Special Issue on New Cellular, Genetic and Proteomic Tools in the Prevention and Management of Diabetes Mellitus

Author(s): Juan A. Rosado, Pedro Cosme Redondo Liberal.

Journal Name: Current Medicinal Chemistry

Volume 26 , Issue 22 , 2019

Become EABM
Become Reviewer

[1]
Harreiter, J. Diabetes mellitus-definition, classification, diagnosis, screening and prevention (Update 2019). Wien. Klin. Wochenschr., 2019, 131, 6-15.
[http://dx.doi.org/10.1007/s00508-019-1450-4] [PMID: 30980151]
[2]
Subramaniam, S.; Jeet, V.; Clements, J.A.; Gunter, J.H. Emergence of MicroRNAs as key players in cancer cell metabolism. Clin. Chem., 2019, 2018299651
[http://dx.doi.org/10.1373/clinchem.2018.299651] [PMID: 31101638]
[3]
Huang, Y.; Yan, Y.; Xv, W.; Qian, G.; Li, C.; Zou, H.; Li, Y. A new insight into the roles of MiRNAs in metabolic syndrome. BioMed Res. Int., 2018.20187372636
[http://dx.doi.org/10.1155/2018/7372636] [PMID: 30648107]
[4]
Zhou, Y.; Sun, B.; Li, W.; Zhou, J.; Gao, F.; Wang, X.; Cai, M.; Sun, Z. Pancreatic stellate cells: a rising translational physiology star as a potential stem cell type for beta cell neogenesis. Front. Physiol., 2019, 12(10), 218.
[http://dx.doi.org/10.3389/fphys.2019.00218] [PMID: 30930789]
[5]
Kaur, K.; Vig, S.; Srivastava, R.; Mishra, A.; Singh, V.P.; Srivastava, A.K.; Datta, M. Elevated hepatic miR-22-3p expression impairs gluconeogenesis by silencing the wnt-responsive transcription factor Tcf7. Diabetes, 2015, 64(11), 3659-3669.
[http://dx.doi.org/10.2337/db14-1924] [PMID: 26193896]
[6]
Rosado, J.A.; Diez-Bello, R.; Salido, G.M.; Jardin, I. Fine-tuning of microRNAs in type 2 diabetes mellitus. Curr. Med. Chem., 2019, 26(22), 4102-4118.
[http://dx.doi.org/10.2174/0929867325666171205163944] [PMID: 29210640]
[7]
Bijkerk, R.; Esguerra, J.L.S.; Ellenbroek, J.H.; Au, Y.W.; Hanegraaf, M.A.J.; de Koning, E.J.; Eliasson, L.; van Zonneveld, A.J. In vivo silencing of microRNA-132 reduces blood glucose and improves insulin secretion. Nucleic Acid Ther., 2019, 29(2), 67-72.
[http://dx.doi.org/10.1089/nat.2018.0763] [PMID: 30672723]
[8]
Olivera Santa-Catalina, M.; Redondo, P.C.; Cantonero, C.; Granados, M.P.; Sanchez-Collado, J.; Albarran, L.; Lopez, J.J. New insights into adipokines as potential biomarkers for type-2 diabetes mellitus. Curr. Med. Chem., 2019, 26(22), 4119-4144.
[http://dx.doi.org/10.2174/0929867325666171205162248] [PMID: 29210636]
[9]
El Haouari, M. Platelet oxidative stress and its relationship with cardiovascular diseases in type 2 diabetes mellitus patients. Curr. Med. Chem., 2019, 26(22), 4145-4165.
[http://dx.doi.org/10.2174/0929867324666171005114456] [PMID: 28982316]
[10]
Smani, T.; Gallardo-Castillo, I.; Ávila-Médina, J.; Jimenez-Navarro, M.F.; Ordoñez, A.; Hmadcha, A. Impact of diabetes on cardiac and vascular disease: Role of calcium signaling. Curr. Med. Chem., 2019, 26(22), 4166-4177.
[http://dx.doi.org/10.2174/0929867324666170523140925] [PMID: 28545369]
[11]
Espino, J.; Rodriguez, A.B.; Pariente, J.A. Melatonin and oxidative stress in the diabetic state: Clinical implications and potential therapeutic applications. Curr. Med. Chem., 2019, 26(22), 4178-4190.
[http://dx.doi.org/10.2174/0929867325666180410094149] [PMID: 29637854]
[12]
Tavares, R.S.; Escada-Rebelo, S.; Sousa, M.I.; Silva, A.; Ramalho-Santos, J.; Amaral, S. Can antidiabetic drugs improve male reproductive (dys)function associated with diabetes? Curr. Med. Chem., 2019, 26(22), 4191-4222.
[http://dx.doi.org/10.2174/0929867325666181101111404] [PMID: 30381064]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 26
ISSUE: 22
Year: 2019
Page: [4100 - 4101]
Pages: 2
DOI: 10.2174/092986732622190920091712

Article Metrics

PDF: 21
HTML: 2