Stem Cell Senescence: the Obstacle of the Treatment of Degenerative Disk Disease

Author(s): Ying Chen, Liling Tang*.

Journal Name: Current Stem Cell Research & Therapy

Volume 14 , Issue 8 , 2019

Become EABM
Become Reviewer

Abstract:

Intervertebral disc (IVD) has a pivotal role in the maintenance of flexible motion. IVD degeneration is one of the primary causes of low back pain and disability, which seriously influences patients’ health, and increases the family and social economic burden. Recently, stem cell therapy has been proven to be more effective on IVD degeneration disease. However, stem cell senescence is the limiting factor in the IVD degeneration treatment. Senescent stem cells have a negative effect on the self-repair on IVD degeneration. In this review, we delineate that the factors such as telomerase shortening, DNA damage, oxidative stress, microenvironment and exosomes will induce stem cell aging. Recent studies tried to delay the aging of stem cells by regulating the expression of aging-related genes and proteins, changing the activity of telomerase, improving the survival microenvironment of stem cells and drug treatment. Understanding the mechanism of stem cell aging and exploring new approaches to delay or reverse stem cell aging asks for research on the repair of the degenerated disc.

Keywords: Stem cell, senescence, intervertebral disc degeneration, menopause, neurogenesis, adhesion makers.

[1]
Thompson JP, Pearce RH, Schechter MT, Adams ME, Tsang IK, Bishop PB. Preliminary evaluation of a scheme for grading the gross morphology of the human intervertebral disc. Spine 1990; 15(5): 411-5.
[http://dx.doi.org/10.1097/00007632-199005000-00012] [PMID: 2363069]
[2]
Battié MC, Videman T, Levalahti E, Gill K, Kaprio J. Heritability of low back pain and the role of disc degeneration. Pain 2007; 131(3): 272-80.
[http://dx.doi.org/10.1016/j.pain.2007.01.010] [PMID: 17335977]
[3]
Pfirrmann CWA, Metzdorf A, Elfering A, Hodler J, Boos N. Effect of aging and degeneration on disc volume and shape: A quantitative study in asymptomatic volunteers. J Orthop Res 2006; 24(5): 1086-94.
[http://dx.doi.org/10.1002/jor.20113] [PMID: 16609964]
[4]
Dolan P, Luo J, Pollintine P, Landham PR, Stefanakis M, Adams MA. Intervertebral disc decompression following endplate damage: implications for disc degeneration depend on spinal level and age. Spine 2013; 38(17): 1473-81.
[http://dx.doi.org/10.1097/BRS.0b013e318290f3cc] [PMID: 23486408]
[5]
Omair A, Mannion AF, Holden M, et al. Age and pro-inflammatory gene polymorphisms influence adjacent segment disc degeneration more than fusion does in patients treated for chronic low back pain. Eur Spine J 2016; 25(1): 2-13.
[http://dx.doi.org/10.1007/s00586-015-4181-x] [PMID: 26281980]
[6]
Fujita K, Ando T, Ohba T, et al. Age-related expression of MCP-1 and MMP-3 in mouse intervertebral disc in relation to TWEAK and TNF-α stimulation. J Orthop Res 2012; 30(4): 599-605.
[http://dx.doi.org/10.1002/jor.21560] [PMID: 21928379]
[7]
Shiri R, Karppinen J, Leino-Arjas P, Solovieva S, Viikari-Juntura E. The association between obesity and low back pain: a meta-analysis. Am J Epidemiol 2010; 171(2): 135-54.
[http://dx.doi.org/10.1093/aje/kwp356] [PMID: 20007994]
[8]
Shiri R, Karppinen J, Leino-Arjas P, Solovieva S, Viikari-Juntura E. The association between smoking and low back pain: A meta-analysis. Am J Med 2010; 123(1): 87.e7-87.e35.
[http://dx.doi.org/10.1016/j.amjmed.2009.05.028] [PMID: 20102998]
[9]
Williams FMK, Sambrook PN. Neck and back pain and intervertebral disc degeneration: role of occupational factors. Best Pract Res Clin Rheumatol 2011; 25(1): 69-79.
[http://dx.doi.org/10.1016/j.berh.2011.01.007] [PMID: 21663851]
[10]
Lundine KM, Davis G, Rogers M, Staples M, Quan G. Prevalence of adjacent segment disc degeneration in patients undergoing anterior cervical discectomy and fusion based on pre-operative MRI findings. J Clin Neurosci 2014; 21(1): 82-5.
[http://dx.doi.org/10.1016/j.jocn.2013.02.039] [PMID: 24035205]
[11]
Siepe CJ, Heider F, Wiechert K, Hitzl W, Ishak B, Mayer MH. Mid- to long-term results of total lumbar disc replacement: A prospective analysis with 5- to 10-year follow-up. Spine J 2014; 14(8): 1417-31.
[http://dx.doi.org/10.1016/j.spinee.2013.08.028] [PMID: 24448028]
[12]
Bowles RD, Gebhard HH, Härtl R, Bonassar LJ. Tissue-engineered intervertebral discs produce new matrix, maintain disc height, and restore biomechanical function to the rodent spine. Proc Natl Acad Sci USA 2011; 108(32): 13106-11.
[http://dx.doi.org/10.1073/pnas.1107094108] [PMID: 21808048]
[13]
Sakai D, Nakamura Y, Nakai T, et al. Exhaustion of nucleus pulposus progenitor cells with ageing and degeneration of the intervertebral disc. Nat Commun 2012; 3: 1264.
[http://dx.doi.org/10.1038/ncomms2226] [PMID: 23232394]
[14]
Tsai TL, Nelson BC, Anderson PA, Zdeblick TA, Li WJ. Intervertebral disc and stem cells cocultured in biomimetic extracellular matrix stimulated by cyclic compression in perfusion bioreactor. Spine J 2014; 14(9): 2127-40.
[http://dx.doi.org/10.1016/j.spinee.2013.11.062] [PMID: 24882152]
[15]
Chen WH, Lo WC, Lee JJ, et al. Tissue-engineered intervertebral disc and chondrogenesis using human nucleus pulposus regulated through TGF-beta1 in platelet-rich plasma. J Cell Physiol 2006; 209(3): 744-54.
[http://dx.doi.org/10.1002/jcp.20765] [PMID: 16955489]
[16]
Korecki CL, Taboas JM, Tuan RS, Iatridis JC. Notochordal cell conditioned medium stimulates mesenchymal stem cell differentiation toward a young nucleus pulposus phenotype. Stem Cell Res Ther 2010; 1(2): 18.
[http://dx.doi.org/10.1186/scrt18] [PMID: 20565707]
[17]
Hudson KD, Bonassar LJ. Hypoxic Expansion of Human Mesenchymal Stem Cells Enhances Three-Dimensional Maturation of Tissue-Engineered Intervertebral Discs. Tissue Eng Part A 2017; 23(7-8): 293-300.
[http://dx.doi.org/10.1089/ten.tea.2016.0270] [PMID: 27903131]
[18]
See EY, Toh SL, Goh JC. Effects of radial compression on a novel simulated intervertebral disc-like assembly using bone marrow-derived mesenchymal stem cell cell-sheets for annulus fibrosus regeneration. Spine 2011; 36(21): 1744-51.
[http://dx.doi.org/10.1097/BRS.0b013e31821986b3] [PMID: 22046611]
[19]
Potočar U, Hudoklin S, Kreft ME, Završnik J, Božikov K, Fröhlich M. Adipose-Derived Stem Cells Respond to Increased Osmolarities. PLoS One 2016; 11(10)e0163870
[http://dx.doi.org/10.1371/journal.pone.0163870] [PMID: 27706209]
[20]
Massin F, Huili C, Decot V, Stoltz JF, Bensoussan D, Latger-Cannard V. Validation of a single-platform method for hematopoietic CD34+ stem cells enumeration according to accreditation procedure. Biomed Mater Eng 2015; 25(1)(Suppl.): 27-39.
[PMID: 25538053]
[21]
Zhao Y, Jia Z, Huang S, et al. Age-Related Changes in Nucleus Pulposus Mesenchymal Stem Cells: An In vitro Study in Rats. Stem Cells Int 2017.20176761572
[http://dx.doi.org/10.1155/2017/6761572] [PMID: 28396688]
[22]
Zhou S, Greenberger JS, Epperly MW, et al. Age-related intrinsic changes in human bone-marrow-derived mesenchymal stem cells and their differentiation to osteoblasts. Aging Cell 2008; 7(3): 335-43.
[http://dx.doi.org/10.1111/j.1474-9726.2008.00377.x] [PMID: 18248663]
[23]
Vamvakas SS, Mavrogonatou E, Kletsas D. Human nucleus pulposus intervertebral disc cells becoming senescent using different treatments exhibit a similar transcriptional profile of catabolic and inflammatory genes. Eur Spine J 2017; 26(8): 2063-71.
[http://dx.doi.org/10.1007/s00586-017-5198-0] [PMID: 28646455]
[24]
Risbud MV, Shapiro IM. Role of cytokines in intervertebral disc degeneration: pain and disc content. Nat Rev Rheumatol 2014; 10(1): 44-56.
[http://dx.doi.org/10.1038/nrrheum.2013.160] [PMID: 24166242]
[25]
Henriksson H, Thornemo M, Karlsson C, et al. Identification of cell proliferation zones, progenitor cells and a potential stem cell niche in the intervertebral disc region: a study in four species. Spine 2009; 34(21): 2278-87.
[http://dx.doi.org/10.1097/BRS.0b013e3181a95ad2] [PMID: 19755937]
[26]
Risbud MV, Guttapalli A, Tsai TT, et al. Evidence for skeletal progenitor cells in the degenerate human intervertebral disc. Spine 2007; 32(23): 2537-44.
[http://dx.doi.org/10.1097/BRS.0b013e318158dea6] [PMID: 17978651]
[27]
Brisby H, Papadimitriou N, Brantsing C, Bergh P, Lindahl A, Barreto Henriksson H. The presence of local mesenchymal progenitor cells in human degenerated intervertebral discs and possibilities to influence these in vitro: a descriptive study in humans. Stem Cells Dev 2013; 22(5): 804-14.
[http://dx.doi.org/10.1089/scd.2012.0179] [PMID: 23025667]
[28]
Frauchiger DA, Tekari A, May RD, et al. Fluorescence-activated cell sorting is more potent to fish intervertebral disk progenitor cells than magnetic and beads-based methods. Tissue Eng Part C Methods 2019; 25(10): 571-80.
[http://dx.doi.org/10.1089/ten.TEC.2018.0375] [PMID: 31154900]
[29]
Huang B, Liu LT, Li CQ, et al. Study to determine the presence of progenitor cells in the degenerated human cartilage endplates. Eur Spine J 2012; 21(4): 613-22.
[http://dx.doi.org/10.1007/s00586-011-2039-4] [PMID: 22033570]
[30]
Freemont AJ, et al. Influence of rabbit notochordal cells on symptomatic intervertebral disc degeneration: Anti-angiogenic capacity on human endothelial cell proliferation under hypoxia. Sci Rep 2017; 25(10): 1738-46.
[http://dx.doi.org/10.1016/j.joca.2017.06.003] [PMID: 28647468]
[31]
Richardson SM, Ludwinski FE, Gnanalingham KK, Atkinson RA, Freemont AJ, Hoyland JA. Notochordal and nucleus pulposus marker expression is maintained by sub-populations of adult human nucleus pulposus cells through aging and degeneration. Sci Rep 2017; 7(1): 1501.
[http://dx.doi.org/10.1038/s41598-017-01567-w] [PMID: 28473691]
[32]
Kim KW, Ha KY, Lee JS, et al. Notochordal cells stimulate migration of cartilage end plate chondrocytes of the intervertebral disc in in vitro cell migration assays. Spine J 2009; 9(4): 323-9.
[http://dx.doi.org/10.1016/j.spinee.2008.05.003] [PMID: 18619909]
[33]
de Vries SA, van Doeselaar M, Meij BP, Tryfonidou MA, Ito K. The Stimulatory Effect of Notochordal Cell-Conditioned Medium in a Nucleus Pulposus Explant Culture. Tissue Eng Part A 2016; 22(1-2): 103-10.
[http://dx.doi.org/10.1089/ten.tea.2015.0121] [PMID: 26421447]
[34]
Mehrkens A, Matta A, Karim MZ, et al. Notochordal cell-derived conditioned medium protects human nucleus pulposus cells from stress-induced apoptosis. Spine J 2017; 17(4): 579-88.
[http://dx.doi.org/10.1016/j.spinee.2017.01.003] [PMID: 28089818]
[35]
Cornejo MC, Cho SK, Giannarelli C, Iatridis JC, Purmessur D. Soluble factors from the notochordal-rich intervertebral disc inhibit endothelial cell invasion and vessel formation in the presence and absence of pro-inflammatory cytokines. Osteoarthritis Cartilage 2015; 23(3): 487-96.
[http://dx.doi.org/10.1016/j.joca.2014.12.010] [PMID: 25534363]
[36]
Bach FC, de Vries SA, Riemers FM, et al. Soluble and pelletable factors in porcine, canine and human notochordal cell-conditioned medium: implications for IVD regeneration. Eur Cell Mater 2016; 32: 163-80.
[http://dx.doi.org/10.22203/eCM.v032a11] [PMID: 27572543]
[37]
Bach FC, de Vries SA, Krouwels A, et al. The species-specific regenerative effects of notochordal cell-conditioned medium on chondrocyte-like cells derived from degenerated human intervertebral discs. Eur Cell Mater 2015; 30: 132-46.
[http://dx.doi.org/10.22203/eCM.v030a10] [PMID: 26388616]
[38]
Blanco JF, Graciani IF, Sanchez-Guijo FM, et al. Isolation and characterization of mesenchymal stromal cells from human degenerated nucleus pulposus: comparison with bone marrow mesenchymal stromal cells from the same subjects. Spine 2010; 35(26): 2259-65.
[http://dx.doi.org/10.1097/BRS.0b013e3181cb8828] [PMID: 20622750]
[39]
Shen Q, Zhang L, Chai B, Ma X. Isolation and characterization of mesenchymal stem-like cells from human nucleus pulposus tissue. Sci China Life Sci 2015; 58(5): 509-11.
[http://dx.doi.org/10.1007/s11427-015-4839-y] [PMID: 25833805]
[40]
Feng G, Yang X, Shang H, et al. Multipotential differentiation of human anulus fibrosus cells: an in vitro study. J Bone Joint Surg Am 2010; 92(3): 675-85.
[http://dx.doi.org/10.2106/JBJS.H.01672] [PMID: 20194326]
[41]
Yasen M, Fei Q, Hutton WC, et al. Changes of number of cells expressing proliferation and progenitor cell markers with age in rabbit intervertebral discs. Acta Biochim Biophys Sin (Shanghai) 2013; 45(5): 368-76.
[http://dx.doi.org/10.1093/abbs/gmt019] [PMID: 23449074]
[42]
Wang H, Zhou Y, Chu TW, et al. Distinguishing characteristics of stem cells derived from different anatomical regions of human degenerated intervertebral discs. Eur Spine J 2016; 25(9): 2691-704.
[http://dx.doi.org/10.1007/s00586-016-4522-4] [PMID: 26984881]
[43]
Liu L-T, Huang B, Li CQ, Zhuang Y, Wang J, Zhou Y. Characteristics of stem cells derived from the degenerated human intervertebral disc cartilage endplate. PLoS One 2011; 6(10)e26285
[http://dx.doi.org/10.1371/journal.pone.0026285] [PMID: 22028847]
[44]
Sakai D, Mochida J, Iwashina T, et al. Regenerative effects of transplanting mesenchymal stem cells embedded in atelocollagen to the degenerated intervertebral disc. Biomaterials 2006; 27(3): 335-45.
[http://dx.doi.org/10.1016/j.biomaterials.2005.06.038] [PMID: 16112726]
[45]
Sakai D, Mochida J, Iwashina T, et al. Differentiation of mesenchymal stem cells transplanted to a rabbit degenerative disc model: potential and limitations for stem cell therapy in disc regeneration. Spine 2005; 30(21): 2379-87.
[http://dx.doi.org/10.1097/01.brs.0000184365.28481.e3] [PMID: 16261113]
[46]
Ganey T, Hutton WC, Moseley T, Hedrick M, Meisel HJ. Intervertebral disc repair using adipose tissue-derived stem and regenerative cells: experiments in a canine model. Spine 2009; 34(21): 2297-304.
[http://dx.doi.org/10.1097/BRS.0b013e3181a54157] [PMID: 19934809]
[47]
Serigano K, Sakai D, Hiyama A, Tamura F, Tanaka M, Mochida J. Effect of cell number on mesenchymal stem cell transplantation in a canine disc degeneration model. J Orthop Res 2010; 28(10): 1267-75.
[http://dx.doi.org/10.1002/jor.21147] [PMID: 20839317]
[48]
Bendtsen M, Bünger CE, Zou X, Foldager C, Jørgensen HS. Autologous stem cell therapy maintains vertebral blood flow and contrast diffusion through the endplate in experimental intervertebral disc degeneration. Spine 2011; 36(6): E373-9.
[http://dx.doi.org/10.1097/BRS.0b013e3181dce34c] [PMID: 21372649]
[49]
Gorensek M, Jaksimović C, Kregar-Velikonja N, et al. Nucleus pulposus repair with cultured autologous elastic cartilage derived chondrocytes. Cell Mol Biol Lett 2004; 9(2): 363-73.
[PMID: 15213815]
[50]
Okuma M, Mochida J, Nishimura K, Sakabe K, Seiki K. Reinsertion of stimulated nucleus pulposus cells retards intervertebral disc degeneration: an in vitro and in vivo experimental study. J Orthop Res 2000; 18(6): 988-97.
[http://dx.doi.org/10.1002/jor.1100180620] [PMID: 11192261]
[51]
Gruber HE, Johnson TL, Leslie K, et al. Autologous intervertebral disc cell implantation: a model using Psammomys obesus, the sand rat. Spine 2002; 27(15): 1626-33.
[http://dx.doi.org/10.1097/00007632-200208010-00007] [PMID: 12163723]
[52]
Vedicherla S, Buckley CT. In vitro extracellular matrix accumulation of nasal and articular chondrocytes for intervertebral disc repair. Tissue Cell 2017; 49(4): 503-13.
[http://dx.doi.org/10.1016/j.tice.2017.05.002] [PMID: 28515001]
[53]
Omlor GW, Bertram H, Kleinschmidt K, et al. Methods to monitor distribution and metabolic activity of mesenchymal stem cells following in vivo injection into nucleotomized porcine intervertebral discs. Eur Spine J 2010; 19(4): 601-12.
[http://dx.doi.org/10.1007/s00586-009-1255-7] [PMID: 20039083]
[54]
Ho G, Leung VY, Cheung KM, Chan D. Effect of severity of intervertebral disc injury on mesenchymal stem cell-based regeneration. Connect Tissue Res 2008; 49(1): 15-21.
[http://dx.doi.org/10.1080/03008200701818595] [PMID: 18293174]
[55]
Zhang Y, Drapeau S, Howard SA, Thonar EJ, Anderson DG. Transplantation of goat bone marrow stromal cells to the degenerating intervertebral disc in a goat disc injury model. Spine 2011; 36(5): 372-7.
[http://dx.doi.org/10.1097/BRS.0b013e3181d10401] [PMID: 20890267]
[56]
Hee HT, Ismail HD, Lim CT, Goh JC, Wong HK. Effects of implantation of bone marrow mesenchymal stem cells, disc distraction and combined therapy on reversing degeneration of the intervertebral disc. J Bone Joint Surg Br 2010; 92(5): 726-36.
[http://dx.doi.org/10.1302/0301-620X.92B5.23015] [PMID: 20436013]
[57]
Yi Z, Guanjun T, Lin C, Zifeng P. Effects of transplantation of hTIMP1-expressing bone marrow mesenchymal stem cells on the extracellular matrix of degenerative intervertebral discs in an in vivo rabbit model. Spine (Phila Pa 1976) 2014; 39(11): E669-75.
[http://dx.doi.org/10.1097/BRS.0000000000000316]
[58]
Cai F, Wu XT, Xie XH, et al. Evaluation of intervertebral disc regeneration with implantation of bone marrow mesenchymal stem cells (BMSCs) using quantitative T2 mapping: a study in rabbits. Int Orthop 2015; 39(1): 149-59.
[http://dx.doi.org/10.1007/s00264-014-2481-0] [PMID: 25117574]
[59]
Yang H, Wu J, Liu J, et al. Transplanted mesenchymal stem cells with pure fibrinous gelatin-transforming growth factor-beta1 decrease rabbit intervertebral disc degeneration. Spine J 2010; 10(9): 802-10.
[http://dx.doi.org/10.1016/j.spinee.2010.06.019] [PMID: 20655810]
[60]
Jeong JH, Lee JH, Jin ES, Min JK, Jeon SR, Choi KH. Regeneration of intervertebral discs in a rat disc degeneration model by implanted adipose-tissue-derived stromal cells. Acta Neurochir (Wien) 2010; 152(10): 1771-7.
[http://dx.doi.org/10.1007/s00701-010-0698-2] [PMID: 20571835]
[61]
Watanabe K, Mochida J, Nomura T, Okuma M, Sakabe K, Seiki K. Effect of reinsertion of activated nucleus pulposus on disc degeneration: an experimental study on various types of collagen in degenerative discs. Connect Tissue Res 2003; 44(2): 104-8.
[http://dx.doi.org/10.1080/03008200390200247] [PMID: 12745677]
[62]
Huang B, Zhuang Y, Li CQ, Liu LT, Zhou Y. Regeneration of the intervertebral disc with nucleus pulposus cell-seeded collagen II/hyaluronan/chondroitin-6-sulfate tri-copolymer constructs in a rabbit disc degeneration model. Spine 2011; 36(26): 2252-9.
[http://dx.doi.org/10.1097/BRS.0b013e318209fd85] [PMID: 21358466]
[63]
Sato M, Asazuma T, Ishihara M, et al. An experimental study of the regeneration of the intervertebral disc with an allograft of cultured annulus fibrosus cells using a tissue-engineering method. Spine 2003; 28(6): 548-53.
[http://dx.doi.org/10.1097/01.BRS.0000049909.09102.60] [PMID: 12642760]
[64]
Miyamoto T, Muneta T, Tabuchi T, et al. Intradiscal transplantation of synovial mesenchymal stem cells prevents intervertebral disc degeneration through suppression of matrix metalloproteinase-related genes in nucleus pulposus cells in rabbits. Arthritis Res Ther 2010; 12(6): R206.
[http://dx.doi.org/10.1186/ar3182] [PMID: 21054867]
[65]
Wei A, Tao H, Chung SA, Brisby H, Ma DD, Diwan AD. The fate of transplanted xenogeneic bone marrow-derived stem cells in rat intervertebral discs. J Orthop Res 2009; 27(3): 374-9.
[http://dx.doi.org/10.1002/jor.20567] [PMID: 18853431]
[66]
Henriksson HB, Svanvik T, Jonsson M, et al. Transplantation of human mesenchymal stems cells into intervertebral discs in a xenogeneic porcine model. Spine 2009; 34(2): 141-8.
[http://dx.doi.org/10.1097/BRS.0b013e31818f8c20] [PMID: 19112334]
[67]
Prologo JD, Pirasteh A, Tenley N, et al. Percutaneous image-guided delivery for the transplantation of mesenchymal stem cells in the setting of degenerated intervertebral discs. J Vasc Interv Radiol 2012; 23(8): 1084-1088.e6.
[http://dx.doi.org/10.1016/j.jvir.2012.04.032] [PMID: 22739647]
[68]
Chun HJ, Kim YS, Kim BK, et al. Transplantation of human adipose-derived stem cells in a rabbit model of traumatic degeneration of lumbar discs. World Neurosurg 2012; 78(3-4): 364-71.
[http://dx.doi.org/10.1016/j.wneu.2011.12.084] [PMID: 22381275]
[69]
Iwashina T, Mochida J, Sakai D, et al. Feasibility of using a human nucleus pulposus cell line as a cell source in cell transplantation therapy for intervertebral disc degeneration. Spine 2006; 31(11): 1177-86.
[http://dx.doi.org/10.1097/01.brs.0000217687.36874.c4] [PMID: 16688029]
[70]
Leckie SK, Sowa GA, Bechara BP, et al. Injection of human umbilical tissue-derived cells into the nucleus pulposus alters the course of intervertebral disc degeneration in vivo. Spine J 2013; 13(3): 263-72.
[http://dx.doi.org/10.1016/j.spinee.2012.12.004] [PMID: 23384411]
[71]
Tam V, Rogers I, Chan D, Leung VY, Cheung KM. A comparison of intravenous and intradiscal delivery of multipotential stem cells on the healing of injured intervertebral disk. J Orthop Res 2014; 32(6): 819-25.
[http://dx.doi.org/10.1002/jor.22605] [PMID: 24578095]
[72]
Haufe SM, Mork AR. Intradiscal injection of hematopoietic stem cells in an attempt to rejuvenate the intervertebral discs. Stem Cells Dev 2006; 15(1): 136-7.
[http://dx.doi.org/10.1089/scd.2006.15.136] [PMID: 16522171]
[73]
Yoshikawa T, Ueda Y, Miyazaki K, Koizumi M, Takakura Y. Disc regeneration therapy using marrow mesenchymal cell transplantation: a report of two case studies. Spine 2010; 35(11): E475-80.
[http://dx.doi.org/10.1097/BRS.0b013e3181cd2cf4] [PMID: 20421856]
[74]
Orozco L, Soler R, Morera C, Alberca M, Sánchez A, García-Sancho J. Intervertebral disc repair by autologous mesenchymal bone marrow cells: a pilot study. Transplantation 2011; 92(7): 822-8.
[http://dx.doi.org/10.1097/TP.0b013e3182298a15] [PMID: 21792091]
[75]
Coric D, Pettine K, Sumich A, Boltes MO. Prospective study of disc repair with allogeneic chondrocytes presented at the 2012 Joint Spine Section Meeting. J Neurosurg Spine 2013; 18(1): 85-95.
[http://dx.doi.org/10.3171/2012.10.SPINE12512] [PMID: 23140128]
[76]
Hayflick L. The limited in vitro lifetime of human diploid cell strains. Exp Cell Res 1965; 37: 614-36.
[http://dx.doi.org/10.1016/0014-4827(65)90211-9] [PMID: 14315085]
[77]
Aw D, Silva AB, Palmer DB. Immunosenescence: Emerging challenges for an ageing population. Immunology 2007; 120(4): 435-46.
[http://dx.doi.org/10.1111/j.1365-2567.2007.02555.x] [PMID: 17313487]
[78]
Han J, Kim YL, Lee KW, et al. ZNF313 is a novel cell cycle activator with an E3 ligase activity inhibiting cellular senescence by destabilizing p21(WAF1.). Cell Death Differ 2013; 20(8): 1055-67.
[http://dx.doi.org/10.1038/cdd.2013.33] [PMID: 23645206]
[79]
Krenning L, Feringa FM, Shaltiel IA, van den Berg J, Medema RH. Transient activation of p53 in G2 phase is sufficient to induce senescence. Mol Cell 2014; 55(1): 59-72.
[http://dx.doi.org/10.1016/j.molcel.2014.05.007] [PMID: 24910099]
[80]
Álvarez-Quilón A, Serrano-Benítez A, Lieberman JA, et al. ATM specifically mediates repair of double-strand breaks with blocked DNA ends. Nat Commun 2014; 5: 3347.
[http://dx.doi.org/10.1038/ncomms4347] [PMID: 24572510]
[81]
Agarwal P, Sandey M, DeInnocentes P, Bird RC. Tumor suppressor gene p16/INK4A/CDKN2A-dependent regulation into and out of the cell cycle in a spontaneous canine model of breast cancer. J Cell Biochem 2013; 114(6): 1355-63.
[http://dx.doi.org/10.1002/jcb.24476] [PMID: 23238983]
[82]
Braig M, Lee S, Loddenkemper C, et al. Oncogene-induced senescence as an initial barrier in lymphoma development. Nature 2005; 436(7051): 660-5.
[http://dx.doi.org/10.1038/nature03841] [PMID: 16079837]
[83]
Narita M, Nũnez S, Heard E, et al. Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 2003; 113(6): 703-16.
[http://dx.doi.org/10.1016/S0092-8674(03)00401-X] [PMID: 12809602]
[84]
Liu GH, Qu J, Suzuki K, et al. Progressive degeneration of human neural stem cells caused by pathogenic LRRK2. Nature 2012; 491(7425): 603-7.
[http://dx.doi.org/10.1038/nature11557] [PMID: 23075850]
[85]
Cosgrove BD, Gilbert PM, Porpiglia E, et al. Rejuvenation of the muscle stem cell population restores strength to injured aged muscles. Nat Med 2014; 20(3): 255-64.
[http://dx.doi.org/10.1038/nm.3464] [PMID: 24531378]
[86]
Henriksson HB, Svala E, Skioldebrand E, Lindahl A, Brisby H. Support of concept that migrating progenitor cells from stem cell niches contribute to normal regeneration of the adult mammal intervertebral disc: a descriptive study in the New Zealand white rabbit. Spine 2012; 37(9): 722-32.
[http://dx.doi.org/10.1097/BRS.0b013e318231c2f7] [PMID: 21897341]
[87]
Marfia G, Campanella R, Navone SE, et al. Potential use of human adipose mesenchymal stromal cells for intervertebral disc regeneration: a preliminary study on biglycan-deficient murine model of chronic disc degeneration. Arthritis Res Ther 2014; 16(5): 457.
[http://dx.doi.org/10.1186/s13075-014-0457-5] [PMID: 25293819]
[88]
Sang C, Cao X, Chen F, Yang X, Zhang Y. Differential Characterization of Two Kinds of Stem Cells Isolated from Rabbit Nucleus Pulposus and Annulus Fibrosus. Stem Cells Int 2016.20168283257
[http://dx.doi.org/10.1155/2016/8283257] [PMID: 27703485]
[89]
Anderson DG, Markova D, An HS, et al. Human umbilical cord blood-derived mesenchymal stem cells in the cultured rabbit intervertebral disc: a novel cell source for disc repair. Am J Phys Med Rehabil 2013; 92(5): 420-9.
[http://dx.doi.org/10.1097/PHM.0b013e31825f148a] [PMID: 23598901]
[90]
Molinos M, Cunha C, Almeida CR, et al. Age-Correlated Phenotypic Alterations in Cells Isolated From Human Degenerated Intervertebral Discs With Contained Hernias. Spine 2018; 43(5): E274-84.
[http://dx.doi.org/10.1097/BRS.0000000000002311] [PMID: 28678109]
[91]
Ryu E, Hong S, Kang J, et al. Identification of senescence-associated genes in human bone marrow mesenchymal stem cells. Biochem Biophys Res Commun 2008; 371(3): 431-6.
[http://dx.doi.org/10.1016/j.bbrc.2008.04.111] [PMID: 18452712]
[92]
Shibata KR, Aoyama T, Shima Y, et al. Expression of the p16INK4A gene is associated closely with senescence of human mesenchymal stem cells and is potentially silenced by DNA methylation during in vitro expansion. Stem Cells 2007; 25(9): 2371-82.
[http://dx.doi.org/10.1634/stemcells.2007-0225] [PMID: 17569790]
[93]
Dumble M, Moore L, Chambers SM, et al. The impact of altered p53 dosage on hematopoietic stem cell dynamics during aging. Blood 2007; 109(4): 1736-42.
[http://dx.doi.org/10.1182/blood-2006-03-010413] [PMID: 17032926]
[94]
Kirschner K, Chandra T, Kiselev V, et al. Proliferation Drives Aging-Related Functional Decline in a Subpopulation of the Hematopoietic Stem Cell Compartment. Cell Rep 2017; 19(8): 1503-11.
[http://dx.doi.org/10.1016/j.celrep.2017.04.074] [PMID: 28538171]
[95]
Baxter MA, Wynn RF, Jowitt SN, Wraith JE, Fairbairn LJ, Bellantuono I. Study of telomere length reveals rapid aging of human marrow stromal cells following in vitro expansion. Stem Cells 2004; 22(5): 675-82.
[http://dx.doi.org/10.1634/stemcells.22-5-675] [PMID: 15342932]
[96]
Böcker W, Yin Z, Drosse I, et al. Introducing a single-cell-derived human mesenchymal stem cell line expressing hTERT after lentiviral gene transfer. J Cell Mol Med 2008; 12(4): 1347-59.
[http://dx.doi.org/10.1111/j.1582-4934.2008.00299.x] [PMID: 18318690]
[97]
Liang XJ, Chen XJ, Yang DH, Huang SM, Sun GD, Chen YP. Differentiation of human umbilical cord mesenchymal stem cells into hepatocyte-like cells by hTERT gene transfection in vitro. Cell Biol Int 2012; 36(2): 215-21.
[http://dx.doi.org/10.1042/CBI20110350] [PMID: 21988655]
[98]
Elwood NJ, Jiang XR, Chiu CP, Lebkowski JS, Smith CA. Enhanced long-term survival, but no increase in replicative capacity, following retroviral transduction of human cord blood CD34+ cells with human telomerase reverse transcriptase. Haematologica 2004; 89(3): 377-8.
[PMID: 15020288]
[99]
Kim JY, Tavaré S, Shibata D. Counting human somatic cell replications: methylation mirrors endometrial stem cell divisions. Proc Natl Acad Sci USA 2005; 102(49): 17739-44.
[http://dx.doi.org/10.1073/pnas.0503976102] [PMID: 16314580]
[100]
Curtis MJ, Hays JB. Cooperative responses of DNA-damage-activated protein kinases ATR and ATM and DNA translesion polymerases to replication-blocking DNA damage in a stem-cell niche. DNA Repair (Amst) 2011; 10(12): 1272-81.
[http://dx.doi.org/10.1016/j.dnarep.2011.10.001] [PMID: 22018494]
[101]
Alessio N, Del Gaudio S, Capasso S, et al. Low dose radiation induced senescence of human mesenchymal stromal cells and impaired the autophagy process. Oncotarget 2015; 6(10): 8155-66.
[http://dx.doi.org/10.18632/oncotarget.2692] [PMID: 25544750]
[102]
Borodkina A, Shatrova A, Abushik P, Nikolsky N, Burova E. Interaction between ROS dependent DNA damage, mitochondria and p38 MAPK underlies senescence of human adult stem cells. Aging (Albany NY) 2014; 6(6): 481-95.
[http://dx.doi.org/10.18632/aging.100673] [PMID: 24934860]
[103]
Ronn RE, et al. Reactive oxygen species impair the function of cd90+ hematopoietic progenitors generated from human pluripotent stem cells. Stem Cells 2016.
[PMID: 27641910]
[104]
Park H, Park H, Pak HJ, et al. miR-34a inhibits differentiation of human adipose tissue-derived stem cells by regulating cell cycle and senescence induction. Differentiation 2015; 90(4-5): 91-100.
[http://dx.doi.org/10.1016/j.diff.2015.10.010] [PMID: 26677981]
[105]
Xu Q, Liu M, Zhang J, et al. Overexpression of KLF4 promotes cell senescence through microRNA-203-survivin-p21 pathway. Oncotarget 2016; 7(37): 60290-302.
[http://dx.doi.org/10.18632/oncotarget.11200] [PMID: 27531889]
[106]
Naka-Kaneda H, Nakamura S, Igarashi M, et al. The miR-17/106-p38 axis is a key regulator of the neurogenic-to-gliogenic transition in developing neural stem/progenitor cells. Proc Natl Acad Sci USA 2014; 111(4): 1604-9.
[http://dx.doi.org/10.1073/pnas.1315567111] [PMID: 24474786]
[107]
Hisamatsu D, Ohno-Oishi M, Nakamura S, Mabuchi Y, Naka-Kaneda H. Growth differentiation factor 6 derived from mesenchymal stem/stromal cells reduces age-related functional deterioration in multiple tissues. Aging (Albany NY) 2016; 8(6): 1259-75.
[http://dx.doi.org/10.18632/aging.100982] [PMID: 27311402]
[108]
Shang J, Yao Y, Fan X, et al. miR-29c-3p promotes senescence of human mesenchymal stem cells by targeting CNOT6 through p53-p21 and p16-pRB pathways. Biochim Biophys Acta 2016; 1863(4): 520-32.
[http://dx.doi.org/10.1016/j.bbamcr.2016.01.005] [PMID: 26792405]
[109]
Cruz FM, Tomé M, Bernal JA, Bernad A. miR-300 mediates Bmi1 function and regulates differentiation in primitive cardiac progenitors. Cell Death Dis 2015; 6e: 1953.
[http://dx.doi.org/10.1038/cddis.2015.255] [PMID: 26512961]
[110]
Okada M, Kim HW, Matsu-ura K, Wang YG, Xu M, Ashraf M. Abrogation of Age-Induced MicroRNA-195 Rejuvenates the Senescent Mesenchymal Stem Cells by Reactivating Telomerase. Stem Cells 2016; 34(1): 148-59.
[http://dx.doi.org/10.1002/stem.2211] [PMID: 26390028]
[111]
Mehta A, Zhao JL, Sinha N, et al. The MicroRNA-132 and MicroRNA-212 Cluster Regulates Hematopoietic Stem Cell Maintenance and Survival with Age by Buffering FOXO3 Expression. Immunity 2015; 42(6): 1021-32.
[http://dx.doi.org/10.1016/j.immuni.2015.05.017] [PMID: 26084022]
[112]
Kalwa M, et al. The lncRNA HOTAIR impacts on mesenchymal stem cells via triple helix formation 2016.
[113]
Li H, An J, Wu M, et al. LncRNA HOTAIR promotes human liver cancer stem cell malignant growth through downregulation of SETD2. Oncotarget 2015; 6(29): 27847-64.
[http://dx.doi.org/10.18632/oncotarget.4443] [PMID: 26172293]
[114]
Conboy IM, Conboy MJ, Wagers AJ, Girma ER, Weissman IL, Rando TA. Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature 2005; 433(7027): 760-4.
[http://dx.doi.org/10.1038/nature03260] [PMID: 15716955]
[115]
Baht GS, Silkstone D, Vi L, et al. Exposure to a youthful circulaton rejuvenates bone repair through modulation of β-catenin. Nat Commun 2015; 6: 7131.
[http://dx.doi.org/10.1038/ncomms8131] [PMID: 25988592]
[116]
Rossi DJ, Bryder D, Zahn JM, et al. Cell intrinsic alterations underlie hematopoietic stem cell aging. Proc Natl Acad Sci USA 2005; 102(26): 9194-9.
[http://dx.doi.org/10.1073/pnas.0503280102] [PMID: 15967997]
[117]
Taniguchi Ishikawa E, Gonzalez-Nieto D, Ghiaur G, et al. Connexin-43 prevents hematopoietic stem cell senescence through transfer of reactive oxygen species to bone marrow stromal cells. Proc Natl Acad Sci USA 2012; 109(23): 9071-6.
[http://dx.doi.org/10.1073/pnas.1120358109] [PMID: 22611193]
[118]
Junnila RK, et al. Disruption of the growth hormone receptor gene in adult mice increases maximal lifespan in females. Endocrinology 2016; en20161649.
[119]
Travison TG, O’Donnell CJ, Bhasin S, et al. Circulating Sex Steroids and Vascular Calcification in Community-Dwelling Men: The Framingham Heart Study. J Clin Endocrinol Metab 2016; 101(5): 2160-7.
[http://dx.doi.org/10.1210/jc.2015-4299] [PMID: 26930184]
[120]
Xia F, et al. Hypothalamic-Pituitary-Gonadal Axis in Aging Men and Women: Increasing Total Testosterone in Aging Men. Neuroendocrinology 2016.
[PMID: 27178254]
[121]
Jung JY, Shim JH, Choi H, Lee TR, Shin DW. Human dermal stem/progenitor cell-derived conditioned medium improves senescent human dermal fibroblasts. Int J Mol Sci 2015; 16(8): 19027-39.
[http://dx.doi.org/10.3390/ijms160819027] [PMID: 26287165]
[122]
Kim MO, Kim SH, Oi N, et al. Embryonic stem-cell-preconditioned microenvironment induces loss of cancer cell properties in human melanoma cells. Pigment Cell Melanoma Res 2011; 24(5): 922-31.
[http://dx.doi.org/10.1111/j.1755-148X.2011.00891.x] [PMID: 21787378]
[123]
Postovit LM, Margaryan NV, Seftor EA, et al. Human embryonic stem cell microenvironment suppresses the tumorigenic phenotype of aggressive cancer cells. Proc Natl Acad Sci USA 2008; 105(11): 4329-34.
[http://dx.doi.org/10.1073/pnas.0800467105] [PMID: 18334633]
[124]
Kološa K, Motaln H, Herold-Mende C, Koršič M, Lah TT. Paracrine effects of mesenchymal stem cells induce senescence and differentiation of glioblastoma stem-like cells. Cell Transplant 2015; 24(4): 631-44.
[http://dx.doi.org/10.3727/096368915X687787] [PMID: 25806680]
[125]
Goehe RW, Di X, Sharma K, et al. The autophagy-senescence connection in chemotherapy: must tumor cells (self) eat before they sleep? J Pharmacol Exp Ther 2012; 343(3): 763-78.
[http://dx.doi.org/10.1124/jpet.112.197590] [PMID: 22927544]
[126]
Zheng Y, Hu CJ, Zhuo RH, Lei YS, Han NN, He L. Inhibition of autophagy alleviates the senescent state of rat mesenchymal stem cells during long-term culture. Mol Med Rep 2014; 10(6): 3003-8.
[http://dx.doi.org/10.3892/mmr.2014.2624] [PMID: 25310478]
[127]
Zhang M, et al. Cholesterol Retards Senescence in Bone Marrow Mesenchymal Stem Cells by Modulating Autophagy and ROS/p53/p21Cip1/Waf1 Pathway. 2016; 2016: 7524308.
[128]
Oh YM, Eun JP. Clinical Impact of Sagittal Spinopelvic Parameters on Disc Degeneration in Young Adults. Medicine (Baltimore) 2015; 94(42)e1833
[http://dx.doi.org/10.1097/MD.0000000000001833] [PMID: 26496324]
[129]
Vergroesen PP, van der Veen AJ, van Royen BJ, Kingma I, Smit TH. Intradiscal pressure depends on recent loading and correlates with disc height and compressive stiffness. Eur Spine J 2014; 23(11): 2359-68.
[http://dx.doi.org/10.1007/s00586-014-3450-4] [PMID: 25031105]
[130]
Bailey JF, Hargens AR, Cheng KK, Lotz JC. Effect of microgravity on the biomechanical properties of lumbar and caudal intervertebral discs in mice. J Biomech 2014; 47(12): 2983-8.
[http://dx.doi.org/10.1016/j.jbiomech.2014.07.005] [PMID: 25085756]
[131]
Neidlinger-Wilke C, Mietsch A, Rinkler C, Wilke HJ, Ignatius A, Urban J. Interactions of environmental conditions and mechanical loads have influence on matrix turnover by nucleus pulposus cells. J Orthop Res 2012; 30(1): 112-21.
[http://dx.doi.org/10.1002/jor.21481] [PMID: 21674606]
[132]
Vo NV, Hartman RA, Yurube T, Jacobs LJ, Sowa GA, Kang JD. Expression and regulation of metalloproteinases and their inhibitors in intervertebral disc aging and degeneration. Spine J 2013; 13(3): 331-41.
[http://dx.doi.org/10.1016/j.spinee.2012.02.027] [PMID: 23369495]
[133]
Das RK, Gocheva V, Hammink R, Zouani OF, Rowan AE. Stress-stiffening-mediated stem-cell commitment switch in soft responsive hydrogels. Nat Mater 2016; 15(3): 318-25.
[http://dx.doi.org/10.1038/nmat4483] [PMID: 26618883]
[134]
Guo W, Wang S, Yu X, et al. Construction of a 3D rGO-collagen hybrid scaffold for enhancement of the neural differentiation of mesenchymal stem cells. Nanoscale 2016; 8(4): 1897-904.
[http://dx.doi.org/10.1039/C5NR06602F] [PMID: 26750302]
[135]
Ho JC, Ueda J, Shimizu T. The impact of mechanical stress on stem cell properties: The link between cell shape and pluripotency. Histol Histopathol 2016; 31(1): 41-50.
[PMID: 26350507]
[136]
Nsiah BA, Ahsan T, Griffiths S, Cooke M, Nerem RM, McDevitt TC. Fluid shear stress pre-conditioning promotes endothelial morphogenesis of embryonic stem cells within embryoid bodies. Tissue Eng Part A 2014; 20(5-6): 954-65.
[http://dx.doi.org/10.1089/ten.tea.2013.0243] [PMID: 24138406]
[137]
Lim KT, Kim J, Seonwoo H, et al. Enhanced osteogenesis of human alveolar bone-derived mesenchymal stem cells for tooth tissue engineering using fluid shear stress in a rocking culture method. Tissue Eng Part C Methods 2013; 19(2): 128-45.
[http://dx.doi.org/10.1089/ten.tec.2012.0017] [PMID: 23088630]
[138]
Qin TW, Sun YL, Thoreson AR, et al. Effect of mechanical stimulation on bone marrow stromal cell-seeded tendon slice constructs: a potential engineered tendon patch for rotator cuff repair. Biomaterials 2015; 51: 43-50.
[http://dx.doi.org/10.1016/j.biomaterials.2015.01.070] [PMID: 25770996]
[139]
Davis C, Dukes A, Drewry M, et al. MicroRNA-183-5p Increases with Age in Bone-Derived Extracellular Vesicles, Suppresses Bone Marrow Stromal (Stem) Cell Proliferation, and Induces Stem Cell Senescence. Tissue Eng Part A 2017; 23(21-22): 1231-40.
[http://dx.doi.org/10.1089/ten.tea.2016.0525] [PMID: 28363268]
[140]
Fulzele S, Mendhe B, Khayrullin A, et al. Muscle-derived miR-34a increases with age in circulating extracellular vesicles and induces senescence of bone marrow stem cells. Aging (Albany NY) 2019; 11(6): 1791-803.
[http://dx.doi.org/10.18632/aging.101874] [PMID: 30910993]
[141]
Khayrullin A, Krishnan P, Martinez-Nater L, et al. Very Long-Chain C24:1 Ceramide Is Increased in Serum Extracellular Vesicles with Aging and Can Induce Senescence in Bone-Derived Mesenchymal Stem Cells. Cells 2019; 8(1)E37
[http://dx.doi.org/10.3390/cells8010037] [PMID: 30634626]
[142]
Su T, Xiao Y, Xiao Y, et al. Bone Marrow Mesenchymal Stem Cells-Derived Exosomal MiR-29b-3p Regulates Aging-Associated Insulin Resistance. ACS Nano 2019; 13(2): 2450-62.
[http://dx.doi.org/10.1021/acsnano.8b09375] [PMID: 30715852]
[143]
Han C, Zhou J, Liu B, et al. Delivery of miR-675 by stem cell-derived exosomes encapsulated in silk fibroin hydrogel prevents aging-induced vascular dysfunction in mouse hindlimb. Mater Sci Eng C 2019; 99: 322-32.
[http://dx.doi.org/10.1016/j.msec.2019.01.122] [PMID: 30889706]
[144]
Zhang Y, Kim MS, Jia B, et al. Hypothalamic stem cells control ageing speed partly through exosomal miRNAs. Nature 2017; 548(7665): 52-7.
[http://dx.doi.org/10.1038/nature23282] [PMID: 28746310]
[145]
Li X, Xie X, Lian W, et al. Exosomes from adipose-derived stem cells overexpressing Nrf2 accelerate cutaneous wound healing by promoting vascularization in a diabetic foot ulcer rat model. Exp Mol Med 2018; 50(4): 29.
[http://dx.doi.org/10.1038/s12276-018-0058-5] [PMID: 29651102]
[146]
Kulkarni R, Bajaj M, Ghode S, Jalnapurkar S, Limaye L, Kale VP. Intercellular Transfer of Microvesicles from Young Mesenchymal Stromal Cells Rejuvenates Aged Murine Hematopoietic Stem Cells. Stem Cells 2018; 36(3): 420-33.
[http://dx.doi.org/10.1002/stem.2756] [PMID: 29230885]
[147]
Kulkarni RS, Bajaj MS, Kale VP. Induction and Detection of Autophagy in Aged Hematopoietic Stem Cells by Exposing Them to Microvesicles Secreted by HSC-Supportive Mesenchymal Stromal Cells. Methods Mol Biol 2019; 1854: 21-34.
[http://dx.doi.org/10.1007/7651_2018_166] [PMID: 29951740]
[148]
Choi YJ, Lin CP. Deficiency of microRNA miR-34a expands cell fate potential in pluripotent stem cells 2017; 355(6325)
[149]
Zhang G, Wu Y, Xu D, Yan X. Long Noncoding RNA UFC1 Promotes Proliferation of Chondrocyte in Osteoarthritis by Acting as a Sponge for miR-34a. DNA Cell Biol 2016; 35(11): 691-5.
[http://dx.doi.org/10.1089/dna.2016.3397] [PMID: 27529373]
[150]
Song P, Ye LF, Zhang C, Peng T, Zhou XH. Long non-coding RNA XIST exerts oncogenic functions in human nasopharyngeal carcinoma by targeting miR-34a-5p. Gene 2016; 592(1): 8-14.
[http://dx.doi.org/10.1016/j.gene.2016.07.055] [PMID: 27461945]
[151]
Tomé M, Sepúlveda JC, Delgado M, et al. miR-335 correlates with senescence/aging in human mesenchymal stem cells and inhibits their therapeutic actions through inhibition of AP-1 activity. Stem Cells 2014; 32(8): 2229-44.
[http://dx.doi.org/10.1002/stem.1699] [PMID: 24648336]
[152]
Zhao Q, Wang XY, Yu XX, et al. Expression of human telomerase reverse transcriptase mediates the senescence of mesenchymal stem cells through the PI3K/AKT signaling pathway. Int J Mol Med 2015; 36(3): 857-64.
[http://dx.doi.org/10.3892/ijmm.2015.2284] [PMID: 26178664]
[153]
Hoffmeyer K, Raggioli A, Rudloff S, et al. Wnt/β-catenin signaling regulates telomerase in stem cells and cancer cells. Science 2012; 336(6088): 1549-54.
[http://dx.doi.org/10.1126/science.1218370] [PMID: 22723415]
[154]
Madonna R, Taylor DA, Geng YJ, et al. Transplantation of mesenchymal cells rejuvenated by the overexpression of telomerase and myocardin promotes revascularization and tissue repair in a murine model of hindlimb ischemia. Circ Res 2013; 113(7): 902-14.
[http://dx.doi.org/10.1161/CIRCRESAHA.113.301690] [PMID: 23780385]
[155]
Choi YJ, Lee JY, Chung CP, Park YJ. Cell-penetrating superoxide dismutase attenuates oxidative stress-induced senescence by regulating the p53-p21(Cip1) pathway and restores osteoblastic differentiation in human dental pulp stem cells. Int J Nanomedicine 2012; 7: 5091-106.
[PMID: 23049256]
[156]
He T, Joyner MJ, Katusic ZS. Aging decreases expression and activity of glutathione peroxidase-1 in human endothelial progenitor cells. Microvasc Res 2009; 78(3): 447-52.
[http://dx.doi.org/10.1016/j.mvr.2009.08.009] [PMID: 19733578]
[157]
Kofman AE, McGraw MR, Payne CJ. Rapamycin increases oxidative stress response gene expression in adult stem cells. Aging (Albany NY) 2012; 4(4): 279-89.
[http://dx.doi.org/10.18632/aging.100451] [PMID: 22529334]
[158]
Shin JH, Jeon HJ, Park J, Chang MS. Epigallocatechin-3-gallate prevents oxidative stress-induced cellular senescence in human mesenchymal stem cells via Nrf2. Int J Mol Med 2016; 38(4): 1075-82.
[http://dx.doi.org/10.3892/ijmm.2016.2694] [PMID: 27498709]
[159]
Yagi H, Tan J, Tuan RS. Polyphenols suppress hydrogen peroxide-induced oxidative stress in human bone-marrow derived mesenchymal stem cells. J Cell Biochem 2013; 114(5): 1163-73.
[http://dx.doi.org/10.1002/jcb.24459] [PMID: 23192437]
[160]
Xu G, Wu H, Zhang J, et al. Metformin ameliorates ionizing irradiation-induced long-term hematopoietic stem cell injury in mice. Free Radic Biol Med 2015; 87: 15-25.
[http://dx.doi.org/10.1016/j.freeradbiomed.2015.05.045] [PMID: 26086617]
[161]
Zhang H, Zhai Z, Wang Y, et al. Resveratrol ameliorates ionizing irradiation-induced long-term hematopoietic stem cell injury in mice. Free Radic Biol Med 2013; 54: 40-50.
[http://dx.doi.org/10.1016/j.freeradbiomed.2012.10.530] [PMID: 23124026]
[162]
Kim YY, Ku SY, Huh Y, et al. Anti-aging effects of vitamin C on human pluripotent stem cell-derived cardiomyocytes. Age (Dordr) 2013; 35(5): 1545-57.
[http://dx.doi.org/10.1007/s11357-012-9457-z] [PMID: 22843416]
[163]
Cao Y, Yang T, Gu C, Yi D. Pigment epithelium-derived factor delays cellular senescence of human mesenchymal stem cells in vitro by reducing oxidative stress. Cell Biol Int 2013; 37(4): 305-13.
[http://dx.doi.org/10.1002/cbin.10041] [PMID: 23359450]
[164]
Borodkina AV, Shatrova AN, Deryabin PI, et al. Calcium alterations signal either to senescence or to autophagy induction in stem cells upon oxidative stress. Aging (Albany NY) 2016; 8(12): 3400-18.
[http://dx.doi.org/10.18632/aging.101130] [PMID: 27941214]
[165]
Bahmani B, Roudkenar MH, Halabian R, Jahanian-Najafabadi A, Amiri F, Jalili MA. Lipocalin 2 decreases senescence of bone marrow-derived mesenchymal stem cells under sub-lethal doses of oxidative stress. Cell Stress Chaperones 2014; 19(5): 685-93.
[http://dx.doi.org/10.1007/s12192-014-0496-5] [PMID: 24452457]
[166]
Chen C, Xu Y, Song Y. IGF-1 gene-modified muscle-derived stem cells are resistant to oxidative stress via enhanced activation of IGF-1R/PI3K/AKT signaling and secretion of VEGF. Mol Cell Biochem 2014; 386(1-2): 167-75.
[http://dx.doi.org/10.1007/s11010-013-1855-8] [PMID: 24126783]
[167]
Iglesias-Bartolome R, Patel V, Cotrim A, et al. mTOR inhibition prevents epithelial stem cell senescence and protects from radiation-induced mucositis. Cell Stem Cell 2012; 11(3): 401-14.
[http://dx.doi.org/10.1016/j.stem.2012.06.007] [PMID: 22958932]
[168]
Marycz K, Tomaszewski KA, Kornicka K, et al. Metformin decreases reactive oxygen species, enhances osteogenic properties of adipose-derived multipotent mesenchymal stem cells in vitro, and increases bone density in vivo. Oxid Med Cell Longev 2016; 20169785890
[http://dx.doi.org/10.1155/2016/9785890] [PMID: 27195075]
[169]
Wang J, Gallagher D, DeVito LM, et al. Metformin activates an atypical PKC-CBP pathway to promote neurogenesis and enhance spatial memory formation. Cell Stem Cell 2012; 11(1): 23-35.
[http://dx.doi.org/10.1016/j.stem.2012.03.016] [PMID: 22770240]
[170]
Bai L, Shi G, Yang Y, Chen W, Zhang L. Anti-Aging Effect of Siraitia grosuenorii by Enhancement of Hematopoietic Stem Cell Function. Am J Chin Med 2016; 44(4): 803-15.
[http://dx.doi.org/10.1142/S0192415X16500440] [PMID: 27222064]
[171]
Minieri V, Saviozzi S, Gambarotta G, et al. Persistent DNA damage-induced premature senescence alters the functional features of human bone marrow mesenchymal stem cells. J Cell Mol Med 2015; 19(4): 734-43.
[http://dx.doi.org/10.1111/jcmm.12387] [PMID: 25619736]
[172]
Rajamani K, Lin YC, Wen TC, et al. The antisenescence effect of trans-cinnamaldehyde on adipose-derived stem cells. Cell Transplant 2015; 24(3): 493-507.
[http://dx.doi.org/10.3727/096368915X686959] [PMID: 25654692]
[173]
Zhang S, Dong Z, Peng Z, Lu F. Anti-aging effect of adipose-derived stem cells in a mouse model of skin aging induced by D-galactose. PLoS One 2014; 9(5)e97573
[http://dx.doi.org/10.1371/journal.pone.0097573] [PMID: 24831697]
[174]
Li H, Wang J, Li F, Chen G, Chen Q. The Influence of Hyperosmolarity in the Intervertebral Disc on the Proliferation and Chondrogenic Differentiation of Nucleus Pulposus-Derived Mesenchymal Stem Cells. Cells Tissues Organs (Print) 2018; 205(3): 178-88.
[http://dx.doi.org/10.1159/000490760] [PMID: 30064140]
[175]
Tao YQ, Liang CZ, Li H, et al. Potential of co-culture of nucleus pulposus mesenchymal stem cells and nucleus pulposus cells in hyperosmotic microenvironment for intervertebral disc regeneration. Cell Biol Int 2013; 37(8): 826-34.
[http://dx.doi.org/10.1002/cbin.10110] [PMID: 23554141]
[176]
Huang S, Leung VY, Long D, et al. Coupling of small leucine-rich proteoglycans to hypoxic survival of a progenitor cell-like subpopulation in Rhesus Macaque intervertebral disc. Biomaterials 2013; 34(28): 6548-58.
[http://dx.doi.org/10.1016/j.biomaterials.2013.05.027] [PMID: 23764115]
[177]
Naqvi SM, Buckley CT. Extracellular matrix production by nucleus pulposus and bone marrow stem cells in response to altered oxygen and glucose microenvironments. J Anat 2015; 227(6): 757-66.
[http://dx.doi.org/10.1111/joa.12305] [PMID: 25913845]
[178]
Liang C, Li H, Tao Y, et al. Responses of human adipose-derived mesenchymal stem cells to chemical microenvironment of the intervertebral disc. J Transl Med 2012; 10: 49.
[http://dx.doi.org/10.1186/1479-5876-10-49] [PMID: 22424131]
[179]
Wang W, Wang Y, Deng G, et al. Transplantation of Hypoxic-Preconditioned Bone Mesenchymal Stem Cells Retards Intervertebral Disc Degeneration via Enhancing Implanted Cell Survival and Migration in Rats. Stem Cells Int 2018.20187564159
[http://dx.doi.org/10.1155/2018/7564159] [PMID: 29535780]
[180]
Wuertz K, Godburn K, Neidlinger-Wilke C, Urban J, Iatridis JC. Behavior of mesenchymal stem cells in the chemical microenvironment of the intervertebral disc. Spine 2008; 33(17): 1843-9.
[http://dx.doi.org/10.1097/BRS.0b013e31817b8f53] [PMID: 18670337]
[181]
Naqvi SM, Buckley CT. Bone Marrow Stem Cells in Response to Intervertebral Disc-Like Matrix Acidity and Oxygen Concentration: Implications for Cell-based Regenerative Therapy. Spine 2016; 41(9): 743-50.
[http://dx.doi.org/10.1097/BRS.0000000000001314] [PMID: 26630431]
[182]
Han B, Wang HC, Li H, et al. Nucleus pulposus mesenchymal stem cells in acidic conditions mimicking degenerative intervertebral discs give better performance than adipose tissue-derived mesenchymal stem cells. Cells Tissues Organs (Print) 2014; 199(5-6): 342-52.
[http://dx.doi.org/10.1159/000369452] [PMID: 25661884]
[183]
Teixeira GQ, Pereira CL, Ferreira JR, et al. Immunomodulation of Human Mesenchymal Stem/Stromal Cells in Intervertebral Disc Degeneration: Insights From a Proinflammatory/Degenerative Ex Vivo Model. Spine 2018; 43(12): E673-82.
[http://dx.doi.org/10.1097/BRS.0000000000002494] [PMID: 29189572]
[184]
Feng G, Jin X, Hu J, et al. Effects of hypoxias and scaffold architecture on rabbit mesenchymal stem cell differentiation towards a nucleus pulposus-like phenotype. Biomaterials 2011; 32(32): 8182-9.
[http://dx.doi.org/10.1016/j.biomaterials.2011.07.049] [PMID: 21839506]
[185]
Frith JE, Cameron AR, Menzies DJ, et al. An injectable hydrogel incorporating mesenchymal precursor cells and pentosan polysulphate for intervertebral disc regeneration. Biomaterials 2013; 34(37): 9430-40.
[http://dx.doi.org/10.1016/j.biomaterials.2013.08.072] [PMID: 24050877]
[186]
Wang J, Tao Y, Zhou X, et al. The potential of chondrogenic pre-differentiation of adipose-derived mesenchymal stem cells for regeneration in harsh nucleus pulposus microenvironment. Exp Biol Med (Maywood) 2016; 241(18): 2104-11.
[http://dx.doi.org/10.1177/1535370216662362] [PMID: 27488396]
[187]
Liang C, Li H, Li C, et al. Fabrication of a Layered Microstructured Polymeric Microspheres as a Cell Carrier for Nucleus Pulposus Regeneration. J Biomater Sci Polym Ed 2012; 23(18): 2287-302.
[http://dx.doi.org/10.1163/156856211X614789] [PMID: 22243931]
[188]
Liang CZ, Li H, Tao YQ, et al. Dual delivery for stem cell differentiation using dexamethasone and bFGF in/on polymeric microspheres as a cell carrier for nucleus pulposus regeneration. J Mater Sci Mater Med 2012; 23(4): 1097-107.
[http://dx.doi.org/10.1007/s10856-012-4563-0] [PMID: 22327946]
[189]
Cheng X, Zhang G, Zhang L, et al. Mesenchymal stem cells deliver exogenous miR-21 via exosomes to inhibit nucleus pulposus cell apoptosis and reduce intervertebral disc degeneration. J Cell Mol Med 2018; 22(1): 261-76.
[http://dx.doi.org/10.1111/jcmm.13316] [PMID: 28805297]
[190]
Tofiño-Vian M, Guillén MI, Pérez Del Caz MD, Castejón MA, Alcaraz MJ. Extracellular vesicles from adipose-derived mesenchymal stem cells downregulate senescence features in osteoarthritic osteoblasts. Oxid Med Cell Longev 2017.20177197598
[http://dx.doi.org/10.1155/2017/7197598] [PMID: 29230269]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 14
ISSUE: 8
Year: 2019
Page: [654 - 668]
Pages: 15
DOI: 10.2174/1574888X14666190906163253
Price: $65

Article Metrics

PDF: 38
HTML: 4