-87.
[http://dx.doi.org/10.1093/nutrit/nuw061] [PMID: 28340001]
[77]
Anderson G. Endometriosis Pathoetiology and pathophysiology: roles of vitamin A, estrogen, immunity, adipocytes, gut microbiome and melatonergic pathway on mitochondria regulation. Biomol Concepts 2019; 10(1): 133-49.
[http://dx.doi.org/10.1515/bmc-2019-0017] [PMID: 31339848]
[78]
Ran C, Fourier C, Zinnegger M, et al. Implications for the migraine SNP rs1835740 in a Swedish cluster headache population. J Headache Pain 2018; 19(1): 100.
[http://dx.doi.org/10.1186/s10194-018-0937-0] [PMID: 30382894]
[79]
He J, Cao Y, Su T, et al. Downregulation of miR-375 in aldosterone-producing adenomas promotes tumour cell growth via MTDH. Clin Endocrinol (Oxf) 2015; 83(4): 581-9.
[http://dx.doi.org/10.1111/cen.12814] [PMID: 25944465]
[80]
Lee H, Myung W, Cheong HK, et al. Ambient air pollution exposure and risk of migraine: Synergistic effect with high temperature. Environ Int 2018; 121(Pt 1): 383-91.
[http://dx.doi.org/10.1016/j.envint.2018.09.022] [PMID: 30245361]
[81]
Bleck B, Grunig G, Chiu A, et al. MicroRNA-375 regulation of thymic stromal lymphopoietin by diesel exhaust particles and ambient particulate matter in human bronchial epithelial cells. J Immunol 2013; 190(7): 3757-63.
[http://dx.doi.org/10.4049/jimmunol.1201165] [PMID: 23455502]
[82]
Yu Z, Tian X, Peng Y, et al. Mitochondrial cytochrome P450 (CYP) 1B1 is responsible for melatonin-induced apoptosis in neural cancer cells. J Pineal Res 2018; 65(1)e12478
[http://dx.doi.org/10.1111/jpi.12478] [PMID: 29453779]
[83]
Tsukamoto Y, Nakada C, Noguchi T, et al. MicroRNA-375 is downregulated in gastric carcinomas and regulates cell survival by targeting PDK1 and 14-3-3zeta. Cancer Res 2010; 70(6): 2339-49.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-2777] [PMID: 20215506]
[84]
Jang SW, Liu X, Pradoldej S, et al. N-acetylserotonin activates TrkB receptor in a circadian rhythm. Proc Natl Acad Sci USA 2010; 107(8): 3876-81.
[http://dx.doi.org/10.1073/pnas.0912531107] [PMID: 20133677]
[85]
Guo JQ, Deng HH, Bo X, Yang XS. Involvement of BDNF/TrkB and ERK/CREB axes in nitroglycerin-induced rat migraine and effects of estrogen on these signals in the migraine. Biol Open 2017; 6(1): 8-16.
[http://dx.doi.org/10.1242/bio.021022] [PMID: 27875242]
[86]
Li H, Tao R, Wang J, Xia L. Upregulation of miR-375 level ameliorates morphine analgesic tolerance in mouse dorsal root ganglia by inhibiting the JAK2/STAT3 pathway. J Pain Res 2017; 10: 1279-87.
[http://dx.doi.org/10.2147/JPR.S125264] [PMID: 28603428]
[87]
Wu LN, Wei XW, Fan Y, et al. Altered expression of 14-3-3ζ protein in spinal cords of rat fetuses with spina bifida aperta. PLoS One 2013; 8(8)e70457
[http://dx.doi.org/10.1371/journal.pone.0070457] [PMID: 23936434]
[88]
Pagan C, Goubran-Botros H, Delorme R, et al. Disruption of melatonin synthesis is associated with impaired 14-3-3 and miR-451 levels in patients with autism spectrum disorders. Sci Rep 2017; 7(1): 2096.
[http://dx.doi.org/10.1038/s41598-017-02152-x] [PMID: 28522826]
[89]
Choi SY, Pang K, Kim JY, et al. Post-transcriptional regulation of SHANK3 expression by microRNAs related to multiple neuropsychiatric disorders. Mol Brain 2015; 8(1): 74.
[http://dx.doi.org/10.1186/s13041-015-0165-3] [PMID: 26572867]
[90]
Keller A, Leidinger P, Steinmeyer F, et al. Comprehensive analysis of microRNA profiles in multiple sclerosis including next-generation sequencing. Mult Scler 2014; 20(3): 295-303.
[http://dx.doi.org/10.1177/1352458513496343] [PMID: 23836875]
[91]
Gao Y, Li J, Zhang Z, Zhang R, Pollock A, Sun T. MicroRNA miR-7 and miR-17-92 in the arcuate nucleus of mouse hypothalamus regulate sex-specific diet-induced obesity. Mol Neurobiol 2019.
[http://dx.doi.org/10.1007/s12035-019-1618-y] [PMID: 31044367]
[92]
Yu Q, Zhang S, Chao K, et al. E3 Ubiquitin ligase RNF183 is a novel regulator in inflammatory bowel disease. J Crohn’s Colitis 2016; 10(6): 713-25.
[http://dx.doi.org/10.1093/ecco-jcc/jjw023] [PMID: 26818663]
[93]
Yamada H, Suzuki K, Ichino N, et al. Associations between circulating microRNAs (miR-21, miR-34a, miR-122 and miR-451) and non-alcoholic fatty liver. Clin Chim Acta 2013; 424: 99-103.
[http://dx.doi.org/10.1016/j.cca.2013.05.021] [PMID: 23727030]
[94]
Wan S, Wang J, Wang J, et al. Increased serum miR-7 is a promising biomarker for type 2 diabetes mellitus and its microvascular complications. Diabetes Res Clin Pract 2017; 130: 171-9.
[http://dx.doi.org/10.1016/j.diabres.2017.06.005] [PMID: 28646700]
[95]
Hunsaker M, Barba G, Kingsley K, Howard KM. Differential microRNA expression of miR-21 and miR-155 within oral cancer extracellular vesicles in response to melatonin. Dent J (Basel) 2019; 7(2)E48
[http://dx.doi.org/10.3390/dj7020048] [PMID: 31052365]
[96]
Koyuncu Irmak D, Kilinc E, Tore F. Shared fate of meningeal mast cells and sensory neurons in migraine. Front Cell Neurosci 2019; 13: 136.
[http://dx.doi.org/10.3389/fncel.2019.00136] [PMID: 31024263]
[97]
Miglis MG. Migraine and autonomic dysfunction: which is the horse and which is the jockey? Curr Pain Headache Rep 2018; 22(3): 19.
[http://dx.doi.org/10.1007/s11916-018-0671-y] [PMID: 29476276]
[98]
Rumzhum NN, Rahman MM, Oliver BG, Ammit AJ. Effect of sphingosine 1-phosphate on cyclo-oxygenase-2 expression, prostaglandin E2 secretion, and β2-adrenergic receptor desensitization. Am J Respir Cell Mol Biol 2016; 54(1): 128-35.
[http://dx.doi.org/10.1165/rcmb.2014-0443OC] [PMID: 26098693]
[99]
Castillo-Badillo JA, Molina-Muñoz T, Romero-Ávila MT, et al. Sphingosine 1-phosphate-mediated α1B-adrenoceptor desensitization and phosphorylation. Direct and paracrine/autocrine actions. Biochim Biophys Acta 2012; 1823(2): 245-54.
[http://dx.doi.org/10.1016/j.bbamcr.2011.10.002] [PMID: 22019450]
[100]
Candalija A, Cubí R, Ortega A, Aguilera J, Gil C. Trk receptors need neutral sphingomyelinase activity to promote cell viability. FEBS Lett 2014; 588(1): 167-74.
[http://dx.doi.org/10.1016/j.febslet.2013.11.032] [PMID: 24316227]
[101]
Kandere-Grzybowska K, Gheorghe D, Priller J, et al. Stress-induced dura vascular permeability does not develop in mast cell-deficient and neurokinin-1 receptor knockout mice. Brain Res 2003; 980(2): 213-20.
[http://dx.doi.org/10.1016/S0006-8993(03)02975-5] [PMID: 12867261]
[102]
Bø SH, Davidsen EM, Gulbrandsen P, et al. Cerebrospinal fluid cytokine levels in migraine, tension-type headache and cervicogenic headache. Cephalalgia 2009; 29(3): 365-72.
[http://dx.doi.org/10.1111/j.1468-2982.2008.01727.x] [PMID: 19175774]
[103]
Saygi S, Alehan F, Erol İ, Yalçın YY, Ataç FB, Kubat G. TGF-β1 genotype in pediatric migraine patients. J Child Neurol 2015; 30(1): 27-31.
[http://dx.doi.org/10.1177/0883073814527163] [PMID: 24619148]
[104]
Chachi L, Alzahrani A, Koziol-White C, et al. Increased β2-adrenoceptor phosphorylation in airway smooth muscle in severe asthma: possible role of mast cell-derived growth factors. Clin Exp Immunol 2018; 194(2): 253-8.
[http://dx.doi.org/10.1111/cei.13191] [PMID: 30069878]
[105]
Zaitsu M, Narita S, Lambert KC, et al. Estradiol activates mast cells via a non-genomic estrogen receptor-alpha and calcium influx. Mol Immunol 2007; 44(8): 1977-85.
[http://dx.doi.org/10.1016/j.molimm.2006.09.030] [PMID: 17084457]
[106]
Chen W, Beck I, Schober W, et al. Human mast cells express androgen receptors but treatment with testosterone exerts no influence on IgE-independent mast cell degranulation elicited by neuromuscular blocking agents. Exp Dermatol 2010; 19(3): 302-4.
[http://dx.doi.org/10.1111/j.1600-0625.2009.00969.x] [PMID: 19758318]
[107]
Anderson G, Maes M, Berk M. Biological underpinnings of the commonalities in depression, somatization, and chronic fatigue syndrome. Med Hypotheses 2012; 78(6): 752-6.
[http://dx.doi.org/10.1016/j.mehy.2012.02.023] [PMID: 22445460]
[108]
Marciniak A, Patro-Małysza J, Kimber-Trojnar Ż, Marciniak B, Oleszczuk J, Leszczyńska-Gorzelak B. Fetal programming of the metabolic syndrome. Taiwan J Obstet Gynecol 2017; 56(2): 133-8.
[http://dx.doi.org/10.1016/j.tjog.2017.01.001] [PMID: 28420495]
[109]
Nagy-Grócz G, Laborc KF, Veres G, et al. The effect of systemic nitroglycerin administration on the kynurenine pathway in the rat. Front Neurol 2017; 8: 278.
[http://dx.doi.org/10.3389/fneur.2017.00278] [PMID: 28659861]
[110]
Körtési T, Tuka B, Tajti J, et al. Kynurenic acid inhibits the electrical stimulation induced elevated pituitary adenylate cyclase-activating polypeptide expression in the TNC. Front Neurol 2018; 8: 745.
[http://dx.doi.org/10.3389/fneur.2017.00745] [PMID: 29387039]
[111]
Hasan-Olive MM, Lauritzen KH, Ali M, Rasmussen LJ, Storm-Mathisen J, Bergersen LH. A ketogenic diet improves mitochondrial biogenesis and bioenergetics via the PGC1α-SIRT3-UCP2 Axis. Neurochem Res 2019; 44(1): 22-37.
[http://dx.doi.org/10.1007/s11064-018-2588-6] [PMID: 30027365]
[112]
Song C, Zhao J, Fu B, et al. Melatonin-mediated upregulation of Sirt3 attenuates sodium fluoride-induced hepatotoxicity by activating the MT1-PI3K/AKT-PGC-1α signaling pathway. Free Radic Biol Med 2017; 112: 616-30.
[http://dx.doi.org/10.1016/j.freeradbiomed.2017.09.005] [PMID: 28912098]
[113]
Kushnir-Sukhov NM, Brittain E, Scott L, Metcalfe DD. Clinical correlates of blood serotonin levels in patients with mastocytosis. Eur J Clin Invest 2008; 38(12): 953-8.
[http://dx.doi.org/10.1111/j.1365-2362.2008.02047.x] [PMID: 19021721]
[114]
Georgin-Lavialle S, Gaillard R, Moura D, Hermine O. Mastocytosis in adulthood and neuropsychiatric disorders. Transl Res 2016; 174: 77-85.e1.
[http://dx.doi.org/10.1016/j.trsl.2016.03.013] [PMID: 27063957]
[115]
Nowak K, Lange-Dohna C, Zeitschel U, et al. The transcription factor Yin Yang 1 is an activator of BACE1 expression. J Neurochem 2006; 96(6): 1696-707.
[http://dx.doi.org/10.1111/j.1471-4159.2006.03692.x] [PMID: 16539685]
[116]
Bernard M, Voisin P. Photoreceptor-specific expression, light-dependent localization, and transcriptional targets of the zinc-finger protein Yin Yang 1 in the chicken retina. J Neurochem 2008; 105(3): 595-604.
[http://dx.doi.org/10.1111/j.1471-4159.2007.05150.x] [PMID: 18047560]
[117]
Karki P, Kim C, Smith K, Son DS, Aschner M, Lee E. Transcriptional regulation of the astrocytic excitatory amino acid transporter 1 (EAAT1) via NF-κB and Yin Yang 1 (YY1). J Biol Chem 2015; 290(39): 23725-37.
[http://dx.doi.org/10.1074/jbc.M115.649327] [PMID: 26269591]
[118]
Kovermann P, Hessel M, Kortzak D, et al. Impaired K+ binding to glial glutamate transporter EAAT1 in migraine. Sci Rep 2017; 7(1): 13913.
[http://dx.doi.org/10.1038/s41598-017-14176-4] [PMID: 29066757]
[119]
Aguirre G, Rosas S, López-Bayghen E, Ortega A. Valproate-dependent transcriptional regulation of GLAST/EAAT1 expression: involvement of Ying-Yang 1. Neurochem Int 2008; 52(7): 1322-31.
[http://dx.doi.org/10.1016/j.neuint.2008.01.015] [PMID: 18336953]
[120]
Koeppen AH, Ramirez RL, Becker AB, Mazurkiewicz JE. Dorsal root ganglia in Friedreich ataxia: satellite cell proliferation and inflammation. Acta Neuropathol Commun 2016; 4(1): 46.
[http://dx.doi.org/10.1186/s40478-016-0288-5] [PMID: 27142428]
[121]
Castro V, Skowronska M, Lombardi J, et al. Occludin regulates glucose uptake and ATP production in pericytes by influencing AMP-activated protein kinase activity. J Cereb Blood Flow Metab 2018; 38(2): 317-32.
[http://dx.doi.org/10.1177/0271678X17720816] [PMID: 28718701]
[122]
Tang HB, Jiang XJ, Wang C, Liu SC. S1P/S1PR3 signaling mediated proliferation of pericytes via Ras/pERK pathway and CAY10444 had beneficial effects on spinal cord injury. Biochem Biophys Res Commun 2018; 498(4): 830-6.
[http://dx.doi.org/10.1016/j.bbrc.2018.03.065] [PMID: 29534963]
[123]
Doolen S, Iannitti T, Donahue RR, Shaw BC, Grachen CM, Taylor BK. Fingolimod reduces neuropathic pain behaviors in a mouse model of multiple sclerosis by a sphingosine-1 phosphate receptor 1-dependent inhibition of central sensitization in the dorsal horn. Pain 2018; 159(2): 224-38.
[http://dx.doi.org/10.1097/j.pain.0000000000001106] [PMID: 29140922]
[124]
Kurashima Y, Kunisawa J, Higuchi M, et al. Sphingosine 1-phosphate-mediated trafficking of pathogenic Th2 and mast cells for the control of food allergy. J Immunol 2007; 179(3): 1577-85.
[http://dx.doi.org/10.4049/jimmunol.179.3.1577] [PMID: 17641024]
[125]
Woodcock JM, Ma Y, Coolen C, et al. Sphingosine and FTY720 directly bind pro-survival 14-3-3 proteins to regulate their function. Cell Signal 2010; 22(9): 1291-9.
[http://dx.doi.org/10.1016/j.cellsig.2010.04.004] [PMID: 20403428]
[126]
Loram LC, Taylor FR, Strand KA, et al. Systemic administration of an alpha-7 nicotinic acetylcholine agonist reverses neuropathic pain in male Sprague Dawley rats. J Pain 2012; 13(12): 1162-71.
[http://dx.doi.org/10.1016/j.jpain.2012.08.009] [PMID: 23182225]
[127]
Liu Q, Liu C, Jiang L, et al. α7 Nicotinic acetylcholine receptor-mediated anti-inflammatory effect in a chronic migraine rat model via the attenuation of glial cell activation. J Pain Res 2018; 11: 1129-40.
[http://dx.doi.org/10.2147/JPR.S159146] [PMID: 29942148]
[128]
Boström A, Scheele D, Stoffel-Wagner B, et al. Saliva molecular inflammatory profiling in female migraine patients responsive to adjunctive cervical non-invasive vagus nerve stimulation: the MOXY Study. J Transl Med 2019; 17(1): 53.
[http://dx.doi.org/10.1186/s12967-019-1801-y] [PMID: 30795781]
[129]
Bonaz B, Sinniger V, Pellissier S. Anti-inflammatory properties of the vagus nerve: Potential therapeutic implications of vagus nerve stimulation. J Physiol 2016; 594(20): 5781-90.
[http://dx.doi.org/10.1113/JP271539] [PMID: 27059884]
[130]
Markus RP, Silva CL, Franco DG, Barbosa EM Jr, Ferreira ZS. Is modulation of nicotinic acetylcholine receptors by melatonin relevant for therapy with cholinergic drugs? Pharmacol Ther 2010; 126(3): 251-62.
[http://dx.doi.org/10.1016/j.pharmthera.2010.02.009] [PMID: 20398699]
[131]
Ferry G, Ubeaud C, Lambert PH, et al. Molecular evidence that melatonin is enzymatically oxidized in a different manner than tryptophan: investigations with both indoleamine 2,3-dioxygenase and myeloperoxidase. Biochem J 2005; 388(Pt 1): 205-15.
[http://dx.doi.org/10.1042/BJ20042075] [PMID: 15636586]
[132]
Ma X, Idle JR, Krausz KW, Gonzalez FJ. Metabolism of melatonin by human cytochromes p450. Drug Metab Dispos 2005; 33(4): 489-94.
[http://dx.doi.org/10.1124/dmd.104.002410] [PMID: 15616152]
[133]
Souza-Teodoro LH, Dargenio-Garcia L, Petrilli-Lapa CL, et al. Adenosine triphosphate inhibits melatonin synthesis in the rat pineal gland. J Pineal Res 2016; 60(2): 242-9.
[http://dx.doi.org/10.1111/jpi.12309] [PMID: 26732366]
[134]
Atasayar G, Eryilmaz IE, Karli N, et al. Association of MDR1, CYP2D6, and CYP2C19 gene polymorphisms with prophylactic migraine treatment response. J Neurol Sci 2016; 366: 149-54.
[http://dx.doi.org/10.1016/j.jns.2016.05.019] [PMID: 27288795]
[135]
Haanes KA, Edvinsson L. Expression and characterization of purinergic receptors in rat middle meningeal artery-potential role in migraine. PLoS One 2014; 9(9)e108782
[http://dx.doi.org/10.1371/journal.pone.0108782] [PMID: 25265286]
[136]
Rau JC, Dodick DW. Other preventive anti-migraine treatments: ACE inhibitors, ARBs, calcium channel blockers, serotonin antagonists, and NMDA receptor antagonists. Curr Treat Options Neurol 2019; 21(4): 17.
[http://dx.doi.org/10.1007/s11940-019-0559-0] [PMID: 30880363]
[137]
Danesh A, Gottschalk PCH. Beta-blockers for migraine prevention: A review article. Curr Treat Options Neurol 2019; 21(4): 20.
[http://dx.doi.org/10.1007/s11940-019-0556-3] [PMID: 30903383]
[138]
Lan L, Zhang X, Li X, Rong X, Peng Y. The efficacy of transcranial magnetic stimulation on migraine: A meta-analysis of randomized controlled trails. J Headache Pain 2017; 18(1): 86.
[http://dx.doi.org/10.1186/s10194-017-0792-4] [PMID: 28831756]
[139]
Wang XY, Zhou HR, Wang S, et al. NR2B-Tyr phosphorylation regulates synaptic plasticity in central sensitization in a chronic migraine rat model. J Headache Pain 2018; 19(1): 102.
[http://dx.doi.org/10.1186/s10194-018-0935-2] [PMID: 30400767]
[140]
Perri M, Caroleo MC, Liu N, et al. 9-cis Retinoic acid modulates myotrophin expression and its miR in physiological and pathophysiological cell models. Exp Cell Res 2017; 354(1): 25-30.
[http://dx.doi.org/10.1016/j.yexcr.2017.03.022] [PMID: 28300567]
[141]
Chuang CM, Chang CH, Wang HE, et al. Valproic acid downregulates RBP4 and elicits hypervitaminosis A-teratogenesis-a kinetic analysis on retinol/retinoic acid homeostatic system. PLoS One 2012; 7(9)e43692
[http://dx.doi.org/10.1371/journal.pone.0043692] [PMID: 23028466]
[142]
Bahna SG, Niles LP. Epigenetic induction of melatonin MT1 receptors by valproate: neurotherapeutic implications. Eur Neuropsychopharmacol 2017; 27(8): 828-32.
[http://dx.doi.org/10.1016/j.euroneuro.2017.06.002] [PMID: 28648552]
[143]
Ebrahimi-Monfared M, Sharafkhah M, Abdolrazaghnejad A, Mohammadbeigi A, Faraji F. Use of melatonin versus valproic acid in prophylaxis of migraine patients: A double-blind randomized clinical trial. Restor Neurol Neurosci 2017; 35(4): 385-93.
[http://dx.doi.org/10.3233/RNN-160704] [PMID: 28800342]
[144]
Hřebačková J, Poljaková J, Eckschlager T, et al. Histone deacetylase inhibitors valproate and trichostatin A are toxic to neuroblastoma cells and modulate cytochrome P450 1A1, 1B1 and 3A4 expression in these cells. Interdiscip Toxicol 2009; 2(3): 205-10.
[http://dx.doi.org/10.2478/v10102-009-0019-x] [PMID: 21217856]
[145]
Anderson G, Maes M. Melatonin: a natural homeostatic regulator- interactions with immune inflammation and trytophan catabolite pathways in the modulation of migraine and Endometriosis. J Nat Prod Res Updates 2015; 1: 7-17.
[146]
Tzabazis A, Mechanic J, Miller J, et al. Oxytocin receptor: Expression in the trigeminal nociceptive system and potential role in the treatment of headache disorders. Cephalalgia 2016; 36(10): 943-50.
[http://dx.doi.org/10.1177/0333102415618615] [PMID: 26590611]
[147]
Phillips WJ, Ostrovsky O, Galli RL, Dickey S. Relief of acute migraine headache with intravenous oxytocin: report of two cases. J Pain Palliat Care Pharmacother 2006; 20(3): 25-8.
[http://dx.doi.org/10.1080/J354v20n03_05] [PMID: 16931475]
[148]
Meguro Y, Miyano K, Hirayama S, et al. Neuropeptide oxytocin enhances μ opioid receptor signaling as a positive allosteric modulator. J Pharmacol Sci 2018; 137(1): 67-75.
[http://dx.doi.org/10.1016/j.jphs.2018.04.002] [PMID: 29716811]
[149]
Menon S, Lea RA, Roy B, et al. The human μ-opioid receptor gene polymorphism (A118G) is associated with head pain severity in a clinical cohort of female migraine with aura patients. J Headache Pain 2012; 13(7): 513-9.
[http://dx.doi.org/10.1007/s10194-012-0468-z] [PMID: 22752568]
[150]
Tanik N, Celikbilek A, Metin A, Gocmen AY, Inan LE. Retinol-binding protein-4 and hs-CRP levels in patients with migraine. Neurol Sci 2015; 36(10): 1823-7.
[http://dx.doi.org/10.1007/s10072-015-2262-6] [PMID: 26012852]
[151]
Lai X, Wu X, Hou N, et al. Vitamin A deficiency induces autistic-like behaviors in rats by regulating the RARβ-CD38-Oxytocin axis in the hypothalamus. Mol Nutr Food Res 2018; 62(5)
[http://dx.doi.org/10.1002/mnfr.201700754] [PMID: 29266770]
[152]
Toyama K, Kiyosawa N, Watanabe K, Ishizuka H. Identification of circulating miRNAs differentially regulated by opioid treatment. Int J Mol Sci 2017; 18(9)E1991
[http://dx.doi.org/10.3390/ijms18091991] [PMID: 28926935]
[153]
Erdman SE, Poutahidis T. Microbes and oxytocin: benefits for host physiology and behavior. Int Rev Neurobiol 2016; 131: 91-126.
[http://dx.doi.org/10.1016/bs.irn.2016.07.004] [PMID: 27793228]
[154]
Strother LC, Srikiatkhachorn A, Supronsinchai W. Targeted orexin and hypothalamic neuropeptides for migraine. Neurotherapeutics 2018; 15(2): 377-90.
[http://dx.doi.org/10.1007/s13311-017-0602-3] [PMID: 29442286]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 25
ISSUE: 33
Year: 2019
Page: [3550 - 3562]
Pages: 13
DOI: 10.2174/1381612825666190920114611
Price: $58

Article Metrics

PDF: 21
HTML: 3

Special-new-year-discount