Nanostructured Modulators of Neuroglia

Author(s): Dusica Maysinger*, Jeff Ji.

Journal Name: Current Pharmaceutical Design

Volume 25 , Issue 37 , 2019


Abstract:

Biological and synthetic nanostructures can influence both glia and neurons in the central nervous system. Neurons represent only a small proportion (about 10%) of cells in the brain, whereas glial cells are the most abundant cell type. Non-targeted nanomedicines are mainly internalized by glia, in particular microglia, and to a lesser extent by astrocytes. Internalized nanomedicines by glia indirectly modify the functional status of neurons. The mechanisms of biochemical, morphological and functional changes of neural cells exposed to nanomedicines are still not well-understood. This minireview provides a cross-section of morphological and biochemical changes in glial cells and neurons exposed to different classes of hard and soft nanostructures.

Keywords: Microglia, astrocytes, neurons, nanoparticles, gold nanoparticles, dendritic polyglycerols, lysosomes, confocal microscopy, organotypic cultures.

[1]
Li Q, Barres BA. Microglia and macrophages in brain homeostasis and disease. Nat Rev Immunol 2018; 18(4): 225-42.
[http://dx.doi.org/10.1038/nri.2017.125] [PMID: 29151590]
[2]
Aguzzi A, Barres BA, Bennett ML. Microglia: scapegoat, saboteur, or something else? Science 2013; 339(6116): 156-61.
[http://dx.doi.org/10.1126/science.1227901] [PMID: 23307732]
[3]
Perdiguero EG, Klapproth K, Schulz C, et al. Tissue-resident macrophages originate from yolk sac-derived erythro-myeloid progenitors. Nature 2015; 518(7540): 547-51.
[http://dx.doi.org/10.1016/j.exphem.2015.06.130]
[4]
Neumann J, Sauerzweig S, Rönicke R, et al. Microglia cells protect neurons by direct engulfment of invading neutrophil granulocytes: a new mechanism of CNS immune privilege. J Neurosci 2008; 28(23): 5965-75.
[http://dx.doi.org/10.1523/JNEUROSCI.0060-08.2008] [PMID: 18524901]
[5]
Hickman S, Izzy S, Sen P, Morsett L, El Khoury J. Microglia in neurodegeneration. Nat Neurosci 2018; 21(10): 1359-69.
[http://dx.doi.org/10.1038/s41593-018-0242-x] [PMID: 30258234]
[6]
Fu R, Shen Q, Xu P, Luo JJ, Tang Y. Phagocytosis of microglia in the central nervous system diseases. Mol Neurobiol 2014; 49(3): 1422-34.
[http://dx.doi.org/10.1007/s12035-013-8620-6] [PMID: 24395130]
[7]
Paolicelli RC, Bolasco G, Pagani F, et al. Synaptic pruning by microglia is necessary for normal brain development. Science 2011; 333(6048): 1456-8.
[http://dx.doi.org/10.1126/science.1202529] [PMID: 21778362]
[8]
Salter MW, Stevens B. Microglia emerge as central players in brain disease. Nat Med 2017; 23(9): 1018-27.
[http://dx.doi.org/10.1038/nm.4397] [PMID: 28886007]
[9]
Owen DR, Narayan N, Wells L, et al. Pro-inflammatory activation of primary microglia and macrophages increases 18 kDa translocator protein expression in rodents but not humans. J Cereb Blood Flow Metab 2017; 37(8): 2679-90.
[http://dx.doi.org/10.1177/0271678X17710182] [PMID: 28530125]
[10]
Butovsky O, Jedrychowski MP, Moore CS, et al. Identification of a unique TGF-β-dependent molecular and functional signature in microglia. Nat Neurosci 2014; 17(1): 131-43.
[http://dx.doi.org/10.1038/nn.3599] [PMID: 24316888]
[11]
Guttenplan KA, Liddelow SA. Astrocytes and microglia: models and tools. J Exp Med 2019; 216(1): 71-83.
[http://dx.doi.org/10.1084/jem.20180200] [PMID: 30541903]
[12]
Bennett ML, Bennett FC, Liddelow SA, et al. New tools for studying microglia in the mouse and human CNS. Proc Natl Acad Sci USA 2016; 113(12): E1738-46.
[http://dx.doi.org/10.1073/pnas.1525528113] [PMID: 26884166]
[13]
Tay TL, Mai D, Dautzenberg J, et al. A new fate mapping system reveals context-dependent random or clonal expansion of microglia. Nat Neurosci 2017; 20(6): 793-803.
[http://dx.doi.org/10.1038/nn.4547] [PMID: 28414331]
[14]
Hirasawa T, Ohsawa K, Imai Y, et al. Visualization of microglia in living tissues using Iba1-EGFP transgenic mice. J Neurosci Res 2005; 81(3): 357-62.
[http://dx.doi.org/10.1002/jnr.20480] [PMID: 15948177]
[15]
Ferron M, Vacher J. Targeted expression of Cre recombinase in macrophages and osteoclasts in transgenic mice. Genesis 2005; 41(3): 138-45.
[http://dx.doi.org/10.1002/gene.20108] [PMID: 15754380]
[16]
Ponomarev ED, Shriver LP, Dittel BN. CD40 expression by microglial cells is required for their completion of a two-step activation process during central nervous system autoimmune inflammation. J Immunol 2006; 176(3): 1402-10.
[http://dx.doi.org/10.4049/jimmunol.176.3.1402] [PMID: 16424167]
[17]
Bohlen CJ, Bennett FC, Tucker AF, Collins HY, Mulinyawe SB, Barres BA. Diverse requirements for microglial survival, specification, and function revealed by defined-medium cultures. Neuron 2017; 94(4): 759-73.e8.
[http://dx.doi.org/10.1016/j.neuron.2017.04.043] [PMID: 28521131]
[18]
Douvaras P, Sun B, Wang M, et al. Directed differentiation of human pluripotent stem cells to microglia. Stem Cell Reports 2017; 8(6): 1516-24.
[http://dx.doi.org/10.1016/j.stemcr.2017.04.023] [PMID: 28528700]
[19]
Abud EM, Ramirez RN, Martinez ES, et al. iPSC-derived human microglia-like cells to study neurological diseases. Neuron 2017; 94(2): 278-93.e9.
[http://dx.doi.org/10.1016/j.neuron.2017.03.042] [PMID: 28426964]
[20]
Muffat J, Li Y, Yuan B, et al. Efficient derivation of microglia-like cells from human pluripotent stem cells. Nat Med 2016; 22(11): 1358-67.
[http://dx.doi.org/10.1038/nm.4189] [PMID: 27668937]
[21]
Liddelow SA, Barres BA. Reactive astrocytes: production, function, and therapeutic potential. Immunity 2017; 46(6): 957-67.
[http://dx.doi.org/10.1016/j.immuni.2017.06.006] [PMID: 28636962]
[22]
Rothhammer V, Borucki DM, Tjon EC, et al. Microglial control of astrocytes in response to microbial metabolites. Nature 2018; 557(7707): 724-8.
[http://dx.doi.org/10.1038/s41586-018-0119-x] [PMID: 29769726]
[23]
Anderson MA, Burda JE, Ren Y, et al. Astrocyte scar formation aids central nervous system axon regeneration. Nature 2016; 532(7598): 195-200.
[http://dx.doi.org/10.1038/nature17623] [PMID: 27027288]
[24]
Sofroniew MV. Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci 2009; 32(12): 638-47.
[http://dx.doi.org/10.1016/j.tins.2009.08.002] [PMID: 19782411]
[25]
Bush TG, Puvanachandra N, Horner CH, et al. Leukocyte infiltration, neuronal degeneration, and neurite outgrowth after ablation of scar-forming, reactive astrocytes in adult transgenic mice. Neuron 1999; 23(2): 297-308.
[http://dx.doi.org/10.1016/S0896-6273(00)80781-3] [PMID: 10399936]
[26]
Liedtke W, Edelmann W, Chiu FC, Kucherlapati R, Raine CS. Experimental autoimmune encephalomyelitis in mice lacking glial fibrillary acidic protein is characterized by a more severe clinical course and an infiltrative central nervous system lesion. Am J Pathol 1998; 152(1): 251-9.
[PMID: 9422542]
[27]
Eng LF. Glial fibrillary acidic protein (GFAP): the major protein of glial intermediate filaments in differentiated astrocytes. J Neuroimmunol 1985; 8(4-6): 203-14.
[http://dx.doi.org/10.1016/S0165-5728(85)80063-1] [PMID: 2409105]
[28]
Lee E, Chung WS. Glial control of synapse number in healthy and diseased brain. Front Cell Neurosci 2019; 13: 42.
[http://dx.doi.org/10.3389/fncel.2019.00042] [PMID: 30814931]
[29]
Humpel C. Organotypic brain slice cultures: a review. Neuroscience 2015; 305: 86-98.
[http://dx.doi.org/10.1016/j.neuroscience.2015.07.086] [PMID: 26254240]
[30]
Lefebvre JL, Sanes JR, Kay JN. Development of dendritic form and function. Annu Rev Cell Dev Biol 2015; 31: 741-77.
[http://dx.doi.org/10.1146/annurev-cellbio-100913-013020] [PMID: 26422333]
[31]
Chidambaram SB, Rathipriya AG, Bolla SR, et al. Dendritic spines: revisiting the physiological role. Prog Neuropsychopharmacol Biol Psychiatry 2019; 92: 161-93.
[http://dx.doi.org/10.1016/j.pnpbp.2019.01.005] [PMID: 30654089]
[32]
Phillips M, Pozzo-Miller L. Dendritic spine dysgenesis in autism related disorders. Neurosci Lett 2015; 601: 30-40.
[http://dx.doi.org/10.1016/j.neulet.2015.01.011] [PMID: 25578949]
[33]
Dorostkar MM, Zou C, Blazquez-Llorca L, Herms J. Analyzing dendritic spine pathology in Alzheimer’s disease: problems and opportunities. Acta Neuropathol 2015; 130(1): 1-19.
[http://dx.doi.org/10.1007/s00401-015-1449-5] [PMID: 26063233]
[34]
György B, Hung ME, Breakefield XO, Leonard JN. Therapeutic applications of extracellular vesicles: clinical promise and open questions. Annu Rev Pharmacol Toxicol 2015; 55: 439-64.
[http://dx.doi.org/10.1146/annurev-pharmtox-010814-124630] [PMID: 25292428]
[35]
van Niel G, D’Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol 2018; 19(4): 213-28.
[http://dx.doi.org/10.1038/nrm.2017.125] [PMID: 29339798]
[36]
Chiu YTE, Li H, Choi CHJ. Progress toward understanding the Interactions between DNA Nanostructures and the Cell. Small 2019; 15(26)1970137
[http://dx.doi.org/10.1002/smll.201805416]
[37]
Hu Y, Niemeyer CM. From DNA nanotechnology to material systems engineering. Adv Mater 2019; 31(26)e1806294
[http://dx.doi.org/10.1002/adma.201806294] [PMID: 30767279]
[38]
Jiang Q, Zhao S, Liu J, Song L, Wang ZG, Ding B. Rationally designed DNA-based nanocarriers. Adv Drug Deliv Rev 2019 In Press
[PMID: 30769047]
[39]
Stephanopoulos N, Freeman R, North HA, et al. Bioactive DNA-peptide nanotubes enhance the differentiation of neural stem cells into neurons. Nano Lett 2015; 15(1): 603-9.
[http://dx.doi.org/10.1021/nl504079q] [PMID: 25546084]
[40]
Qian ZS, Shan XY, Chai LJ, Ma JJ, Chen JR, Feng H. DNA nanosensor based on biocompatible graphene quantum dots and carbon nanotubes. Biosens Bioelectron 2014; 60: 64-70.
[http://dx.doi.org/10.1016/j.bios.2014.04.006] [PMID: 24768864]
[41]
Smith TT, Stephan SB, Moffett HF, et al. In situ programming of leukaemia-specific T cells using synthetic DNA nanocarriers. Nat Nanotechnol 2017; 12(8): 813-20.
[http://dx.doi.org/10.1038/nnano.2017.57] [PMID: 28416815]
[42]
Campolongo MJ, Tan SJ, Xu J, Luo D. DNA nanomedicine: engineering DNA as a polymer for therapeutic and diagnostic applications. Adv Drug Deliv Rev 2010; 62(6): 606-16.
[http://dx.doi.org/10.1016/j.addr.2010.03.004] [PMID: 20338202]
[43]
Kempter S, Khmelinskaia A, Strauss MT, et al. Single particle tracking and super-resolution imaging of membrane-assisted stop-and-go diffusion and lattice assembly of DNA origami. ACS Nano 2019; 13(2): 996-1002.
[http://dx.doi.org/10.1021/acsnano.8b04631] [PMID: 30588792]
[44]
Zhang Q, Lin S, Shi S, et al. Anti-inflammatory and antioxidative effects of tetrahedral DNA nanostructures via the modulation of macrophage responses. ACS Appl Mater Interfaces 2018; 10(4): 3421-30.
[http://dx.doi.org/10.1021/acsami.7b17928] [PMID: 29300456]
[45]
Gong YK, Winnik FM. Strategies in biomimetic surface engineering of nanoparticles for biomedical applications. Nanoscale 2012; 4(2): 360-8.
[http://dx.doi.org/10.1039/C1NR11297J] [PMID: 22134705]
[46]
Hu CMJ, Zhang L, Aryal S, Cheung C, Fang RH, Zhang L. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc Natl Acad Sci USA 2011; 108(27): 10980-5.
[http://dx.doi.org/10.1073/pnas.1106634108] [PMID: 21690347]
[47]
Harkness KM, Turner BN, Agrawal AC, Zhang Y, McLean JA, Cliffel DE. Biomimetic monolayer-protected gold nanoparticles for immunorecognition. Nanoscale 2012; 4(13): 3843-51.
[http://dx.doi.org/10.1039/c2nr30467h] [PMID: 22641221]
[48]
Li XQ, Qi ZH, Liang K, Bai XL, Xu JY, Liu JQ, et al. An artificial supramolecular nanozyme based on beta-cyclodextrin-modified gold nanoparticles. Catal Lett 2008; 124(3-4): 413-7.
[http://dx.doi.org/10.1007/s10562-008-9494-5]
[49]
Riccardi L, Gabrielli L, Sun X, et al. Nanoparticle-based receptors mimic protein-ligand recognition. Chem 2017; 3(1): 92-109.
[http://dx.doi.org/10.1016/j.chempr.2017.05.016] [PMID: 28770257]
[50]
Shah S, Solanki A, Lee K-B. Nanotechnology-based approaches for guiding neural regeneration. Acc Chem Res 2016; 49(1): 17-26.
[http://dx.doi.org/10.1021/acs.accounts.5b00345] [PMID: 26653885]
[51]
Quattromani MJ, Cordeau P, Ruscher K, Kriz J, Wieloch T. Enriched housing down-regulates the Toll-like receptor 2 response in the mouse brain after experimental stroke. Neurobiol Dis 2014; 66: 66-73.
[http://dx.doi.org/10.1016/j.nbd.2014.02.010] [PMID: 24613658]
[52]
Frenster JD, Placantonakis DG. Bioluminescent in vivo imaging of orthotopic glioblastoma xenografts in mice. Methods Mol Biol 2018; 1741: 191-8.
[http://dx.doi.org/10.1007/978-1-4939-7659-1_15] [PMID: 29392701]
[53]
Hutter E, Boridy S, Labrecque S, et al. Microglial response to gold nanoparticles. ACS Nano 2010; 4(5): 2595-606.
[http://dx.doi.org/10.1021/nn901869f] [PMID: 20329742]
[54]
Maysinger D, Behrendt M, Lalancette-Hébert M, Kriz J. Real-time imaging of astrocyte response to quantum dots: in vivo screening model system for biocompatibility of nanoparticles. Nano Lett 2007; 7(8): 2513-20.
[http://dx.doi.org/10.1021/nl071611t] [PMID: 17638392]
[55]
Ferber S, Tiram G, Sousa-Herves A, et al. Co-targeting the tumor endothelium and P-selectin-expressing glioblastoma cells leads to a remarkable therapeutic outcome. eLife 2017; 6: 6.
[http://dx.doi.org/10.7554/eLife.25281] [PMID: 28976305]
[56]
Wang X, Chi H, Zhou B, Li W, Li Z, Xia Z. Bacterial luciferase gene cassette as a real-time bioreporter for infection model and drug evaluation. Curr Pharm Des 2018; 24(8): 952-8.
[http://dx.doi.org/10.2174/1381612824666180213121724] [PMID: 29436995]
[57]
Ji J, Moquin A, Bertorelle FKY, et al. Organotypic and primary neural cultures as models to assess effects of different gold nanostructures on glia and neurons. Nanotoxicology 2018; 1-20.
[PMID: 30691378]
[58]
Moquin A, Ji J, Neibert K, Winnik FM, Maysinger D. Encapsulation and delivery of neutrophic proteins and hydrophobic agents using PMOXA-PDMS-PMOXA triblock polymersomes. ACS Omega 2018; 3(10): 13882-93.
[http://dx.doi.org/10.1021/acsomega.8b02311] [PMID: 30411053]
[59]
Chang PKY, Khatchadourian A, McKinney RA, Maysinger D. Docosahexaenoic acid (DHA): a modulator of microglia activity and dendritic spine morphology. J Neuroinflammation 2015; 12: 34.
[http://dx.doi.org/10.1186/s12974-015-0244-5] [PMID: 25889069]
[60]
Schweiger PJ, Jensen KB. Modeling human disease using organotypic cultures. Curr Opin Cell Biol 2016; 43: 22-9.
[http://dx.doi.org/10.1016/j.ceb.2016.07.003] [PMID: 27474805]
[61]
Shamir ER, Ewald AJ. Three-dimensional organotypic culture: experimental models of mammalian biology and disease. Nat Rev Mol Cell Biol 2014; 15(10): 647-64.
[http://dx.doi.org/10.1038/nrm3873] [PMID: 25237826]
[62]
Wellbourne-Wood J, Chatton JY. From cultured rodent neurons to human brain tissue: model systems for pharmacological and translational neuroscience. ACS Chem Neurosci 2018; 9(8): 1975-85.
[http://dx.doi.org/10.1021/acschemneuro.8b00098] [PMID: 29847093]
[63]
Bourne J, Harris KM. Do thin spines learn to be mushroom spines that remember? Curr Opin Neurobiol 2007; 17(3): 381-6.
[http://dx.doi.org/10.1016/j.conb.2007.04.009] [PMID: 17498943]
[64]
Saha K, Agasti SS, Kim C, Li X, Rotello VM. Gold nanoparticles in chemical and biological sensing. Chem Rev 2012; 112(5): 2739-79.
[http://dx.doi.org/10.1021/cr2001178] [PMID: 22295941]
[65]
Yeh YC, Creran B, Rotello VM. Gold nanoparticles: preparation, properties, and applications in bionanotechnology. Nanoscale 2012; 4(6): 1871-80.
[http://dx.doi.org/10.1039/C1NR11188D] [PMID: 22076024]
[66]
Liu CP, Wu TH, Lin YL, Liu CY, Wang S, Lin SY. Tailoring enzyme-like activities of gold nanoclusters by polymeric tertiary amines for protecting neurons against oxidative stress. Small 2016; 12(30): 4127-35.
[http://dx.doi.org/10.1002/smll.201503919]
[67]
Gahwiler BH. Morphological-Differentiation of nerve-cells in thin organotypic cultures derived from rat hippocampus and cerebellum. Proc R Soc Lond B Biol Sci 1981; 211(1184): 287-90.
[68]
Gähwiler BH. Organotypic monolayer cultures of nervous tissue. J Neurosci Methods 1981; 4(4): 329-42.
[http://dx.doi.org/10.1016/0165-0270(81)90003-0] [PMID: 7033675]
[69]
Schacter DL, Wagner AD. Medial temporal lobe activations in fMRI and PET studies of episodic encoding and retrieval. Hippocampus 1999; 9(1): 7-24.
[http://dx.doi.org/10.1002/(SICI)1098-1063(1999)9:1<7:AID-HIPO2>3.0.CO;2-K] [PMID: 10088896]
[70]
Kapur N, Friston KJ, Young A, Frith CD, Frackowiak RSJ. Activation of human hippocampal formation during memory for faces: a PET study. Cortex 1995; 31(1): 99-108.
[http://dx.doi.org/10.1016/S0010-9452(13)80108-6] [PMID: 7781323]
[71]
Backus AR, Bosch SE, Ekman M, Grabovetsky AV, Doeller CF. Mnemonic convergence in the human hippocampus. Nat Commun 2016; 7: 11991.
[http://dx.doi.org/10.1038/ncomms11991] [PMID: 27325442]
[72]
Leuner B, Falduto J, Shors TJ. Associative memory formation increases the observation of dendritic spines in the hippocampus. J Neurosci 2003; 23(2): 659-65.
[http://dx.doi.org/10.1523/JNEUROSCI.23-02-00659.2003] [PMID: 12533625]
[73]
Beltrán-Campos V, Prado-Alcalá RA, León-Jacinto U, et al. Increase of mushroom spine density in CA1 apical dendrites produced by water maze training is prevented by ovariectomy. Brain Res 2011; 1369: 119-30.
[http://dx.doi.org/10.1016/j.brainres.2010.10.105] [PMID: 21070752]
[74]
Eilam-Stock T, Serrano P, Frankfurt M, Luine V. Bisphenol-A impairs memory and reduces dendritic spine density in adult male rats. Behav Neurosci 2012; 126(1): 175-85.
[http://dx.doi.org/10.1037/a0025959] [PMID: 22004261]
[75]
Conrad CD, McLaughlin KJ, Huynh TN, El-Ashmawy M, Sparks M. Chronic stress and a cyclic regimen of estradiol administration separately facilitate spatial memory: relationship with hippocampal CA1 spine density and dendritic complexity. Behav Neurosci 2012; 126(1): 142-56.
[http://dx.doi.org/10.1037/a0025770] [PMID: 22004264]
[76]
Moser MB, Trommald M, Andersen P. An increase in dendritic spine density on hippocampal CA1 pyramidal cells following spatial learning in adult rats suggests the formation of new synapses. Proc Natl Acad Sci USA 1994; 91(26): 12673-5.
[http://dx.doi.org/10.1073/pnas.91.26.12673] [PMID: 7809099]
[77]
Chang PK, Boridy S, McKinney RA, Maysinger D. Letrozole potentiates mitochondrial and dendritic spine impairments induced by β amyloid. J Aging Res 2013; 2013538979
[http://dx.doi.org/10.1155/2013/538979] [PMID: 23956860]
[78]
Penzes P, Cahill ME, Jones KA, VanLeeuwen JE, Woolfrey KM. Dendritic spine pathology in neuropsychiatric disorders. Nat Neurosci 2011; 14(3): 285-93.
[http://dx.doi.org/10.1038/nn.2741] [PMID: 21346746]
[79]
Milatovic D, Montine TJ, Zaja-Milatovic S, Madison JL, Bowman AB, Aschner M. Morphometric analysis in neurodegenerative disorders Curr Protoc Toxicol 2010; Chapter 12: Unit 1216
[http://dx.doi.org/10.1002/0471140856.tx1216s46]
[80]
Raben N, Puertollano R. TFEB and TFE3: Linking lysosomes to cellular adaptation to stress. Annual Review of Cell and Developmental Biology 2016; 32: 255-78.
[81]
Carmona-Gutierrez D, Hughes AL, Madeo F, Ruckenstuhl C. The crucial impact of lysosomes in aging and longevity. Ageing Res Rev 2016; 32: 2-12.
[http://dx.doi.org/10.1016/j.arr.2016.04.009] [PMID: 27125853]
[82]
Lim CY, Zoncu R. The lysosome as a command-and-control center for cellular metabolism. J Cell Biol 2016; 214(6): 653-64.
[http://dx.doi.org/10.1083/jcb.201607005] [PMID: 27621362]
[83]
Padamsey Z, McGuinness L, Bardo SJ, et al. Activity-dependent exocytosis of lysosomes regulates the structural plasticity of dendritic spines. Neuron 2017; 93(1): 132-46.
[http://dx.doi.org/10.1016/j.neuron.2016.11.013] [PMID: 27989455]
[84]
Goo MS, Sancho L, Slepak N, et al. Activity-dependent trafficking of lysosomes in dendrites and dendritic spines. J Cell Biol 2017; 216(8): 2499-513.
[http://dx.doi.org/10.1083/jcb.201704068] [PMID: 28630145]
[85]
Maysinger D, Moquin A, Choi J, Kodiha M, Stochaj U. Gold nanourchins and celastrol reorganize the nucleo- and cytoskeleton of glioblastoma cells. Nanoscale 2018; 10(4): 1716-26.
[http://dx.doi.org/10.1039/C7NR07833A] [PMID: 29308473]
[86]
Maysinger D, Ji J, Moquin A, et al. Dendritic polyglycerol sulfates in the prevention of synaptic loss and mechanism of action on glia. ACS Chem Neurosci 2018; 9(2): 260-71.
[http://dx.doi.org/10.1021/acschemneuro.7b00301] [PMID: 29078046]
[87]
Maysinger D, Gröger D, Lake A, et al. Dendritic polyglycerol sulfate inhibits microglial activation and reduces hippocampal CA1 dendritic spine morphology deficits. Biomacromolecules 2015; 16(9): 3073-82.
[http://dx.doi.org/10.1021/acs.biomac.5b00999] [PMID: 26218295]
[88]
Dernedde J, Rausch A, Weinhart M, et al. Dendritic polyglycerol sulfates as multivalent inhibitors of inflammation. Proc Natl Acad Sci USA 2010; 107(46): 19679-84.
[http://dx.doi.org/10.1073/pnas.1003103107] [PMID: 21041668]
[89]
Kurniasih IN, Keilitz J, Haag R. Dendritic nanocarriers based on hyperbranched polymers. Chem Soc Rev 2015; 44(12): 4145-64.
[http://dx.doi.org/10.1039/C4CS00333K] [PMID: 25980677]
[90]
Castonguay A, Wilson E, Al-Hajaj N, et al. Thermosensitive dendrimer formulation for drug delivery at physiologically relevant temperatures. Chemical Commun 2011; 47(44): 12146-8.
[http://dx.doi.org/10.1039/c1cc15354d]
[91]
Neibert K, Gosein V, Sharma A, et al. “Click” dendrimers as anti-inflammatory agents: with insights into their binding from molecular modeling studies. Mol Pharm 2013; 10(6): 2502-8.
[http://dx.doi.org/10.1021/mp4000508] [PMID: 23590185]
[92]
Choi J, Moquin A, Bomal E, Na L, Maysinger D, Kakkar A. Telodendrimers for physical encapsulation and covalent linking of individual or combined therapeutics. Mol Pharm 2017; 14(8): 2607-15.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b00019] [PMID: 28520445]
[93]
Bobo D, Robinson KJ, Islam J, Thurecht KJ, Corrie SR. Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharm Res 2016; 33(10): 2373-87.
[http://dx.doi.org/10.1007/s11095-016-1958-5] [PMID: 27299311]
[94]
Behrens TEJ, Sporns O. Human connectomics. Curr Opin Neurobiol 2012; 22(1): 144-53.
[http://dx.doi.org/10.1016/j.conb.2011.08.005] [PMID: 21908183]
[95]
Zuo XN, He Y, Betzel RF, Colcombe S, Sporns O, Milham MP. Human connectomics across the life span. Trends Cogn Sci (Regul Ed) 2017; 21(1): 32-45.
[http://dx.doi.org/10.1016/j.tics.2016.10.005] [PMID: 27865786]
[96]
Bellec P, Perlbarg V, Jbabdi S, et al. Identification of large-scale networks in the brain using fMRI. Neuroimage 2006; 29(4): 1231-43.
[http://dx.doi.org/10.1016/j.neuroimage.2005.08.044] [PMID: 16246590]
[97]
Ventola CL. Progress in nanomedicine: Approved and Investigational Nanodrugs. P&T 2017; 42(12): 742-55.
[98]
Agrahari V, Agrahari V. Facilitating the translation of nanomedicines to a clinical product: challenges and opportunities. Drug Discov Today 2018; 23(5): 974-91.
[http://dx.doi.org/10.1016/j.drudis.2018.01.047] [PMID: 29406263]
[99]
Zhang F, Nance E, Alnasser Y, Kannan R, Kannan S. Microglial migration and interactions with dendrimer nanoparticles are altered in the presence of neuroinflammation. J Neuroinflammation 2016; 13(1): 65.
[http://dx.doi.org/10.1186/s12974-016-0529-3] [PMID: 27004516]
[100]
Cengelli F, Maysinger D, Tschudi-Monnet F, et al. Interaction of functionalized superparamagnetic iron oxide nanoparticles with brain structures. J Pharmacol Exp Ther 2006; 318(1): 108-16.
[http://dx.doi.org/10.1124/jpet.106.101915] [PMID: 16608917]
[101]
Soliman GM, Sharma R, Choi AO, et al. Tailoring the efficacy of nimodipine drug delivery using nanocarriers based on A2B miktoarm star polymers. Biomaterials 2010; 31(32): 8382-92.
[http://dx.doi.org/10.1016/j.biomaterials.2010.07.039] [PMID: 20691471]
[102]
Dan M, Wen H, Shao A, Xu L. Silver nanoparticle exposure induces neurotoxicity in the rat hippocampus without increasing the blood-brain barrier permeability. J Biomed Nanotechnol 2018; 14(7): 1330-8.
[http://dx.doi.org/10.1166/jbn.2018.2563] [PMID: 29944106]
[103]
Pohland M, Glumm R, Wiekhorst F, Kiwit J, Glumm J. Biocompatibility of very small superparamagnetic iron oxide nanoparticles in murine organotypic hippocampal slice cultures and the role of microglia. Int J Nanomedicine 2017; 12: 1577-91.
[http://dx.doi.org/10.2147/IJN.S127206] [PMID: 28280327]
[104]
De Simone U, Roccio M, Gribaldo L, Spinillo A, Caloni F, Coccini T. Human 3D cultures as models for evaluating magnetic nanoparticle CNS cytotoxicity after short- and repeated long-term exposure. Int J Mol Sci 2018; 19(7)E1993
[http://dx.doi.org/10.3390/ijms19071993] [PMID: 29986546]
[105]
Huang YA, Kao CW, Liu KK, et al. The effect of fluorescent nanodiamonds on neuronal survival and morphogenesis. Sci Rep 2014; 4: 6919.
[106]
Chen S, Weitemier AZ, Zeng X, et al. Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics. Science 2018; 359(6376): 679-84.
[http://dx.doi.org/10.1126/science.aaq1144] [PMID: 29439241]
[107]
Tse YC, Lopez J, Moquin A, Wong SA, Maysinger D, Wong TP. The susceptibility to chronic social defeat stress is related to low hippocampal extrasynaptic NMDA receptor function. Neuropsychopharmacology 2019; 44(7): 1310-8.
[http://dx.doi.org/10.1038/s41386-019-0325-8]
[108]
Bosi S, Rauti R, Laishram J, et al. From 2D to 3D: novel nanostructured scaffolds to investigate signalling in reconstructed neuronal networks. Sci Rep 2015; 5: 9562.
[109]
Evans MG, Al-Shakli A, Jenkins SI, Chari DM. Electrophysiological assessment of primary cortical neurons genetically engineered using iron oxide nanoparticles. Nano Res 2017; 10(8): 2881-90.
[http://dx.doi.org/10.1007/s12274-017-1496-4]
[110]
Meng W, Garnett MC, Walker DA, Parker TL. Penetration and intracellular uptake of poly(glycerol-adipate) nanoparticles into three-dimensional brain tumour cell culture models. Exp Biol Med (Maywood) 2016; 241(5): 466-77.
[http://dx.doi.org/10.1177/1535370215610441] [PMID: 26568330]
[111]
Gromnicova R, Davies HA, Sreekanthreddy P, et al. Glucose-coated gold nanoparticles transfer across human brain endothelium and enter astrocytes in vitro. PLoS One 2013; 8(12)e81043
[http://dx.doi.org/10.1371/journal.pone.0081043] [PMID: 24339894]
[112]
Niskanen J, Zhang I, Xue Y, Golberg D, Maysinger D, Winnik FM. Boron nitride nanotubes as vehicles for intracellular delivery of fluorescent drugs and probes. Nanomedicine (Lond) 2016; 11(5): 447-63.
[http://dx.doi.org/10.2217/nnm.15.214] [PMID: 26891593]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 25
ISSUE: 37
Year: 2019
Page: [3905 - 3916]
Pages: 12
DOI: 10.2174/1381612825666190912163339
Price: $65

Article Metrics

PDF: 9
HTML: 2

Special-new-year-discount