In Silico Evaluation of the ATP7B Protein: Insights from the Role of Rare Codon Clusters and Mutations that Affect Protein Structure and Function

Author(s): Mojtaba Mortazavi, Abdolrazagh Barzegar*, Abdorrasoul Malekpour*, Mohammad Ghorbani, Saeid Gholamzadeh, Younes Ghasemi.

Journal Name: Current Proteomics

Volume 17 , Issue 3 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Wilson’s disease is a rare autosomal recessive genetic disorder of copper metabolism, which is characterized by hepatic and neurological disease. ATP7B encodes a transmembrane protein ATPase (ATP7B), which functions as a copper-dependent P-type ATPase. The mutations in the gene ATP7B (on chromosome 13) lead to Wilson’s disease and is highly expressed in the liver, kidney, and placenta. Consequently, this enzyme was considered a special topic in clinical and biotechnological research. For in silico analysis, the 3D molecular modeling of this enzyme was conducted in the I-TASSER web server.

Methods: For a better evaluation, the important characteristics of this enzyme such as the rare codons of the ATP7B gene were evaluated by online software, including a rare codon calculator (RCC), ATGme, LaTcOm, and Sherlocc program. Additionally, the multiple sequence alignment of this enzyme was studied. Finally, for evaluation of the effects of rare codons, the 3D structure of ATP7B was modeled in the Swiss Model and I-TASSER web server.

Results: The results showed that the ATP7B gene has 35 single rare codons for Arg. Additionally, RCC detected two rare codons for Leu, 13 single rare codons for Ile and 28 rare codons for the Pro. ATP7B gene analysis in minmax and sliding_window algorithm resulted in the identification of 16 and 17 rare codon clusters, respectively, indicating the different features of these algorithms in the detection of RCCs. Analyzing the 3D model of ATP7B protein showed that Arg816 residue constitutes hydrogen bonds with Glu810 and Glu816. Mutation of this residue to Ser816 cause these hydrogen bonds not to be formed and may interfere in the proper folding of ATP7B protein. Furthermore, the side chain of Arg1228 does not form any bond with other residues. By mutation of Arg1228 to Thr1228, a new hydrogen bond is formed with the side chain of Arg1228. The addition and deletion of hydrogen bonds alter the proper folding of ATP7B protein and interfere with the proper function of the ATP7B position. On the other hand, His1069 forms the hydrogen bonds with the His880 and this hydrogen bond adhere two regions of the protein together, which is critical in the final structural folding of ATP7B protein.

Conclusion: Previous studies show that synonymous and silent mutations have been linked to numerous diseases. Given the importance of synonymous and silent mutations in diseases, the aim of this study was to investigate the rare codons (synonymous codons) in the structure of ATP7B enzyme. By these analyses, a new understanding was developed and our findings can further be used in some fields of the clinical and industrial biotechnology.

Keywords: Computational biology, Wilson’s disease, ATP7B protein, Rare Codon clusters, silent mutation, metabolism.

[1]
Bandmann, O.; Weiss, K.H.; Kaler, S.G. Wilson’s disease and other neurological copper disorders. Lancet Neurol., 2015, 14(1), 103-113.
[http://dx.doi.org/10.1016/S1474-4422(14)70190-5] [PMID: 25496901]
[2]
Loudianos, G.; Lepori, M.B.; Mameli, E.; Dessì, V.; Zappu, A. Wilson’s disease. Prilozi (Makedon. Akad. Nauk. Umet. Odd. Med. Nauki), 2014, 35(1), 93-98.
[PMID: 24798599]
[3]
Bull, P.C.; Thomas, G.R.; Rommens, J.M.; Forbes, J.R.; Cox, D.W. The Wilson disease gene is a putative copper transporting P-type ATPase similar to the Menkes gene. Nat. Genet., 1993, 5(4), 327-337.
[http://dx.doi.org/10.1038/ng1293-327] [PMID: 8298639]
[4]
Ljubić, H.; Kalauz, M.; Telarović, S.; Ferenci, P.; Ostojić, R.; Noli, M.C.; Lepori, M.B.; Hrstić, I.; Vuković, J.; Premužić, M.; Radić, D.; Ravić, K.G.; Sertić, J.; Merkler, A.; Barišić, A.A.; Loudianos, G.; Vucelić, B. ATP7B gene mutations in Croatian patients with Wilson disease. Genet. Test. Mol. Biomarkers, 2016, 20(3), 112-117.
[http://dx.doi.org/10.1089/gtmb.2015.0213] [PMID: 26799313]
[5]
Lutsenko, S.; Barnes, N.L.; Bartee, M.Y.; Dmitriev, O.Y. Function and regulation of human copper-transporting ATPases. Physiol. Rev., 2007, 87(3), 1011-1046.
[http://dx.doi.org/10.1152/physrev.00004.2006] [PMID: 17615395]
[6]
Ala, A.; Walker, A.P.; Ashkan, K.; Dooley, J.S.; Schilsky, M.L. Wilson’s disease. Lancet, 2007, 369(9559), 397-408.
[http://dx.doi.org/10.1016/S0140-6736(07)60196-2] [PMID: 17276780]
[7]
Gustafsson, C.; Govindarajan, S.; Minshull, J. Codon bias and heterologous protein expression. Trends Biotechnol., 2004, 22(7), 346-353.
[http://dx.doi.org/10.1016/j.tibtech.2004.04.006] [PMID: 15245907]
[8]
Kane, J.F. Effects of rare codon clusters on high-level expression of heterologous proteins in Escherichia coli. Curr. Opin. Biotechnol., 1995, 6(5), 494-500.
[http://dx.doi.org/10.1016/0958-1669(95)80082-4] [PMID: 7579660]
[9]
Muhlrad, D.; Parker, R. Premature translational termination triggers mRNA decapping. Nature, 1994, 370(6490), 578-581.
[http://dx.doi.org/10.1038/370578a0] [PMID: 8052314]
[10]
Widmann, M.; Clairo, M.; Dippon, J.; Pleiss, J. Analysis of the distribution of functionally relevant rare codons. BMC Genomics, 2008, 9(1), 207.
[http://dx.doi.org/10.1186/1471-2164-9-207] [PMID: 18457591]
[11]
Shabalina, S.A.; Spiridonov, N.A.; Kashina, A. Sounds of silence: synonymous nucleotides as a key to biological regulation and complexity. Nucleic Acids Res., 2013, 41(4), 2073-2094.
[http://dx.doi.org/10.1093/nar/gks1205] [PMID: 23293005]
[12]
Hunt, R.; Sauna, Z.E.; Ambudkar, S.V.; Gottesman, M.M.; Kimchi-Sarfaty, C. Silent (synonymous) SNPs: should we care about them? Methods Mol. Biol., 2009, 578, 23-39.
[http://dx.doi.org/10.1007/978-1-60327-411-1_2]
[13]
Chen, R.; Davydov, E.V.; Sirota, M.; Butte, A.J. Non-synonymous and synonymous coding SNPs show similar likelihood and effect size of human disease association. PLoS One, 2010, 5(10)e13574
[http://dx.doi.org/10.1371/journal.pone.0013574] [PMID: 21042586]
[14]
Mauro, V.P.; Chappell, S.A. A critical analysis of codon optimization in human therapeutics. Trends Mol. Med., 2014, 20(11), 604-613.
[http://dx.doi.org/10.1016/j.molmed.2014.09.003] [PMID: 25263172]
[15]
Food, U.; Administration, D. Paving the way for personalized medicine: FDA’s role in a new era of medical product development; US Food and Drug Administration: Silver Spring, MD, 2013.
[16]
Kimchi-Sarfaty, C.; Schiller, T.; Hamasaki-Katagiri, N.; Khan, M.A.; Yanover, C.; Sauna, Z.E. Building better drugs: developing and regulating engineered therapeutic proteins. Trends Pharmacol. Sci., 2013, 34(10), 534-548.
[http://dx.doi.org/10.1016/j.tips.2013.08.005] [PMID: 24060103]
[17]
Chartier, M.; Gaudreault, F.; Najmanovich, R. Large-scale analysis of conserved rare codon clusters suggests an involvement in co-translational molecular recognition events. Bioinformatics, 2012, 28(11), 1438-1445.
[http://dx.doi.org/10.1093/bioinformatics/bts149] [PMID: 22467916]
[18]
Guex, N.; Peitsch, M.C. SWISS‐MODEL and the Swiss‐Pdb viewer: an environment for comparative protein modeling. Electrophoresis, 1997, 18(15), 2714-2723.
[19]
Zhang, Y. I-TASSER server for protein 3D structure prediction. BMC Bioinformatics, 2008, 9(1), 40.
[http://dx.doi.org/10.1186/1471-2105-9-40] [PMID: 18215316]
[20]
Daniel, E.; Onwukwe, G.U.; Wierenga, R.K.; Quaggin, S.E.; Vainio, S.J.; Krause, M. ATGme: open-source web application for rare codon identification and custom DNA sequence optimization. BMC Bioinformatics, 2015, 16(1), 303.
[http://dx.doi.org/10.1186/s12859-015-0743-5] [PMID: 26391121]
[21]
Theodosiou, A.; Promponas, V.J. LaTcOm: a web server for visualizing rare codon clusters in coding sequences. Bioinformatics, 2012, 28(4), 591-592.
[http://dx.doi.org/10.1093/bioinformatics/btr706] [PMID: 22199385]
[22]
Ruzzo, W.L.; Tompa, M., Eds.; A linear time algorithm for finding all maximal scoring subsequences; ISMB, 1999.
[23]
Dong, H.; Nilsson, L.; Kurland, C.G. Co-variation of tRNA abundance and codon usage in Escherichia coli at different growth rates. J. Mol. Biol., 1996, 260(5), 649-663.
[http://dx.doi.org/10.1006/jmbi.1996.0428] [PMID: 8709146]
[24]
Clarke, T.F. IV.; Clark, P.L. Rare codons cluster. PLoS One, 2008, 3(10)e3412
[http://dx.doi.org/10.1371/journal.pone.0003412] [PMID: 18923675]
[25]
Li, K.B.; Clustal, W.M.P.I. ClustalW-MPI: ClustalW analysis using distributed and parallel computing. Bioinformatics, 2003, 19(12), 1585-1586.
[http://dx.doi.org/10.1093/bioinformatics/btg192] [PMID: 12912844]
[26]
Wu, S.; Zhang, Y. LOMETS: a local meta-threading-server for protein structure prediction. Nucleic Acids Res., 2007, 35(10), 3375-3382.
[http://dx.doi.org/10.1093/nar/gkm251] [PMID: 17478507]
[27]
Guex, N. Swiss-PdbViewer: a fast and easy-to-use PDB viewer for Macintosh and PC. Protein Data Bank Quart. Newslett., 1996, 77, 7.
[28]
Gasteiger, E.; Hoogland, C.; Gattiker, A.; Wilkins, M.R.; Appel, R.D.; Bairoch, A. Protein identification and analysis tools on the ExPASy server. The Proteomics Protocols Handbook; Springer, 2005, pp. 571-607.
[http://dx.doi.org/10.1385/1-59259-890-0:571]
[29]
Tina, K.; Bhadra, R.; Srinivasan, N. PIC: protein interactions calculator. Nucleic Acids Res., 2007, 35(suppl_2), W473-W476.
[http://dx.doi.org/10.1093/nar/gkm423]
[30]
Consortium, U. UniProt consortium. UniProt: a hub for protein information. Nucleic Acids Res., 2015, 43(Database issue), D204-D212.
[http://dx.doi.org/10.1093/nar/gku989] [PMID: 25348405]
[31]
Xie, F.; Xi, Y.; Pascual, J.M.; Muzik, O.; Peng, F. Age-dependent changes of cerebral copper metabolism in Atp7b-/- knockout mouse model of Wilson’s disease by [64Cu]CuCl2-PET/CT. Metab. Brain Dis., 2017, 32(3), 717-726.
[http://dx.doi.org/10.1007/s11011-017-9956-9] [PMID: 28130615]
[32]
Teive, H.A.; Barbosa, E.R.; Lees, A.J. Wilson’s disease: the 60th anniversary of Walshe’s article on treatment with penicillamine. Arq. Neuropsiquiatr., 2017, 75(1), 69-71.
[http://dx.doi.org/10.1590/0004-282x20160166] [PMID: 28099566]
[33]
Terada, K.; Schilsky, M.L.; Miura, N.; Sugiyama, T. ATP7B (WND) protein. Int. J. Biochem. Cell Biol., 1998, 30(10), 1063-1067.
[http://dx.doi.org/10.1016/S1357-2725(98)00073-9] [PMID: 9785470]
[34]
Mortazavi, M.; Hosseinkhani, S. Design of thermostable luciferases through arginine saturation in solvent-exposed loops. Protein Eng. Des. Sel., 2011, 24(12), 893-903.
[http://dx.doi.org/10.1093/protein/gzr051] [PMID: 22068960]
[35]
Mortazavi, M.; Hosseinkhani, S. Surface charge modification increases firefly luciferase rigidity without alteration in bioluminescence spectra. Enzyme Microb. Technol., 2017, 96, 47-59.
[http://dx.doi.org/10.1016/j.enzmictec.2016.09.014] [PMID: 27871385]
[36]
Yousefi, F.; Ataei, F.; Mortazavi, M.; Hosseinkhani, S. Bifunctional role of leucine 300 of firefly luciferase in structural rigidity. Int. J. Biol. Macromol., 2017, 101, 67-74.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.03.069] [PMID: 28322945]
[37]
Kargar, F.; Mortazavi, M.; Savardashtaki, A.; Hosseinkhani, S.; Mahani, M.T.; Ghasemi, Y. Genomic and protein structure analysis of the luciferase from the Iranian bioluminescent beetle, Luciola sp. Int. J. Biol. Macromol., 2019, 124, 689-698.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.11.264] [PMID: 30502432]
[38]
Bina, S.; Shenavar, F.; Khodadad, M.; Haghshenas, M.R.; Mortazavi, M.; Fattahi, M-R.; Erfani, N.; Hosseini, S.Y. Impact of RGD peptide tethering to IL24/mda-7 (Melanoma Differentiation Associated Gene-7) on apoptosis induction in hepatocellular carcinoma cells. Asian Pac. J. Cancer Prev., 2015, 16(14), 6073-6080.
[http://dx.doi.org/10.7314/APJCP.2015.16.14.6073] [PMID: 26320498]
[39]
Fattahi, M.; Malekpour, A.; Mortazavi, M.; Safarpour, A.; Naseri, N. The characteristics of rare codon clusters in the genome and proteins of hepatitis C virus; a bioinformatics look. Middle East J. Dig. Dis., 2014, 6(4), 214-227.
[PMID: 25349685]
[40]
Mortazavi, M.; Zarenezhad, M.; Alavian, S.M.; Gholamzadeh, S.; Malekpour, A.; Ghorbani, M.; Torkzadeh Mahani, M.; Lotfi, S.; Fakhrzad, A. Bioinformatic analysis of codon usage and phylogenetic relationships in different genotypes of the hepatitis C virus. Hepat. Mon., 2016, 16(10)e39196
[http://dx.doi.org/10.5812/hepatmon.39196] [PMID: 27882066]
[41]
Mortazavi, M.; Zarenezhad, M.; Gholamzadeh, S.; Alavian, S.M.; Ghorbani, M.; Dehghani, R.; Malekpour, A.; Meshkibaf, M.; Fakhrzad, A. Bioinformatic identification of Rare Codon Clusters (RCCs) in HBV genome and evaluation of RCCs in proteins structure of hepatitis B virus. Hepat. Mon., 2016, 16(10)e39909
[http://dx.doi.org/10.5812/hepatmon.39909] [PMID: 27882067]
[42]
Mortazavi, M.; Nezafat, N.; Negahdaripour, M.; Gholami, A.; Torkzadeh-Mahani, M.; Lotfi, S.; Ghasemi, Y. In silico evaluation of rare codons and their positions in the structure of cytosine deaminase and substrate docking studies. Trends Pharmacol. Sci., 2016, 2(2), 117-130.
[43]
Varenne, S.; Baty, D.; Verheij, H.; Shire, D.; Lazdunski, C. The maximum rate of gene expression is dependent on the downstream context of unfavourable codons. Biochimie, 1989, 71(11-12), 1221-1229.
[http://dx.doi.org/10.1016/0300-9084(89)90027-8] [PMID: 2517483]
[44]
Schushan, M.; Bhattacharjee, A.; Ben-Tal, N.; Lutsenko, S. A structural model of the copper ATPase ATP7B to facilitate analysis of Wilson disease-causing mutations and studies of the transport mechanism. Metallomics, 2012, 4(7), 669-678.
[http://dx.doi.org/10.1039/c2mt20025b] [PMID: 22692182]


Rights & PermissionsPrintExport Cite as


Article Details

VOLUME: 17
ISSUE: 3
Year: 2020
Page: [213 - 226]
Pages: 14
DOI: 10.2174/1570164617666190919114545
Price: $25

Article Metrics

PDF: 7