Sulfakinin Signalling Influences Fatty Acid Levels and Composition in Tenebrio Molitor Beetle

Author(s): Małgorzata Slocinska*, Mariola Kuczer, Marek Gołębiowski.

Journal Name: Protein & Peptide Letters

Volume 26 , Issue 12 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Sulfakinins are arthropod neuropeptides that are structurally and functionally similar to vertebrate gastrin-cholecystokinin. Sulfakinins with sulfated tyrosine (sSK) or nonsulfated tyrosine (nSK) in the C-terminated heptapeptide XY(SO3H)GHMRFamide display different biological functions, including myotropic activity, inhibition of food intake, stimulation of digestive enzymes and regulation of carbohydrate and lipid content.

Objective: To reveal the mechanisms by which sulfakinin signalling modulates lipid homeostasis, we analysed the changes in the level and composition of fatty acids and organic compounds in the fat body and haemolymph of Tenebrio molitor larvae after nSK and sSK treatment.

Methods: Fatty acids in fat body and haemolymph of insects were analysed using Gas Chromatography - Mass Spectrometry (GC–MS).

Results: The direction of the changes observed for major fatty acids, 18:1 and 18:2, and the less abundant fatty acids, 16:0, 18:0, 16:1 and 14:0, was the same for unsaturated (UFAs) and saturated (SFAs) fatty acids, and elevated after nSK application in both analysed tissues. However, the action of sSK in fat body tissue evoked distinct effects and induced either significant decreases in individual fatty acids or UFAs and SFAs. Administration of nSK and sSK significantly increased the level of total organic compounds in the haemolymph, contrary to the effect of sSK in fat body, where the level of total organic compounds decreased, although changes differ between individual chemicals.

Conclusion: Sulfakinins are engaged in the precise modulation of fatty acid levels and composition, but their action depends on the presence of sulfate group on the tyrosyl residue of the peptide what determines the different roles of these peptides in insect physiology.

Keywords: Sulfakinin signalling, fatty acids, T. molitor beetle, fat body, haemolymph, insect neuropeptides.

[1]
Stanley-Samuelson, D.W.; Jurenka, R.A.; Cripps, C.; Blomquist, G.J.; de Renobales, M. Fatty acids in insects: Composition, metabolism, and biological significance. Arch. Insect Biochem. Physiol., 1988, 9, 1-33.
[http://dx.doi.org/10.1002/arch.940090102]
[2]
Gilbert, L.I.; Chino, H. Transport of lipids in insects. J. Lipid Res., 1974, 15(5), 439-456.
[PMID: 4370522]
[3]
Blomquist, J. Jurenka, R Pheromone production. Biochem. Mol. Biol., 2012, 12, 523-567.
[4]
Zhou, L.; Nilsson, A. Sources of eicosanoid precursor fatty acid pools in tissues. J. Lipid Res., 2001, 42(10), 1521-1542.
[PMID: 11590208]
[5]
Khani, A.; Moharramipour, S.; Barzegar, M.; Naderi-Manesh, H. Comparison of fatty acid composition in total lipid of diapause and non-diapause larvae of Cydia pomonella (Lepidoptera: Tortricidae). Insect Sci., 2007, 14, 125-131.
[http://dx.doi.org/10.1111/j.1744-7917.2007.00134.x]
[6]
Majerowicz, D.; Gondim, K.C. Leucosulfakinin, a sulfated insect neuropeptide with homology to gastrin and cholecystokinin. Science, 1986, 234, 71-73.
[7]
Nachman, R.J.; Holman, G.M.; Haddon, W.F.; Ling, N. Leucosulfakinin, a sulfated insect neuropeptide with homology to gastrin and cholecystokinin. Science, 1986, 234(4772), 71-73.
[http://dx.doi.org/10.1126/science.3749893] [PMID: 3749893]
[8]
Schoofs, L.; Janssen, T.; Nachman, R. Sulfakinins. In: Handbook of Biologically Active Peptides; Kasten, A.J., Ed.; Academic Press: Cambridge, MA, 2013, pp. 310-314.
[http://dx.doi.org/10.1016/B978-0-12-385095-9.00043-9]
[9]
Yu, N.; Nachman, R.J.; Smagghe, G. Characterization of sulfakinin and sulfakinin receptor and their roles in food intake in the red flour beetle Tribolium castaneum. Gen. Comp. Endocrinol., 2013, 188(188), 196-203.
[http://dx.doi.org/10.1016/j.ygcen.2013.03.006] [PMID: 23524001]
[10]
Marciniak, P.; Kuczer, M.; Rosinski, G. New physiological activities of myosuppressin, sulfakinin and NVP-like peptide in Zophobas atratus beetle. J. Comp. Physiol. B, 2011, 181(6), 721-730.
[http://dx.doi.org/10.1007/s00360-011-0563-5] [PMID: 21409564]
[11]
Nichols, R. The first nonsulfated sulfakinin activity reported suggests nsDSK acts in gut biology. Peptides, 2007, 28(4), 767-773.
[http://dx.doi.org/10.1016/j.peptides.2007.01.009] [PMID: 17292511]
[12]
Slocinska, M.; Marciniak, P.; Jarmuszkiewicz, W.; Rosinski, G. New metabolic activity of the nonsulfated sulfakinin Zopat-SK-1 in the insect fat body. Peptides, 2015, 68, 157-163.
[http://dx.doi.org/10.1016/j.peptides.2014.05.010] [PMID: 24879928]
[13]
Yu, N.; Zotti, M.J.; Scheys, F.; Braz, A.S.; Penna, P.H.; Nachman, R.J.; Smagghe, G. Flexibility and extracellular opening determine the interaction between ligands and insect sulfakinin receptors. Sci. Rep., 2015, 5, 12627.
[http://dx.doi.org/10.1038/srep12627] [PMID: 26267367]
[14]
Kubiak, T.M.; Larsen, M.J.; Burton, K.J.; Bannow, C.A.; Martin, R.A.; Zantello, M.R.; Lowery, D.E. Cloning and functional expression of the first Drosophila melanogaster sulfakinin receptor DSK-R1. Biochem. Biophys. Res. Commun., 2002, 291(2), 313-320.
[http://dx.doi.org/10.1006/bbrc.2002.6459] [PMID: 11846406]
[15]
Chen, X.; Peterson, J.; Nachman, R.J.; Ganetzky, B. Drosulfakinin activates CCKLR-17D1 and promotes larval locomotion and escape response in Drosophila. Fly (Austin), 2012, 6(4), 290-297.
[http://dx.doi.org/10.4161/fly.21534] [PMID: 22885328]
[16]
Nichols, R. Signaling pathways and physiological functions of Drosophila melanogaster FMRFamide-related peptides. Annu. Rev. Entomol., 2003, 48, 485-503.
[http://dx.doi.org/10.1146/annurev.ento.48.091801.112525] [PMID: 12414735]
[17]
Zels, S.; Verlinden, H.; Dillen, S.; Vleugels, R.; Nachman, R.J.; Vanden Broeck, J. Signaling properties and pharmacological analysis of two sulfakinin receptors from the red flour beetle, Tribolium castaneum. PLoS One, 2014, 9(4)e94502
[http://dx.doi.org/10.1371/journal.pone.0094502] [PMID: 24718573]
[18]
Yu, N.; Smagghe, G. CCK(-like) and receptors: structure and phylogeny in a comparative perspective. Gen. Comp. Endocrinol., 2014, 209(209), 74-81.
[http://dx.doi.org/10.1016/j.ygcen.2014.05.003] [PMID: 24842717]
[19]
Maestro, J.L.; Aguilar, R.; Pascual, N.; Valero, M.L.; Piulachs, M.D.; Andreu, D.; Navarro, I.; Bellés, X. Screening of antifeedant activity in brain extracts led to the identification of sulfakinin as a satiety promoter in the German cockroach. Are arthropod sulfakinins homologous to vertebrate gastrins-cholecystokinins? Eur. J. Biochem., 2001, 268(22), 5824-5830.
[http://dx.doi.org/10.1046/j.0014-2956.2001.02527.x] [PMID: 11722569]
[20]
Meyering-Vos, M.; Müller, A. RNA interference suggests sulfakinins as satiety effectors in the cricket Gryllus bimaculatus. J. Insect Physiol., 2007, 53(8), 840-848.
[http://dx.doi.org/10.1016/j.jinsphys.2007.04.003] [PMID: 17560597]
[21]
Harshini, S.; Nachman, R.J.; Sreekumar, S. In vitro release of digestive enzymes by FMRF amide related neuropeptides and analogues in the lepidopteran insect Opisina arenosella (Walk.). Peptides, 2002, 23(10), 1759-1763.
[http://dx.doi.org/10.1016/S0196-9781(02)00152-3] [PMID: 12383863]
[22]
Zels, S.; Dillen, S.; Crabbé, K.; Spit, J.; Nachman, R.J.; Vanden Broeck, J. Sulfakinin is an important regulator of digestive processes in the migratory locust, Locusta migratoria. Insect Biochem. Mol. Biol., 2015, 61, 8-16.
[http://dx.doi.org/10.1016/j.ibmb.2015.03.008] [PMID: 25846060]
[23]
Nichols, R.; Egle, J.P.; Langan, N.R.; Palmer, G.C. The different effects of structurally related sulfakinins on Drosophila melanogaster odor preference and locomotion suggest involvement of distinct mechanisms. Peptides, 2008, 29(12), 2128-2135.
[http://dx.doi.org/10.1016/j.peptides.2008.08.010] [PMID: 18786583]
[24]
Slocinska, M.; Czubak, T.; Marciniak, P.; Jarmuszkiewicz, W.; Rosinski, G. The activity of the nonsulfated sulfakinin Zopat-SK-1 in the neck-ligated larvae of the beetle Zophobas atratus. Peptides, 2015, 69, 127-132.
[http://dx.doi.org/10.1016/j.peptides.2015.04.023] [PMID: 25959538]
[25]
Canavoso, L.E.; Jouni, Z.E.; Karnas, K.J.; Pennington, J.E.; Wells, M.A. Fat metabolism in insects. Annu. Rev. Nutr., 2001, 21, 23-46.
[http://dx.doi.org/10.1146/annurev.nutr.21.1.23] [PMID: 11375428]
[26]
Paul, A.; Frederich, M.; Megido, R.C.; Alabi, T.; Malik, P.; Uyttenbroeck, R.; Francis, F.; Blecker, C.; Haubruge, E.; Lognay, G.; Danthine, S. Insect fatty acids: A comparison of lipids from three Orthopterans and Tenebrio molitor L. larvae. J. Asia Pac. Entomol., 2017, 20, 337-340.
[http://dx.doi.org/10.1016/j.aspen.2017.02.001]
[27]
Tillman, J.A.; Seybold, S.J.; Jurenka, R.A.; Blomquist, G.J. Insect pheromones--an overview of biosynthesis and endocrine regulation. Insect Biochem. Mol. Biol., 1999, 29(6), 481-514.
[http://dx.doi.org/10.1016/S0965-1748(99)00016-8] [PMID: 10406089]
[28]
Lawrance, G. Insect Endocrinlogy; Academic Press: Cambridge, MA, USA, 2012.
[29]
Blomquist, G.J.; Borgeson, C.E.; Borgeson, C.E.; Vundla, M. Polyunsaturated fatty acids and eicosanoids in insects. Insect Biochem., 1991, 21(1), 99-106.
[http://dx.doi.org/10.1016/0020-1790(91)90069-Q]
[30]
Blaul, B.; Steinbauer, R.; Merkl, P.; Merkl, R.; Tschochner, H.; Ruther, J. Oleic acid is a precursor of linoleic acid and the male sex pheromone in Nasonia vitripennis. Insect Biochem. Mol. Biol., 2014, 51, 33-40.
[http://dx.doi.org/10.1016/j.ibmb.2014.05.007] [PMID: 24874439]
[31]
Shimizu, T.; Wolfe, L.S. Arachidonic acid cascade and signal transduction. J. Neurochem., 1990, 55(1), 1-15.
[http://dx.doi.org/10.1111/j.1471-4159.1990.tb08813.x] [PMID: 2113081]
[32]
Funk, C.D. Prostaglandins and leukotrienes: advances in eicosanoid biology. Science, 2001, 294(5548), 1871-1875.
[http://dx.doi.org/10.1126/science.294.5548.1871] [PMID: 11729303]
[33]
Farine, J.P.; Cortot, J.; Ferveur, J.F. Drosophila adult and larval pheromones modulate larval food choice. Proceedings of the Royal Society, Proc., , 2014, 281(1784)20140043.
[http://dx.doi.org/10.1098/rspb.2014.0043]
[34]
Mast, J.D.; Moraes, C.D.; Alborn, H.T.; Lavis, L.D.; Stern, D.L. Evolved differences in larval social behaviour mediated by novel pheromones. eLife, 2014, 12(3)e04205
[35]
Slocinska, M.S.; Antos-Krzeminska, N.; Rosinski, G.; Jarmuszkiewicz, W. Nonsulfated sulfakinin changes metabolic parameters of insect fat body mitochondria. Arch. Insect Biochem. Physiol., 2016, 93(4), 177-189.
[PMID: 27501306]
[36]
Drijfhout, F.P.; Kather, R.; Martin, S.J. The role of cuticular hydrocarbons in insects. In: Behavioral and Chemical Ecology; Zhang, W.; Liu, H., Eds.; Nova Science Publisher: Hauppauge, NY, 2009.
[37]
Shaikh, S.R.; Edidin, M. Polyunsaturated fatty acids, membrane organization, T cells, and antigen presentation. Am. J. Clin. Nutr., 2006, 84(6), 1277-1289.
[http://dx.doi.org/10.1093/ajcn/84.6.1277] [PMID: 17158407]
[38]
Opekarováa, M.; Tanner, W. Specific lipid requirements of membrane proteins-a putative bottleneck in heterologous expression. Biochim. Biophys. Acta, 2003, 1, 11-22.
[http://dx.doi.org/10.1016/S0005-2736(02)00708-3]
[39]
Cripps, C.; Blomquist, G.J.; Renobales, D.M. De novo biosynthesis of linoleic acid in insects. Biochim. Biophys. Acta, 1986, 876, 572-580.
[http://dx.doi.org/10.1016/0005-2760(86)90046-9]
[40]
Fukumura, K.; Konuma, T.; Tsukamoto, Y.; Nagata, S. Adipokinetic hormone signaling determines dietary fatty acid preference through maintenance of hemolymph fatty acid composition in the cricket Gryllus bimaculatus. Sci. Rep., 2018, 8(1), 4737.
[http://dx.doi.org/10.1038/s41598-018-22987-2] [PMID: 29549314]
[41]
Gołębiowski, M.; Cerkowniak, M.; Urbanek, A.; Słocińska, G.R.; Stepnowski, P. Adipokinetic hormone induces changes in the fat body lipidcomposition of the beetle Zophobas atratus. Peptides, 2014, 58, 65-73.
[http://dx.doi.org/10.1016/j.peptides.2014.05.013] [PMID: 24905623]
[42]
Wei, Z.; Baggerman, G.; Goldsworthy, G.; Verhaert, P.; Schoofs, L.; De Loof, A. Sulfakinins reduce food intake in the desert locust, Schistocerca gregaria. J. Insect Physiol., 2000, 46(9), 1259-1265.
[http://dx.doi.org/10.1016/S0022-1910(00)00046-9] [PMID: 10844144]
[43]
Wicher, D.; Derst, C.; Gautier, H.; Lapied, B.; Heinemann, S.H.; Agricola, H.J. The satiety signaling neuropeptide perisulfakinin inhibits the activity of central neurons promoting general activity. Front. Cell. Neurosci., 2007, 1, 3.
[http://dx.doi.org/10.3389/neuro.03.003.2007] [PMID: 18946521]
[44]
Söderberg, J.A.; Carlsson, M.A.; Nässel, D.R. Insulin-producing cells in the Drosophila brain also express satiety-inducing cholecystokinin-like peptide, drosulfakinin. Front. Endocrinol. (Lausanne), 2012, 3, 109.
[http://dx.doi.org/10.3389/fendo.2012.00109] [PMID: 22969751]
[45]
Nässel, D.R.; Williams, M.J. Cholecystokinin-like peptide (DSK) in drosophila, not only for satiety signaling. Front. Endocrinol. (Lausanne), 2014, 5, 219.
[http://dx.doi.org/10.3389/fendo.2014.00219] [PMID: 25566191]
[46]
Arrese, E.L.; Soulages, J.L. Insect fat body: energy, metabolism, and regulation. Annu. Rev. Entomol., 2010, 55, 207-225.
[http://dx.doi.org/10.1146/annurev-ento-112408-085356] [PMID: 19725772]
[47]
Anand, A.N.; Lorenz, M.W. Age-dependent changes of fat body stores and the regulation of fat body lipid synthesis and mobilisation by adipokinetic hormone in the last larval instar of the cricket, Gryllus bimaculatus. J. Insect Physiol., 2008, 54(10-11), 1404-1412.
[http://dx.doi.org/10.1016/j.jinsphys.2008.08.001] [PMID: 18761344]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 26
ISSUE: 12
Year: 2019
Page: [949 - 958]
Pages: 10
DOI: 10.2174/0929866526666190913142115
Price: $65

Article Metrics

PDF: 14
HTML: 1