Proliferative Effect of Tilapia Fish (Oreochromis niloticus) Lectin on BALB/c Mice Splenocytes

Author(s): Cynarha Daysy Cardoso da Silva, Cristiane Moutinho Lagos de Melo*, Elba Verônica Matoso Maciel Carvalho, Mércia Andréa Lino da Silva, Rosiely Félix Bezerra, Athiê Jorge Guerra dos Santos, Valéria Rêgo Alves Pereira, Luana Cassandra Breitenbach Barroso Coelho.

Journal Name: Protein & Peptide Letters

Volume 26 , Issue 12 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Lectins have been studied in recent years due to their immunomodulatory activities.

Objective: We purified a lectin named OniL from tilapia fish (Oreochromis niloticus) and here we analyzed the cell proliferation and cytokine production in Balb/c mice splenocytes.

Methods: Cells were stimulated in vitro in 24, 48, 72 hours and 6 days with different concentrations of OniL and Con A. Evaluation of cell proliferation was performed through [3H]-thymidine incorporation, cytokines were investigated using ELISA assay and cell viability assay was performed by investigation of damage through signals of apoptosis and necrosis.

Results: OniL did not promote significant cell death, induced high mitogenic activity in relation to control and Con A and stimulated the cells to release high IL-2 and IL-6 cytokines.

Conclusion: These findings suggest that, like Con A, OniL lectin can be used as a mitogenic agent in immunostimulatory assays.

Keywords: Oreochromis niloticus, lectin, tilapia fish, cytokines, splenocytes, immunostimulation.

[1]
Zachara, N.E.; Hart, G.W. Cell signaling, the essential role of O-GlcNAc! Biochim. Biophys. Acta, 2006, 1761(5-6), 599-617.
[http://dx.doi.org/10.1016/j.bbalip.2006.04.007] [PMID: 16781888]
[2]
Sharon, N.; Lis, H. Carbohydrates in cell recognition. Sci. Am., 1993, 268(1), 82-89.
[http://dx.doi.org/10.1038/scientificamerican0193-82] [PMID: 7678182]
[3]
Ofek, I.; Hasty, D.L.; Sharon, N. Anti-adhesion therapy of bacterial diseases: prospects and problems. FEMS Immunol. Med. Microbiol., 2003, 38(3), 181-191.
[http://dx.doi.org/10.1016/S0928-8244(03)00228-1] [PMID: 14522453]
[4]
Pasmatzi, E.; Badavanis, G.; Monastirli, A.; Georgiou, S.; Sagriotis, A.; Sakkis, T.; Mantagos, S.; Varakis, J.; Stamatiou, G.; Tsambaos, D. Qualitative and quantitative alterations of cell surface carbohydrate residues during epidermal morphogenesis. Anat. Embryol. (Berl.), 2005, 209(3), 207-215.
[http://dx.doi.org/10.1007/s00429-004-0440-z] [PMID: 15678348]
[5]
Disney, M.D.; Seeberger, P.H. The use of carbohydrate microarrays to study carbohydrate-cell interactions and to detect pathogens. Chem. Biol., 2004, 11(12), 1701-1707.
[http://dx.doi.org/10.1016/j.chembiol.2004.10.011] [PMID: 15610854]
[6]
Oppenheimer, S.B.; Alvarez, M.; Nnoli, J. Carbohydrate-based experimental therapeutics for cancer, HIV/AIDS and other diseases. Acta Histochem., 2008, 110(1), 6-13.
[http://dx.doi.org/10.1016/j.acthis.2007.08.003] [PMID: 17963823]
[7]
Zhang, Y.; Liu, S.; Liu, Y.; Wang, Z.; Wang, X.; Yan, Q. Overexpression of fucosyltransferase VII (FUT7) promotes embryo adhesion and implantation. Fertil. Steril., 2009, 91(3), 908-914.
[http://dx.doi.org/10.1016/j.fertnstert.2007.12.012] [PMID: 18402946]
[8]
Brustein, V.P.; Cavalcanti, C.L.; de Melo-Junior, M.R.; Correia, M.T.; Beltrão, E.I.; Carvalho, L.B. Jr. Chemiluminescent detection of carbohydrates in the tumoral breast diseases. Appl. Biochem. Biotechnol., 2012, 166(2), 268-275.
[http://dx.doi.org/10.1007/s12010-011-9422-9] [PMID: 22068691]
[9]
Cronkite, D.A.; Strutt, T.M. The regulation of inflammation by innate and adaptive lymphocytes. J. Immunol. Res., 2018, 20181467538
[http://dx.doi.org/10.1155/2018/1467538] [PMID: 29992170]
[10]
Tamma, S.M.; Kalyanaraman, V.S.; Pahwa, S.; Dominguez, P.; Modesto, R.R. The lectin jacalin induces phosphorylation of ERK and JNK in CD4+ T cells. J. Leukoc. Biol., 2003, 73(5), 682-688.
[http://dx.doi.org/10.1189/jlb.1102534] [PMID: 12714584]
[11]
Lee, J.Y.; Kim, J.Y.; Lee, Y.G.; Byeon, S.E.; Kim, B.H.; Rhee, M.H.; Lee, A.; Kwon, M.; Hong, S.; Cho, J.Y. In vitro immunoregulatory effects of Korean mistletoe lectin on functional activation of monocytic and macrophage-like cells. Biol. Pharm. Bull., 2007, 30(11), 2043-2051.
[http://dx.doi.org/10.1248/bpb.30.2043] [PMID: 17978473]
[12]
Russell, S.; Lumsden, J.S. Function and heterogeneity of fish lectins. Vet. Immunol. Immunopathol., 2005, 108(1-2), 111-120.
[http://dx.doi.org/10.1016/j.vetimm.2005.08.004] [PMID: 16144717]
[13]
Singh, J.B.; Singh, J.; Kamboj, S.S.; Nijjar, K.K.; Agrewala, J.N.; Kumar, V.; Kumar, A.; Saxena, A.K. Mitogenic and anti-proliferative activity of a lectin from the tubers of Voodoo lily (Sauromatum venosum). Biochim. Biophys. Acta, 2005, 1723(1-3), 163-174.
[http://dx.doi.org/10.1016/j.bbagen.2005.02.006] [PMID: 15788150]
[14]
Maciel, E.V.M.; Araújo-Filho, V.S.; Nakazawa, M.; Gomes, Y.M.; Coelho, L.C.B.B.; Correia, M.T.S. Mitogenic activity of Cratylia mollis lectin on human lymphocytes. Biologicals, 2004, 32(1), 57-60.
[http://dx.doi.org/10.1016/j.biologicals.2003.12.001] [PMID: 15026026]
[15]
de Melo, C.M.; de Castro, M.C.; de Oliveira, A.P.; Gomes, F.O.; Pereira, V.R.A.; Correia, M.T.S.; Coelho, L.C.B.B.; Paiva, P.M.G. Immunomodulatory response of Cramoll 1,4 lectin on experimental lymphocytes. Phytother. Res., 2010, 24(11), 1631-1636.
[http://dx.doi.org/10.1002/ptr.3156] [PMID: 21031620]
[16]
Carvalho, E.V.M.; Bezerra, R.F.; Bezerra, R.S.; Bezerra, R.S.; Araújo, J.M.; Santos, A.J.G.; Correia, M.T.S.; Coelho, L.C.B.B. Detection of the first lectin with antimicrobial activity present in Serum of the Amazonian Fish Tambaqui (Colossoma macropomum). Fish. Sci., 2012, 78, 01-09.
[17]
Coriolano, M.C.; de Melo, C.M.L.; Santos, A.J.; Pereira, V.R.A.; Coelho, L.C.B.B. Rachycentron canadum (cobia) lectin promoted mitogenic response in mice BALB/c splenocytes. Scand. J. Immunol., 2012, 76(6), 567-572.
[http://dx.doi.org/10.1111/j.1365-3083.2012.02774.x] [PMID: 22946764]
[18]
da Silva, C.D.; Coriolano, M.C.; da Silva Lino, M.A.; de Melo, C.M.L.; de Souza Bezerra, R.; de Carvalho, E.V.; Dos Santos, A.J.; Pereira, V.R.A.; Coelho, L.C.B.B. Purification and characterization of a mannose recognition lectin from Oreochromis niloticus (tilapia fish): cytokine production in mice splenocytes. Appl. Biochem. Biotechnol., 2012, 166(2), 424-435.
[http://dx.doi.org/10.1007/s12010-011-9438-1] [PMID: 22081327]
[19]
Li, W.W.; Yu, J.Y.; Xu, H.L.; Bao, J.K. Concanavalin A: a potential anti-neoplastic agent targeting apoptosis, autophagy and anti-angiogenesis for cancer therapeutics. Biochem. Biophys. Res. Commun., 2011, 414, 282-286.
[http://dx.doi.org/10.1016/j.bbrc.2011.09.072] [PMID: 21951850]
[20]
Jang, S.; Yayeh, T.; Leem, Y.H.; Park, E.M.; Ito, Y.; Oh, S. Concanavalin A induces cortical neuron apoptosis by causing ROS accumulation and tyrosine kinase activation. Neurochem. Res., 2017, 42, 3504-3514.
[http://dx.doi.org/10.1007/s11064-017-2398-2] [PMID: 29019035]
[21]
Barre, A.; Bourne, Y.; Van Damme, E.J.M.; Rougé, P. Overview of the structurefunction relationships of mannose-specific lectins from plants, algae and fungi. Int. J. Mol. Sci., 2019, 10E254
[http://dx.doi.org/10.3390/ijms20020254] [PMID: 30634645]
[22]
Pereira, V.R.A.; Lorena, V.M.B.; Da Silva, A.P.; Coutinho, E.M.; Silvas, E.D.; Ferreira, A.G.; Miranda, P.; Krieger, M.A.; Goldenberg, S.; Soares, M.B.; Correa-Oliveira, R.; Gomes, Y.M. Immunization with cytoplasmic repetitive antigen and flagellar repetitive antigen of Trypanosoma cruzi stimulates a cellular immune response in mice. Parasitology, 2004, 129(Pt 5), 563-570.
[http://dx.doi.org/10.1017/S0031182004006043] [PMID: 15552401]
[23]
de Melo, C.M.; Melo, H.; Correia, M.T.S.; Coelho, L.C.B.B.; da Silva, M.B.; Pereira, V.R.A. Mitogenic response and cytokine production induced by cramoll 1,4 lectin in splenocytes of inoculated mice. Scand. J. Immunol., 2011, 73(2), 112-121.
[http://dx.doi.org/10.1111/j.1365-3083.2010.02490.x] [PMID: 21198751]
[24]
Spolski, R.; Li, P.; Leonard, W.J. Biology and regulation of IL-2: from molecular mechanisms to human therapy. Nat. Rev. Immunol., 2018, 18(10), 648-659.
[http://dx.doi.org/10.1038/s41577-018-0046-y] [PMID: 30089912]
[25]
Tanaka, T.; Narazaki, M.; Kishimoto, T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb. Perspect. Biol., 2014, 6(10)a016295
[http://dx.doi.org/10.1101/cshperspect.a016295] [PMID: 25190079]
[26]
Hashizume, M.; Hayakawa, N.; Suzuki, M.; Mihara, M. IL-6/sIL-6R trans-signalling, but not TNF-α induced angiogenesis in a HUVEC and synovial cell co-culture system. Rheumatol. Int., 2009, 29(12), 1449-1454.
[http://dx.doi.org/10.1007/s00296-009-0885-8] [PMID: 19277666]
[27]
Liao, W.; Lin, J.X.; Leonard, W.J. Interleukin-2 at the crossroads of effector responses, tolerance, and immunotherapy. Immunity, 2013, 38(1), 13-25.
[http://dx.doi.org/10.1016/j.immuni.2013.01.004] [PMID: 23352221]
[28]
Cammarata, M.; Parisi, M.G.; Benenati, G.; Vasta, G.R.; Parrinello, N. A rhamnose-binding lectin from sea bass (Dicentrarchus labrax) plasma agglutinates and opsonizes pathogenic bacteria. Dev. Comp. Immunol., 2014, 44(2), 332-340.
[http://dx.doi.org/10.1016/j.dci.2014.01.019] [PMID: 24486534]
[29]
Paiva, P.M.G.; Pontual, E.V.; Napoleão, T.H.; Coelho, L.C.B.B. Lectins and trypsin inhibitors from plants. In: Biochemical Characteristics and Adverse Effects on Insect Larvae, 1st ed; Nova Science Publishers Inc: New York, 2013, pp. 9-14.
[30]
Yau, T.; Dan, X.; Ng, C.C.W.; Ng, T.B. Lectins with potential for anti-cancer therapy. Molecules, 2015, 20(3), 3791-3810.
[http://dx.doi.org/10.3390/molecules20033791] [PMID: 25730388]
[31]
Zhang, Z.; He, L.; Hu, S.; Wang, Y.; Lai, Q.; Yang, P.; Yu, Q.; Zhang, S.; Xiong, F.; Simsekyilmaz, S.; Ning, Q.; Li, J.; Zhang, D.; Zhang, H.; Xiang, X.; Zhou, Z.; Sun, H.; Wang, C.Y. AAL exacerbates pro-inflammatory response in macrophages by regulating Mincle/Syk/Card9 signaling along with the Nlrp3 inflammasome assembly. Am. J. Transl. Res., 2015, 7(10), 1812-1825.
[PMID: 26692926]
[32]
Procópio, T.F.; Moura, M.C.; Albuquerque, L.P.; Gomes, F.S.; Santos, N.D.L.; Coelho, L.C.B.B.; Pontual, E.V.; Paiva, P.M.G.; Napoleão, T.H. Antibacterial lectins: action mechanisms, defensive roles and biotechnological potential. In: Antibacterials– Synthesis, Properties and Biological Activities; Nova Science Publishers Inc: New York, 2017, Vol. 1, pp. 69-89.
[33]
Lam, Y.W.; Ng, T.B. Purification and characterization of a rhamnose-binding lectin with immunoenhancing activity from grass carp (Ctenopharyngodon idellus) ovaries. Protein Expr. Purif., 2002, 26(3), 378-385.
[http://dx.doi.org/10.1016/S1046-5928(02)00559-4] [PMID: 12460761]
[34]
Watanabe, Y.; Tateno, H.; Nakamura-Tsuruta, S.; Kominami, J.; Hirabayashi, J.; Nakamura, O.; Watanabe, T.; Kamiya, H.; Naganuma, T.; Ogawa, T.; Naudé, R.J.; Muramoto, K. The function of rhamnose-binding lectin in innate immunity by restricted binding to Gb3. Dev. Comp. Immunol., 2009, 33(2), 187-197.
[http://dx.doi.org/10.1016/j.dci.2008.08.008] [PMID: 18809432]
[35]
Watanabe, Y.; Shiina, N.; Shinozaki, F.; Yokoyama, H.; Kominami, J.; Nakamura-Tsuruta, S.; Hirabayashi, J.; Sugahara, K.; Kamiya, H.; Matsubara, H.; Ogawa, T.; Muramoto, K. Isolation and characterization of l-rhamnose-binding lectin, which binds to microsporidian Glugea plecoglossi, from ayu (Plecoglossus altivelis) eggs. Dev. Comp. Immunol., 2008, 32(5), 487-499.
[http://dx.doi.org/10.1016/j.dci.2007.08.007] [PMID: 17997156]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 26
ISSUE: 12
Year: 2019
Page: [887 - 892]
Pages: 6
DOI: 10.2174/0929866526666190911144057
Price: $65

Article Metrics

PDF: 15
HTML: 2
EPUB: 1
PRC: 1